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SUMMARY

Digital information generates the possibility of a high degree of redundancy

in the data available for fitting predictive models used for Digital Soil Mapping

(DSM). Among these models, the Decision Tree (DT) technique has been

increasingly applied due to its capacity of dealing with large datasets. The purpose

of this study was to evaluate the impact of the data volume used to generate the DT

models on the quality of soil maps. An area of 889.33 km² was chosen in the Northern

region of the State of Rio Grande do Sul. The soil-landscape relationship was

obtained from reambulation of the studied area and the alignment of the units in

the 1:50,000 scale topographic mapping. Six predictive covariates linked to the

factors soil formation, relief and organisms, together with data sets of 1, 3, 5, 10, 15,

20 and 25 % of the total data volume, were used to generate the predictive DT

models in the data mining program Waikato Environment for Knowledge Analysis

(WEKA). In this study, sample densities below 5 % resulted in models with lower

power of capturing the complexity of the spatial distribution of the soil in the

study area. The relation between the data volume to be handled and the predictive

capacity of the models was best for samples between 5 and 15 %. For the models

based on these sample densities, the collected field data indicated an accuracy of

predictive mapping close to 70 %.

Index terms: decision tree, pedometry, soil survey, mapping unit.
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RESUMO: VOLUME DE DADOS ADEQUADO PARA O MAPEAMENTO DIGITAL
DE SOLOS NO MUNICÍPIO DE ERECHIM, RIO GRANDE DO SUL,
BRASIL

Informações digitais tornam possível um elevado grau de redundância das informações
disponíveis para o ajuste de modelos preditores aplicados ao Mapeamento Digital de Solos
(MDS). Entre esses modelos, a técnica de Árvores de Decisão (AD) tem aplicação crescente, em
razão da sua potência no tratamento de grandes volumes de dados. Objetivou-se com este
trabalho avaliar o impacto do volume de dados utilizados para gerar os modelos por AD, na
qualidade dos mapas de solos gerados pela técnica de MDS. Uma área de estudo com 889,33
km² foi escolhida na região do Planalto Médio do Rio Grande do Sul. As relações solo-paisagem
foram obtidas a partir de reambulação da área de estudo e delineamento das unidades de
mapeamento em cartas topográficas de escala 1:50.000. Seis covariáveis preditoras ligadas
aos fatores de formação do solo, relevo e organismos, juntamente com os conjuntos de dados de
um, três, cinco, 10, 15, 20 e 25 % do volume total de dados, foram usadas para gerar os
modelos preditivos por AD no programa WEKA. Neste estudo, densidades de amostragem
menores do que 5 % resultaram em modelos com menor poder de capturar a complexidade da
distribuição espacial do solo da área estudada. Amostragens entre cinco e 15 % conduziram a
uma melhor relação entre o volume de dados a ser manipulado e a capacidade preditiva dos
modelos gerados. Dados coletados no campo indicaram acurácia dos mapas preditos próxima
a 70 %, para os modelos oriundos dessas densidades de amostragem.

Termos de indexação: árvore de decisão, pedometria, levantamento de solos, unidade de
mapeamento.

INTRODUCTION

Technological advances in areas such as remote
sensing, computer processing speed, ability to handle
large volumes of data, quantitative methods to describe
spatial patterns and three-dimensional visualization
have created new opportunities for understanding soil
processes and properties (Grunwald, 2009). Digital Soil
Mapping (DSM) in soil science is the computer-assisted
production of digital maps of soil types and soil
properties. DSM involves the creation and population
of spatial soil information through the use of field and
laboratory observational methods, coupled with spatial
and non-spatial soil inference systems (Lagacherie &
McBratney, 2007).

The application of digital information to DSM
enables a high level of redundancy for fitting the models.
On the other hand, the volume of information available
will require the handling and processing of large volumes
of data (McBratney et al., 2003). The search for an
improved relationship between the sampling density in
the original data bank and the predictive accuracy of
the models has spurred research in this direction.

Among the data mining methods applied to the DSM,
the Decision Tree (DT) technique is being increasingly
applied, due to its ability of dealing with large data
volumes (Witten & Frank, 2005). The DT approach has
been used for the advantage of allowing an explicit
expression of the soil-landscape relationship (Kheir et
al., 2010a). DTs have been used in studies related to soil
surface and underground erosion (Geissen et al., 2007),
to prediction of soil classes (Giasson et al., 2011) and to
spatialization of soil properties (Lemercier et al., 2012).

