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ABSTRACT: For decades, researchers around the world search for strategies aiming 
at higher sustainability in agriculture. The microbial inoculants or biofertilizers are 
biotechnological products used for different purposes, the main one being to totally or 
partially replace chemical fertilizers, with an emphasis on N-fertilizers, reducing costs 
of production and decreasing the contamination of the soil, water, and atmosphere. 
Depending on the microorganism and the inoculated crop, inoculants can also induce plant 
protection to abiotic and biotic stresses and positively modify their physiology. Although 
inoculation studies and the use of inoculants by farmers date more than a century ago, 
they have gained more notoriety in the past decade. Brazil has a long tradition in the 
use of rhizobial inoculants, especially for the soybean crop, but it was only in 2009 
that the first commercial inoculant carrying the plant-growth-promoting Azospirillum 
brasilense strains Ab-V5 (=CNPSo 2083) and Ab-V6 (=CNPSo 2084), identified by our 
research group, reached the market. One decade after the release of these two strains, 
10.5 million doses were commercialized for grasses, including corn, wheat, rice, and 
pastures of brachiarias, and co-inoculation of legumes, such as soybean and common 
bean. Several research groups in Brazil presented impressive results of increases in root 
growth, biomass production, grain yield, uptake of nutrients and water, and increased 
tolerance to abiotic stresses due to the inoculation with Ab-V5 and Ab-V6. In this review, 
we gathered the results obtained so far in one decade with these two strains in several 
grasses and legume crops, confirming their versatility and indicating that with convincing, 
reliable, and consistent results, the Brazilian farmers are receptive to the adoption of 
new sustainable technologies based on microorganisms.
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INTRODUCTION
The biggest challenge for the agricultural sector is probably the capacity to produce 
food on a large scale to supply the increasing global demand. Limitations in finding 
new areas proper for cultivation and increasing reports of improper cultivation due to 
soil desertification and salinization led to the awareness of the importance of searching 
for sustainable agricultural systems and soil management, and new technologies are 
needed to reach these goals (Don et al., 2011; Campos et al., 2012; Fonte et al., 2014; 
Hungria et al., 2016).

Since the green revolution in the 1970s, the use of nitrogen (N) fertilizers is still a major 
practice used to increase food production, as by providing this nutrient, almost always 
higher yields are achieved (Pimentel, 1996; Khush, 1999). However, there are economic 
limitations to the use of N-fertilizers, related to (i) their high cost, as petroleum is used 
as the energy source for the synthesis of ammonia; (ii) the external dependence of many 
countries to their supply, e.g., Brazil imports more than 70 % of N-fertilizers; (iii) the 
low-efficiency use of N-fertilizers by plants, estimated at 30 to 50 %, depending on the 
crop, climate, soil, and management. Very important are also the environmental impacts 
of N-fertilizers, with great losses by volatilization, leaching, and denitrification, resulting 
in pollution of watercourses, ozone layer depletion, and global warming (Crispino et al., 
2001; Moreira and Siqueira, 2006; Reis Junior et al., 2011; Reetz, 2017; Stewart and Lal, 
2017; Hungria and Nogueira, 2019).

As a sustainable alternative to N-fertilizers, the use of microbial inoculants or biofertilizers 
increased, products containing live microorganisms named as diazotrophs, with the ability 
to establish different types of association with plants, providing N from the biological 
nitrogen fixation (BNF) process (Ormeño-Orrillo et al., 2013; De Bruijn, 2015; Kaschuk 
and Hungria, 2017). Rhizobia are symbiotic diazotrophic bacteria capable of forming 
close interactions with the host plant, resulting in the formation of specific structures, the 
nodules, in general in the roots, where the BNF process takes place (Evans and Burris, 
1992; Moreira et al., 2010; Ormeño-Orrillo et al., 2013). Symbioses occur mainly with 
plants belonging to the family Fabaceae (= Leguminosae), e.g., between Bradyrhizobium 
spp. with soybeans (Glycine max (L.) Merr) and several species of Rhizobium with common 
bean (Phaseolus vulgaris L.) (Gomes et al., 2015; Hungria et al., 2015a). Currently, the 
great majority of the inoculants commercialized worldwide are for the soybean crop, 
with an emphasis on South America, especially Brazil and Argentina. In these South 
American countries, inoculants are applied every crop season and can fulfill soybean N 
needs, with no need of applying N-fertilizers (Hungria and Mendes, 2015; Hungria and 
Nogueira, 2019; Santos et al., 2019).