In addition to allowing grouping and the search for
patterns, the DT permits an understanding of how these
data are inter-related (Kheir et al., 2010b). The DT
does not require an a priori specification of the form of
the model that will be fitted to the data; moreover, as
the DT model is constructed, it can be converted to
algorithms that can easily be implemented by
programming language (Kheir et al., 2010a).

DT models were used by Scull et al. (2005) with
39,877 samples for prediction of soil types in a 2,590
km² desert area, corresponding to approximately one
percent of the total available data. In a study carried
out by Giasson et al. (2011), 1,333 samples were used
for the prediction of soil classes in an area of
approximately 6.1 km², the sample density corresponded
to less than one percent of the original data volume. Qi
& Zhu (2003) sampled around 12 % of the original
data in an area of 4 km² for fitting the models by DT.

In view of the availability of databases with a
growing number of observations and the diversity of
sampling densities reported in studies, the purpose of
this study was to evaluate the effect of the proportion
of the original data set used on the quality of soil type
mapping generated by the decision tree technique.

MATERIAL AND METHODS

Area of study

The study area was defined by the polygon of the
municipality of Erechim, in the Northern region of
the State of Rio Grande do Sul (52o 06’ - 52o 24’
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longitude W, 27o 28’ - 27o 47’ latitude S, SIRGAS 2000).
In the area of 889.33 km², altitudes range from 423 to
900 m (Figure 1). The region was chosen for its lack
of soil spatial information with soil maps at
recognition and exploratory level only.

With a view to generate DTs, the soil-landscape
relationships were obtained from reambulation of the
area under study with information obtained in the
field by an experienced soil scientist. Soil samples were
collected for laboratory analysis in seven profiles, and
sets of auger holes were drilled throughout the study
area. This information permitted outlining the
mapping units on 1:50,000 scale topographic maps
and defining soil classes of significant occurrence,
according to the Brazilian System of Soil Classification
- SiBCS (Embrapa, 2006) (Table 1). This information,
together with the environmental covariates was used
as data for the DT training.

Environmental covariates

In this study, covariates of the ‘scorpan’ model
(McBratney et al, 2003) were used, related to the soil
formation factors of relief (r) and organisms (o). Other
covariates of the model were not available or the spatial

resolution was insufficient for this study. The
“organisms” factor represented the covariate
Normalized Difference Vegetation Index (NDVI) of
October (Oct.) (NOUT) and the standard deviation of
the NDVI (STAN). The choice of Oct for the NDVI
was because the contrast between the different uses
of the land in the region is greatest in this month.
For the calculation of both covariates, the images used
were all from 2004 due to the greater availability of
cloudless images in that year. All NDVIs were
calculated according to Jensen (2009).

The STAN predictor was generated from the data
of eight dates in 2004 obtained by the Landsat 5 sensor
TM platform with a spatial resolution of 30 m. The
NDVI value was calculated individually for each date.
Then, the standard deviation of the NDVI value
between the eight dates was computed for each pixel
in ArcGIS (ESRI, 2008), in the Raster Calculator
function of the program. The standard deviation was
calculated as follows:

Where STAN = standard deviation of NDVI; n =
number of different dates used to generate STAN;
NDVi = from 1st to 8th NDVI; and NDVI = average
value of NDVI.

The relief factor was represented by the elevation
(ELEV), vertical distance of the drainage system
(DIST), slope (SLOP), topographic wetness index
(TWI), sediment transport capacity (STC), planar
curvature (PLAN), profile curvature (PROF), and
rugosity (RUGO) covariates. The covariates were
generated according to Wilson & Gallant (2000) from
a digital elevation model (DEM). The DEM with a
spatial resolution of 30 m was derived from contour
lines on topographic maps on a 1:50,000 scale. The
interpolation of the contour lines to the raster format
occurred in the Topo do Raster tool of the ArcGIS 9.3
program (ESRI, 2008), using the spline technique. In
the SAGA-GIS program (Olaya, 2004), the attributes
ELEV, DIST, SLOP, PLAN, PROF, and RUGO were
generated by the standard terrain analysis tool and
the TWI and STC attributes by the grid calculator
tool.

Data sets corresponding to the sampling densities
of 1, 3, 5, 10, 15, 20 and 25 % of the total area were
tabulated for DT modeling. They were extracted by
random sampling of the training soil map from the
10 layers of environmental covariates with SAGA-
GIS. All soil classes were sampled proportionally to
their area, according to the adopted sampling method.

Decision trees

The DTs were developed using the data mining
program WEKA (Hall et al., 2009). For data
processing, the J48 algorithm was used since it had
the best performance in a study carried out by Giasson

Figure 1. Drainage network and hypsometric map

of the study area overlaid by the perimeter of

the municipality of Erechim. The inset in the

upper right corner shows the study area in the

State of Rio Grande do Sul.
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et al. (2011). The minimum number of observations
(minNumObj on WEKA) per leaf for each data set
was determined after an analysis of the percentage of
misclassified observations. This analysis was
performed using the 23 values of 2; 5; 10; 50; 75; 80;
95; 100; 150; 200; 250; 300; 400; 500; 600; 700; 1,000;
1,250; 1,500; 1,750; 2,000; 2,250; and 2,500 for the
minimum number of observations per leaf in each of
the seven data sets. The pruning method, which
mitigated the error in the generated DT, was also
selected (reducedErrorPruning = True on WEKA).
During DT generation, an independent data set of
5 % of the total area was used (Supplied test set on
WEKA) to verify the quality of the generated tree.

Soil map

The DTs with the best ratio between the model
complexity and the number of misclassified
observations were implemented in the ArcGIS
program, in the raster calculator function. The
information derived from the tree was converted by
the conditional function ‘con(condition, if true, if false)’
of the program. By this function, the raster files of
the environmental covariates can be processed
according to the set of rules derived from the DT. Since
the intended publication scale of each created soil map
was 1:50,000, isolated pixel regions with a minimum
mappable area of less than 1 ha were merged with a
neighboring polygon.

Quality of models and maps

The quality of the DT models was evaluated based
on the percentage value of misclassified observations
across the tree. This value is one of the outputs of the
WEKA program once the created model is validated
using the set of 5 % of the reserved data. To calculate
this, the program adds up all misclassified observations
and divides them by the total observations of the testing
set, multiplying the result by 100 to obtain the
percentage value (Hall et al., 2009).

The precision of the fitted model was evaluated by
the set of correctly classified soil classes and divided
by the sum of the correctly classified and misclassified
sets of map units. This value is then multiplied by
100 to obtain a relative value (Hall et al., 2009).

The kappa index was used to verify the quality of
information contained in the map (Hengl et al., 2007).
The error matrix was established to calculate the
kappa index according to Congalton (1991), from 50
observations per map unit obtained from field
reambulations for identification of local soils. In all,
350 sites of occurrence of the mapped soil types were
identified in this study.

RESULTS AND DISCUSSION

Decision Tree Models

The application of the seven data sample sets in
the WEKA program, configured to evaluate the effect
of 23 different groups of observations in the terminal
nodes (minNumObj on WEKA), resulted in the
development of 161 different DT models. The DTs in
which a large number of observations were gathered
in a single terminal node gave rise to more simplified
models, but with less predictive power, since
observations with a lower degree of similarity were
united in the same terminal node. Figure 2 illustrates
a DT derived from the data set with a sampling
density of 10 %.

To generate the DT of the figure 2, the WEKA
program was set to collect up to 1500 observations in
the terminal nodes (minNumObj = 1500). It was then
possible to generate a less complex model with only
12 nodes, which led to 23.83 % incorrectly classified
observations. When the same data set was used, but
the program set to gather a maximum of 10
observations per terminal node (minNumObj = 10), a

Symbol SiBCS (Embrapa, 2006)/Soil Taxonomy
Area

ha %

MU1 Gleissolo Háplico/Typic Endoaquept 31.28 12.52

MU2 Latossolo Vermelho/Rhodic Hapludox 122.99 49.22

MU3 Associação Neossolo Litólico e Cambissolo Hálico/Lithic Udorthent -

Typic Dystrudept association 18.27 7.31

MU4 Neossolo Litólico/Lithic Udorthent 26.26 10.51

MU5 Associação Nitossolo Vermelho e Chernossolo Argilúvico fase altitude elevada/Typic

Rhodudalf - Typic Argiudoll higher altitude phase association 26.01 10.41

MU6 Associação Nitossolo Vermelho e Chernossolo Argilúvico fase altitude baixa/Typic

Rhodudalf - Typic Argiudoll lower altitude phase association 18.03 7.22

MU7 Associação Nitossolo Vermelho e Cambissolo Háplico/Typic Rhodudalf - Typic

Dystrudept association 7.05 2.82

Table 1. Soil Mapping Units (MU) surveyed in the study area of the municipality of Erechim (RS)
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DT with 475 nodes was formed, with a percentage of
misclassified observations of 13.22 %. This model had
greater predictive power but was also more complex.

Among the predictors applied to describe the soil-
landscape relationship of the study area, those used
to define the main nodes of the trees were: slope,
elevation and vertical distance of the drainage system
(Figure 2). This is related to the predominant soil-
landscape relationship in the study region, where relief
plays a significant role. The pattern of predominance
of these three predictors was also observed in other
generated DT models, confirming the importance of
relief for soil formation in the area under study.