In addition to rhizobia, other non-symbiotic diazotrophic and also non-diazotrophic bacteria, 
usually classified as plant-growth-promoting bacteria (PGPB), may favor plant growth 
by a variety of processes, including the synthesis of phytohormones (Lin et al., 2012; 
Santi et al., 2013; Fukami et al., 2017, 2018a), phosphate solubilization (Rodriguez et al., 
2004; Turan et al., 2012), biological control of pests and diseases (Correa et al., 2008), 
induction of plant tolerance to abiotic and biotic stresses (Yang et al., 2009; Bulgarelli et al., 
2013; Cerezini et al., 2016; Fukami et al., 2018a,b), among others. Due to the broad range 
of benefits to plants, PGPB have also been increasingly used in agriculture worldwide 
(Santos et al., 2019). 

One of the most well-known and studied PGPB is Azospirillum, and Brazil is a pioneer in 
studies with this genus. Initially named as Spirillum by Beijerinck (1925), Azospirillum had 
its nomenclature modified after the Brazilian researcher Johanna Döbereiner observed 
and described its ability to fix nitrogen when associated with grasses (Döbereiner, 1979). 
In 1978 the nomenclature “azo” was added as a prefix to the original name, in reference 
to the term “azote” used by Lavoisier for the element nitrogen. Besides, two species of 
the genus were described at that time, A. lipoferum and A. brasilense (Tarrand et al., 
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1978) and were the subject of several studies in the following years. A. brasilense was 
first isolated in Brazil from the rhizosphere of Digitaria decumbens (Döbereiner and 
Day, 1976) and, since then, the country has maintained leadership in basic studies with 
Azospirillum, including taxonomy (Tarrand et al., 1978; Ferreira et al., 2020), ecology 
(Baldani and Döbereiner, 1980), quantification of the contribution of BNF (Döbereiner and 
Day, 1976; Döbereiner, 1979; Döbereiner and Pedrosa, 1987), and isolation of Azospirillum 
strains (Magalhães et al., 1983), but no commercial product was available in the country. 

One main goal of our soil microbiology research group at Embrapa Soja is to select strains 
and develop microbial inoculants for application in agriculture. Initially, microbial inoculants 
and technologies were developed for the soybean crop (e.g., Hungria et al., 2006; Hungria 
and Mendes, 2015; Hungria and Nogueira, 2019). However, the success among farmers 
of the technologies launched with the soybean inoculant technologies developed, with 
an emphasis on the benefits of annual re-inoculation of the soybean crop, guaranteeing 
average grain yield increases of 8 % (Hungria and Mendes, 2015; Hungria and Nogueira, 
2019; Hungria et al., 2020), resulted in the demand of microbial inoculants for other 
crops growing in rotation or succession with the soybean, especially corn (Zea mays L.) 
and wheat (Triticum aestivum L.). In the late 1990s, our group started an evaluation of 
Azospirillum strains for these two cereals, that resulted in the identification of six strains 
able to promote grain yield increases (Hungria et al., 2010), and the first commercial 
inoculant was placed at the market in 2009. As Brazil has a long-time tradition of using 
two strains in commercial inoculants for the soybean crop (Hungria et al., 2006), the 
combination of A. brasilense strains Ab-V5 (=CNPSo 2083) and Ab-V6 (=CNPSo 2084), elite 
natural variant strains obtained from A. brasilense strain Sp7, efficient for both cereals, 
started to be broadly evaluated and used in commercial inoculants, gaining notoriety 
and assuming an important role in the Brazilian inoculants market. Interestingly, the 
most used Bradyrhizobium strains in inoculants for the soybean crop in Brazil, SEMIA 
5079 (=CPAC 15) and SEMIA 5080 (=CPAC 7) are also natural variant strains adapted 
to the Brazilian soils and obtained in strain selection programs (Hungria et al., 1994; 
Hungria and Mendes, 2015). Research conducted in the last decade has shown the 
benefits of inoculation with Ab-V5 and Ab-V6 in other economically important grasses 
for Brazil including sugarcane (Saccharum spp.), rice (Oryza sativa L.), and pastures 
(Lopes et al., 2012, 2019; Hungria et al., 2016; Dos Santos et al., 2019; Heinrichs et al., 
2020), in addition to the use in co-inoculation with rhizobia for legumes (Hungria et al., 
2013, 2015b; Chibeba et al., 2015; Nogueira et al., 2018; Galindo et al., 2018, 2020a; 
Prando et al., 2019; Gericó et al., 2020; Rondina et al., 2020). 

Considering the international market, the first commercial inoculant dates from 1910 in 
the USA, for the soybean crop. Nowadays, over one hundred years, soybean inoculants 
represent the great majority of the inoculants commercialized worldwide (Santos et al., 
2019). In Brazil, estimates are that about 70 million doses of inoculants for the soybean 
crop were commercialized in the 2019/2020 crop season. Concerning the inoculants 
carrying A. brasilense, one of the first countries that released a commercial product 
was Argentina, in 1996, Nodumax-L, carrying A. brasilense strain Az39 (Cassán et al., 
2020), followed by Mexico in 2002 (Reis, 2007). Currently, A. brasilense has been 
studied and used as inoculant in several countries, such as Uruguay, Egypt, India, 
and Colombia. In Brazil, an impressive increase in the number of commercialized 
doses has been seen in the short time of a decade, carrying strains Ab-V5 and Ab-V6 
(Santos et al., 2019) (Figure 1).

Here we review the studies performed in this last decade in Brazil with strains Ab-V5 
and Ab-V6 of A. brasilense, highlighting the market’s receptivity for microbial inoculants 
replacing chemical fertilizers and, in specific cases, mitigating negative effects caused 
by abiotic and biotic stress. The increased use of inoculants carrying A. brasilense by 
the farmers confirms the profitability in grain yield of cereals, pastures, and legumes. 
Undoubtedly, the environmental benefits should also be considered. 

https://link.springer.com/article/10.1007/s11104-009-0262-0#ref-CR19
https://link.springer.com/article/10.1007/s11104-009-0262-0#ref-CR19
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Selection and validation of strains of A. brasilense for the corn and wheat crops

The benefits and economic gains generated from the soybean inoculation technology 
became better known and disseminated in Brazil in the mid-1990s (Hungria et al., 2006; 
Hungria and Mendes, 2015; Santos et al., 2019). Farmers then started to request studies 
for other non-legume crops, with an emphasis on corn and wheat, used in rotation or 
succession with the soybean. In 1996 our research group started in Paraná State studies to 
select strains for these two cereals. Strains were searched in the genus Azospirillum, broadly 
reported as PGPB with a variety of grasses (Döbereiner and Day, 1976; Döbereiner et al., 
1976; Döbereiner, 1979; Döbereiner and Pedrosa, 1987; Paredes-Cardona et al., 1988). 
Currently, this is one of the most studied genera used as an inoculant because, in addition 
to BNF, Azospirillum spp. can contribute to plant development through other biological 
processes, including the synthesis of phytohormones (Tien et al., 1979; Fukami et al., 
2017, 2018a), phosphate solubilization (Turan et al., 2012), and induction of tolerance 
to abiotic and biotic stresses (Bashan and De-Bashan, 2010; Cerezini et al., 2016; 
Fukami et al., 2018a,b; Santos et al., 2019). 