The DTs with most nodes overfitted the data and
maximized the predictive power (Figure 3). During
the development of the models by DT, it is therefore
necessary to evaluate the predictive gain of the models
to the extent that they become more complex. For the
seven sets of samples, it was verified that to the extent
that the DT become more complex with a greater
number of leaves, the fewer the number of
observations misclassified by the models. However,
even for very complex trees and higher volumes of
data to fit the models, the percentage of misclassified
observations remains around 13 % (Figure 3).
Possibly, this arises from the impossibility of
explaining the complexity of spatial distribution of the
soils in the region with only the six covariates utilized.
Scull et al. (2005) applied DTs for soil classification at

the order level and observed that the model
misclassified about 18.52 % of the observations located
in the training area and 24.34 % of those located in
the validation area.

For the data sets of 1 and 3 %, even with a smaller
number of observations per leaf in more complex trees,
no results better than 16.5 and 15 %, respectively,
were achieved. One of the effects of utilizing a small
number of samples for DT generation may be the non-
representative nature in relation to the total available
data set, reducing the predictive power.

As the DTs are pruned, the number of misclassified
observations increases (Figure 3). Nevertheless, above
a certain number of leaves, the increase rate in errors
changes significantly and begins to increase linearly
for DTs with less than 65 leaves (vertical dashed line).
This behavior was also observed in the smaller data
sets (1 or 3 %), although less pronounced.

To use models with a combination of simplicity
and predictive power in the different data sets, the
option was made to use a lower limit of 65 leaves in
the DTs. With this value, DTs were generated for the
data sets of 5, 10, 15, 20 and 25 %. The data sets of 1
and 3 % were discarded for presenting the worst
results in terms of number of misclassified observation
in the region of the DT with 65 leaves. Grinand et al.
(2008) stated that sample volumes below 10 % can
lead to a substantial reduction in the model quality.

The results for model development (Table 2) indicate
a tendency for a small decrease in the number of
misclassified observations as the data sets to generate

Figure 3. Relationship between the number of leaves

in the decision tree and the percentage of

misclassified samples. The vertical dashed line

indicates the abrupt increase in the number of

incorrectly classified instances.

Figure 2. Decision tree generated by the WEKA

program. Terminal leaves are associated with

one of the seven mapping units. Mapping Unit

(MU), elevation (ELEV), vertical distance of the

drainage system (DIST) and slope (SLOP).
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the models increased. The fact that the number of
incorrect observations remained around 16 % for all
five data sets is possibly due to the quality and
quantity of the predictor covariates used in this study,
which were incapable of predicting the total complexity
of spatial distribution of the soils in the study area.
The values of the Kappa index and the precision of
the models generated by the WEKA program were
also significantly improved as a higher data volume
was used to generate the models (Table 2). However,
these results indicate that an improvement in the
fitting of the models generated by DT is associated
with other factors, such as the use of a larger quantity
and diversity of predictor covariates, and not only the
use of a larger data volume for model fitting.

In a study carried out by Giasson et al. (2011), the
authors identified a kappa index of 57.1 % for one DT
with 79 leaves, used to map six soil classes. According
to these authors, oversimplified DTs implied in a
reduction of predictive power of the models. In that
study, a DT with only five leaves was evaluated, which
resulted in a kappa index of approximately 43.9 %
and the prediction of only two soil classes.

Soil maps

Five DTs were used to generate soil maps of the
municipality of Erechim (Figure 4). All five soil maps
represented the soil-landscape relationship very
similarly to those established by pedologists in a field
reambulation. Rhodic Hapludox soils were found on
slopes at higher altitudes (Figure 4). At these locations,
the relief conditions made the formation of these deep,
homogeneous and weathered soils possible.

Combinations of Lithic Udorthent and Typic
Dystrudept were found at lower positions of the
toposequence (Figure 4). Such associations can be
observed throughout the upper part of the Rio Dourado
Valley. At these locations, slopes make a constant
removal of material possible. Consequently, soils tend
to be shallow and rocky. Lithic Udorthent soils were
situated predominantly on the longer and steeper

slopes (Figure 4). The association of Typic Rhodudalf
with  Typic Argiudoll at low altitude locations occurred
in the valleys along the drainage network. At these
sites, flat areas made the formation of deeper and more
developed soils possible (Figure 4).