The selection program of Azospirillum strains for commercial use in Brazil was carried 
out for eight years at Embrapa Soja, with evaluations under laboratory, greenhouse, 
and field conditions. In a first step, all A. brasilense and A. lipoferum strains available 
from several studies at the laboratory were evaluated for two properties: rates of 
acetylene reduction in vitro, in N-free semi-solid medium (laboratory), and capacity of 
promoting plant growth (greenhouse). Following, 17 field experiments were performed 
in Londrina and Ponta Grossa, Paraná State, southern Brazil, with the most promising 
strains. The first set comprised nine experiments with seed inoculation of single strains 
with peat inoculant, five with corn and four with wheat, resulting in the identification 
of six elite strains. Strains Ab-V4, Ab-V5, Ab-V6, and Ab-V7 showed increases in corn 
grain yield of 24 to 30 % compared to the non-inoculated control. For the wheat crop, 
the best strains were Ab-V1, Ab-V5, Ab-V6, and Ab-V8, increasing the yield by 13 to 
18 % (Hungria et al., 2010).

Brazilian farmers have more than 70 years of tradition of using two strains in inoculants 
(Hungria et al., 1994; 2006). Therefore, in continuity to the studies, A. brasilense strains 
Ab-V5 and Ab-V6, efficient for both corn and wheat, were selected for a second set 
of eight field experiments, consisting of inoculating corn and wheat seeds with peat 
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Figure 1. Doses of inoculants carrying Azospirillum brasilense strains Ab-V5 and Ab-V6 since the 
launch of the first commercial inoculant. Numbers based on data from Anpii (2020) and personal 
communication from the private sector.

https://link.springer.com/article/10.1007/s11104-009-0262-0#ref-CR20
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or liquid inoculant containing a combination of the two strains. In eight field trials in 
which N-fertilizer was applied at a low rate only at sowing, strains Ab-V5 and Ab-V6 
contributed to average increases in yield of 27 % for corn and 31 % for wheat, when 
compared to the non-inoculated control (Hungria et al., 2010). The increase in productivity 
with strains Ab-V5 and Ab-V6 was suggested to be related mainly to the synthesis of 
phytohormones, resulting in root growth and increasing water and nutrients’ absorption. 
However, precise evaluations were not performed at that time, and the suggestion came 
from the indications that N-uptake from soil was increased, while the contents of some 
soil nutrients (Ca, Mg, and N) in soil decreased (Hungria et al., 2010), in addition to 
visual observations of impressive root growth. The assumption was also supported by 
literature, rich in studies showing that Azospirillum improves root growth (Akbari et al., 
2007; Vogel et al., 2013; Okon et al., 2015; Rondina et al., 2020; Santos et al., 2020a), 
impacting the uptake of water and nutrients.

The results with A. brasilense strains Ab-V5 and Ab-V6 were first presented in 2004 
(Hungria, 2004), and confirmed in 2006 (Hungria et al., 2007), at the meeting of RELARE 
(Meeting of the Network of Laboratories for Recommendation, Standardization and 
Diffusion of Technology of Microbial Inoculants of Agricultural Interest), a committee 
joining research, industry and government to discuss issues related to microbial 
inoculants. The field trials obeyed all criteria defined at that time to be accepted as 
indicative of new strains for the production of inoculants in Brazil (Campo and Hungria, 
2007), later incorporated in the Brazilian legislation for inoculants established by Mapa 
(Ministry of Agriculture, Livestock and Supply) (MAPA, 2010, 2011). In 2008 the strains 
were offered to the inoculant industries, and in 2009 the first inoculant produced in 
Brazil was released at the market by Stoller do Brasil SA named Masterfix L Gramineas® 
(Cassán et al., 2020); the company confirmed agronomic efficiency for the corn and 
rice crops. In the following year, an inoculant for the corn and wheat crops produced in 
public-private cooperation between Embrapa Soja and Total Biotecnologia, AzoTotal®, was 
released. Since then, Ab-V5 and Ab-V6 have been increasingly evaluated in experiments 
with several crops, including rice, sugarcane, pastures, and for co-inoculation of legumes. 
In 2016 there were 11 inoculants registered in Brazil with the combination of strains 
Ab-V5 and Ab-V6, the majority in liquid formulations (Cassán and Diaz-Zorita, 2016a). 
Considering the estimates that in 2010 about 300,000 doses were commercialized, 
and in 2012, 2.5 million doses, the increasing adoption by the farmers to about 10.5 
million doses carrying these two strains in 2019/2020 is impressive. The number of 
commercial inoculants carrying A. brasilense also increases every year in Brazil, and 
efforts have been made to publish a list of registered products (Bioinsumos, 2020). This 
indicates that the farmers are anxious to use new technologies with economic benefits, 
resulting in grain yield increases and often in a reduction of chemical fertilizers.

Beneficial properties of Ab-V5 and Ab-V6

The excellent results obtained with the inoculation with A. brasilense strains Ab-V5 and 
Ab-V6 resulted in a series of new studies investigating the main mechanisms that could 
explain their good performance. 

In addition to describing for the first time the ability of Azospirillum to fix atmospheric 
N2, Döbereiner (1979) also discussed conditions favoring the biological process, and the 
two main factors controlling BNF were identified as oxygen (O2) and mineral N. According 
to the author, when the O2 supply to the bacteria exceeds its consumption, assimilation 
of mineral sources of N are maximized and BNF is inhibited. In contrast, when the 
consumption of O2 corresponds exactly to the amount needed, the conditions are optimum 
for nitrogenase synthesis and activity by the bacteria, and atmospheric N2 is used as N 
source, if mineral N sources are not at inhibitory levels. In the absence of O2, respiration is 
interrupted, ATP is not generated, and BNF does not occur. New information about strains 
Ab-V5 and Ab-V6 was obtained in 2018, with the sequencing of their genomes, estimated 
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at 6,934,595 and 7,197,196 bp, respectively; with very similar genomes, both strains 
carry nif and fix genes, responsible for their ability to fix atmospheric nitrogen, and genes 
responsible for the synthesis of phytohormones (Hungria et al., 2018). Quantification of 
the contribution of BNF with strains Ab-V5 and Ab-V6 on BNF was poorly documented, 
when Araújo et al. (2015a) verified with the 15N-isotope technique that inoculated corn 
with these two strains had BNF contributions of 19.4 % of total N accumulated in plants. 
Aguirre et al. (2020) reported that inoculation of Cynodon dactylon (L.) Pers. with these 
strains increased N in the grass by 7.4 %. However, despite the capacity of BNF, the 
major contribution of inoculation with A. brasilense Ab-V5 and Ab-V6 has been attributed 
to other plant-growth promotion effects (Hungria et al., 2010).

A. brasilense is capable of producing and secreting phytohormones in the rhizosphere, such 
as auxins, improving the development of the root system, stimulating its meristematic 
activity, and providing elongation and development of lateral roots (Ljung, 2013; Duca et al., 
2014). With the development of the root system, the plant can absorb more water and 
nutrients, favoring its development and productivity (Tien et al., 1979; Akbari et al., 2007; 
Comas et al., 2012; Reece et al., 2015; Rondina et al., 2020). Fukami et al. (2018b), when 
analyzing secondary metabolites of Ab-V5 and Ab-V6 after 14 days of growth, verified 
the presence of indole-3-acetic acid (IAA), and acid salicylic (SA), while indole-3-lactic 
acid (ILA) and jasmonic acid (JA) were produced in relatively low amounts; the synthesis 
of gibberellic acid (GA3) by Ab-V5 has also been reported by Fukami et al. (2017).

For legumes, the synthesis of phytohormones can contribute to greater nodulation 
(Hungria et al., 2013, 2015b; Chibeba et al., 2015; Rondina et al., 2020), because 
auxins can also stimulate the exudation of nodulation-inducing flavonoids, favoring 
the nodulation process (Star et al., 2012), and by increasing the volume of the roots, 
allowing greater contact surface with nodulating microorganisms (Rondina et al., 2020). 
The study developed by Rondina et al. (2020) shows these benefits; co-inoculation with 
B. japonicum, B. diazoefficiens, and A. brasilense (Ab-V5 and Ab-V6) resulted in significant 
changes in the morphology of the soybean roots, increasing the specific root length, 
root-hair length, and the number of root branches, in addition to the number of nodules, 
compared to the single inoculation with Bradyrhizobium spp.