Data set
Model development(¹) Quality of the predictive model(2)

Incorrectly classified instance Kappa Precision 5 10 15 20 25

5 16.27 76.50 83.00 - - - - -

10 16.23 76.80 83.20 79.4 - - - -

15 16.14 76.94 83.30 78.4 81.1 - - -

20 15.79 77.36 83.70 81.1 84.1 84.1 - -

25 16.02 77.06 83.00 82.4 85.3 85.6 90.4 -

Training - - - 77.3 77.3 77.1 77.7 77.6

field - - - 69.7 68.5 71.1 71.4 71.1

Table 2. Results for model development and testing of the model predictive power

(¹) Output information of the WEKA program after testing the five models in the independent data set (supplied test set). (²) Kappa
index between the maps generated with different sampling densities, the training area and the 350 field samples. All values in
percentage.

Figure 4. Extracts of the soil maps predicted from

five sets of samples: (a) 5 %, (b) 10 %, (c) 15 %, (d)

20 %, (e) 25 %. Coordinate System SIRGAS2000

UTM zone 22.
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A visual analysis of the five maps provided
insufficient information to determine the most
adequate data density. Subsequently, a field evaluation
of the predictive capacity of each one of the five DTs
generated was carried out.

Quality of the soil maps

From the five soil maps and the field data, it was
possible to evaluate the quality of the predictive models
(Table 2). First of all, it was decided to evaluate the
similarity among the maps by comparison. It was
observed that as the data volume increased, the higher
the agreement between the generated maps. When
the maps with data volumes of 5 and 10 % were
compared, the kappa index was lower than the index
obtained from the comparison between the maps with
data volumes of 20 and 25 %. This result is an
indication that larger volumes of data allow a better
comprehension of the complexity to be mapped,
although the similarities between the maps prepared
with a lower data volume in this study were also high.

The reproducibility of the five DT models employed
in this study can be visualized in the sixth row of
table 2. All models tested reproduced more than 77 %
of the soil types correctly, as defined by pedologists in
the model training areas. This value is greater than
the 46.12 % found by ten Caten et al. (2011), who
used multiple logistic regressions as predictive models.

Despite the high reproducibility in this study, the
models diverged from the soil types observed in the
field in approximately 23 % of the training area. This
fact can be associated with the errors in the soil
description in the field or in the inability of the models
to capture the inherent complexity of local spatial
distribution of the soils.

The accuracy of the predictive models is represented
in the last line of table 2. All models permitted a
mapping accuracy of about 70 % of the soil classes. As
expected, the accuracy of the predictive models was
slightly lower than the reproducibility of the models
mentioned in the paragraphs above. However, both
quality indicators in the mapping showed that the five
tested models mapped the soil types satisfactorily.

With regard to the effect of the volume of data used
to generate the DTs, there is a tendency for better
performance of the predictive models when the data
volume to train models is greater (Table 2). The best
predictive performance was achieved by data volumes
of 15, 20 and 25 %. A study of Grinand et al. (2008)
tested samples of 10 to 90 % of the original data. The
authors verified large variations in accuracy from 10
to 20 % of the original data, with no significant
increase in the model quality above 30 % of the total
sample volume. According to the results of this study,
a data volume of 15 % would combine the features of
mapping with a smaller data volume, maintaining
reproducibility and accuracy.

On the topographical maps of Dois Córregos (SP),
the soil classes were mapped by Crivelenti et al. (2009)

with a data volume of 714,000 samples in a total area
of 772 km². Although an exact determination of the
data volume used to generate the decision trees in
that study was not possible, it is believed that more
than 80 % of the original data were used to generate
the models. The authors reported a kappa index of
43 % in relation to the map used to generate the model.

A study carried out by Bui & Moran (2003)
demonstrated that the predictive capacity of the
models underwent a significant increase above the
utilization of 10 % of the original data. The quality of
the predictive models had a maximum value when
the samples used represented 25 % of the total data,
with a kappa index of 64 % in relation to the original
map. However, the authors confirmed that a lower
sampling density (of 10 %), would be enough to capture
much of the diversity contained in the data for
construction of the predictive models by DT.

CONCLUSION

This study demonstrated that unrepresentative
data sets (below 5 %) for the generation of Decision
Tree models are unable to capture the complexity of
the spatial soil distribution. On the other hand, data
sets > 20 % could result in excessive redundancy for
the generation of predictive models, requiring the
handling of unnecessary data that would fail to produce
predictive gain by models derived from these sets. Data
sets from 5 to 15 % resulted in the best ratio regarding
the data volume to be handled and predictive capacity
of the models generated. Reproducibility values of
around 77 % and accuracy near 70 % were achieved
with these sample volumes used to generate the
models by decision trees.
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