Plants have several natural defense mechanisms induced when subjected to abiotic and 
biotic stresses (De Wit, 2007). One of the plant’s main responses is the accumulation of 
reactive oxygen species (ROS) in plant tissues (Gill and Tuteja, 2010). Another example 
is the systemic acquired resistance (SAR), which confers resistance to plants against 
a broad spectrum of pathogens and is activated after infection (Fu and Dong, 2013). 
Azospirillum spp., as well as other PGPB genera, are capable of inducing different plant 
defense mechanisms, conferring resistance and helping against attacks by viruses, 
fungi, and pathogenic bacteria (Cassán et al., 2014). This mechanism is called “induced 
systemic resistance” (ISR) (van Loon and Bakker, 2005; Lugtenberg and Kamilova, 2009) 
and involves several physiological and biochemical changes in plants (Yang et al., 2009). 
Briefly, in the primary infected tissue, the bacterium triggers a plant reaction by emitting 
signals, pathogenesis-related proteins (PRs), which systematically spread in the whole 
plant, resulting in an increased defensive capacity, and the plant will remain protected 
for a long period (van Loon and Bakker, 2005; van Loon, 2007; Dutta et al., 2008). With 
the molecular tools available today is also feasible to consider genetic manipulation to 
insert this property in other bacteria.

It has been shown that strains Ab-V5 and Ab-V6 can induce defense mechanisms in the 
host plant (Fukami et al., 2018a). Under saline stress, inoculation resulted in increased 
production of salicylic acid (SA) in leaves and roots, and abscisic acid (ABA) in leaves. 
According to the authors, the increased synthesis of these compounds under stressful 
conditions provides plant protection since they are recognized as key signaling molecules 
regulating resistance in plants. In addition, it was also reported that, under normal 

https://www.amazon.com.br/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Jane+B.+Reece&search-alias=books
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cultivation conditions, Ab-V5 and Ab-V6 strains inoculated either at sowing or afterward 
by foliar spraying, as well as by foliar spraying of their metabolites, resulted in the 
induction of the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), 
and ascorbate peroxidase (APX), which are important agents against oxidative stress 
(Fukami et al., 2018b). A. brasilense strains Ab-V5 and Ab-V6, when inoculated in corn, can 
also interfere in the activation/repression of genes related to plant defense mechanisms 
such as the PRs reported for both strains (Fukami et al., 2017).

Another important feature in the metabolism of PGPB strains is the mechanism known as 
quorum sensing (QS). According to González and Marketon (2003), QS can be described 
as a communication mechanism between bacteria of the same or different species. This 
communication involves chemical mediators (autoinducers) and allows the cell to control 
certain genes’ expression at high cell density. One of the most common auto-inducers 
is N-acyl-homoserine lactones (AHLs), synthesized by LuxI-type and detected by LuxR-
type proteins, which activate the expression of target genes. The QS systems control 
important phenotypic responses, such as biofilm formation, bioluminescence, synthesis 
of exopolysaccharides (EPS), virulence factors, and antimicrobial compounds and 
motility, properties generally necessary to survive in the environment and to establish 
a relationship with eukaryotic hosts, both symbiotically and pathogenic (González and 
Keshavan, 2006; Pérez-Montaño et al., 2014).

Fukami et al. (2018c) described that strains Ab-V5 and Ab-V6 do not have a complete 
QS system, similar to other species of the same genus by Vial et al. (2006), as no luxI 
gene was found in their genomes. However, both Ab-V5 and Ab-V6 carry several luxR 
copies without any corresponding luxI that may recognize and respond to external AHL 
molecules (Fukami et al., 2018c). Upon contact with exogenous AHL molecules, the Ab-V5 
QS mechanism affects biofilm formation, EPS synthesis, cell-swarming, and swimming 
phenotypes, in addition to benefits in solos growth. In contrast, Ab-V6 does not appear 
to use the QS mechanism, but the authors suggest that the larger production of IAA by 
the strain supplies this lack. Interestingly, although several differences between Ab-V5 
and Ab-V6 have been reported, as almost all commercial inoculants carry both strains, 
differences in plant performance under field conditions that could be related to one or 
another strain have not been properly investigated yet. 

Corn

Shortly after the publication of the study by Hungria et al. (2010), the interest in the 
inoculation of corn with strains Ab-V5 and Ab-V6 strains raised. In selecting the strains, 
the first objective was to reach small farmers that apply modest doses of N-fertilizers, 
farmers that cultivated short-cycle corn, and farmers growing wheat. Therefore, only a 
starter dose of N-fertilizer was applied at sowing, of 24 kg ha-1 of N for corn and 20 kg ha-1 
of N for wheat, and resulted in not high, but compatible yields in the country, of 3,916 
and 2,677 kg ha-1, for the corn and wheat, respectively (Hungria et al., 2010), while the 
National averages in 2004 were of 3,291 and 2,227 kg ha-1, respectively (Conab, 2020). 
However, farmers with higher technology questioned the ability of the strains to sustain 
higher corn yields. Following, experiments were performed with corn where, in addition 
to the application of N-fertilizer at sowing, a supplementation of 30 kg ha-1 of N (50 % 
of the recommended dose) was given, allowing to reach yields of up to 8,000 kg ha-1 
(Hungria, 2011). Later, it was observed that yields higher than 8,000 kg ha-1 could be 
reached by inoculation, 24 kg ha-1 of N at sowing and 75 % of the recommended dose 
of N (67.5 kg ha-1 of N) topdressing at 30 days after emergence (Table 1).

Other Brazilian groups have also studied the effects of N-fertilization associated with 
inoculation with A. brasilense (Ab-V5 e Ab-V6) in corn in different regions of the country 
(Lana et al., 2012; Ferreira et al., 2013; Araújo et al., 2015b; Galindo et al., 2019a) 
(Table 1). An interesting study was carried out to understand whether inoculation of corn 
with A. brasilense Ab-V5 and different doses of N (low and regular) generated changes 
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in the diversity of its total and metabolically active endophytic bacterial community. 
For this, DNA and RNA analyses of the endophytic communities were performed and 
indicated that plants receiving low (30 kg ha-1 of N) or regular (160 kg ha-1 of N) doses 
of mineral N maintained similar diversity rates of the bacterial endophytes community. 
However, regarding the metabolically active community, the plants with the normal N 
level showed lower diversity than those of the low N level. Both treatments achieved 
similar productivity, showing that corn can perform well with lower rates of N-fertilizer 
when inoculated with strain Ab-V5 (Matsumura et al., 2015). 

The reduction in N-fertilizer application combined with an inoculation to reach high 
yields results in economic and environmental impacts. The Brazilian area cropping corn 
in 2019/2020 was estimated at 18.44 million ha (Conab, 2020), and by decreasing the 
use of N-fertilizer by 25 %, considering a price of U$ 1 per kg of N, would save about 
U$ 440 million per year.

Effects of plant genotypes in the performance with A. brasilense have been long discussed 
(Stancheva and Dinev, 1992; De Salomone and Döbereiner, 1996; De Salomone et al., 
1996). There are reports of different inoculation responses with Ab-V5 (Koltun et al., 

Table 1. Studies reporting benefits of inoculation with Azospirillum brasilense strains Ab-V5 and Ab-V6 in maize and wheat, and grain 
yield levels achieved in Brazil with different supplies of N-fertilizer

N at sowing N topdressing Grain yield Site (State) Reference
kg ha−1

Corn
24 3,905 Londrina and Ponta Grossa (PR) Hungria et al. (2010)
24 30 >7,000 Londrina and Ponta Grossa (PR) Hungria (2011)
- 90 6,785 Marechal Cândido Rondon (PR)

Lana et al. (2012)
- 90 7,604 Cascavel (PR)
- 100 >8,000 Cerrado region (MG) Ferreira et al. (2013)
30 - 9,531

Dourados (MG) Araújo et al.  (2015b)
30 90 9,862
- 50 >8,500 Quirinópolis (GO) Costa et al. (2015)

24 66 >8,000
Cachoeira Dourada (MG), Luis 
Eduardo Magalhães (BA) and 

Ponta Grossa (PR)
Fukami et al. (2016)

30 60 6,224 Maringá (PR) Garcia et al. (2017)
- 100 >9,300 Cerrado region (MG) Morais et al. (2016)
- 110 7,817 Campo Verde (MT) Moreira et al. (2017)
32 100 >8,000 Selviria (MS) Galindo et al. (2019a)
30 150 10,522 Selviria (MS) Souza et al. (2019)

Wheat
20 - 2,656 Londrina e Ponta Grossa (PR) Hungria et al. (2010)
24 36 5,610 Madre de Deus de Minas (MG)

Clemente et al. (2016)
24 36 3,997 Uberaba (MG)
24 36 4,516 Lambari (MG)
24 36 4,342 Patos de Minas (MG)
24 67.5 >3,000 Ponta Grossa (PR) Fukami et al. (2016)
- 150 3,544 Selviria (MS) Galindo et al. (2017)
- 140 3,227 Santa Maria (RS) Munareto et al. (2019)
- 100 >3,000 Selviria (MS) Galindo et al. (2019b)
- 140 >3,000 Selviria (MS) Galindo et al. (2020b)
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2018; Zeffa et al., 2019) and Ab-V6 (Pereira et al., 2015) according to the corn genotype 
in experiments carried out under greenhouse and field conditions. Pereira et al. (2015) 
observed differences in N leaf content and root and shoot dry weight in different corn 
genotypes inoculated with Ab-V5 and Ab-V6. The same was observed by Marini et al. 
(2015) and Morais et al. (2016) for grain yield. In comparing root exudates released by 
corn hybrids with different responses to the inoculation with strains Ab-V5 and Ab-V6, 
Pereira et al. (2020) observed that the metabolites released by the less responsive hybrid 
reduced the amount of metabolites that served as bacterial energy, affecting bacterial 
metabolism in general. However, as Pereg et al. (2015) demonstrated, Azospirillum 
seems to interact and bring benefits for a large number of plant species. Therefore, 
although specific responses to the corn inoculation with Ab-V5 and Ab-V6 have been 
reported in different genotypes, the results obtained so far indicate that inoculation can 
be recommended to all genotypes.

Wheat 

As with corn, research has been carried out with wheat after the selection and validation 
of strains Ab-V5 and Ab-V6. The studies followed similar objectives, including the choice 
of the most appropriate dose of N and time of application, alternative methods of 
inoculation, and differences between cultivars. As in other crops, in wheat N deficiency 
limits plant growth and grain yield. To attend the demands of the genotypes used in 
Brazil, with yields much lower than in temperate climates, on average of 2,723 kg ha-1 
in 2019/2020 (Conab, 2020), farmers usually apply 60 to 120 kg ha-1 of N, depending on 
the N source, cultivar, soil properties, and climatic conditions; the fertilizer is split into 
two applications, at sowing and topdressing, approximately 30 days after emergence 
(Bona et al., 2016).

As with all grasses, despite the ability of A. brasilense to fix N2, the amount is not 
sufficient to attend to the wheat´s needs, requiring supplementation of N-fertilizer. 
Studies performed with strains Ab-V5 and Ab-V6 in Brazil have shown compatibility 
with the N-fertilizer, since the application of 60, 100, 140, and 150 kg ha-1 of N 
resulted in gains in grain production (Clemente et al., 2016; Fukami et al., 2016; 
Galindo et al., 2017; 2019b; Munareto et al., 2019) (Table 1). Recently, Galindo et al. 
(2020b) described that inoculation, regardless of the N dose, guarantees higher 
accumulation of Mg and S in the straw, and of P, Ca, and Mg in the grains. Following, 
the same authors (Galindo et al., 2019c) reported that inoculation of wheat receiving 
silicon (Si) improves the uptake of N, highlighting another interesting strategy for 
the success of the inoculation.

In Brazil, it has been described that different wheat cultivars may have variable responses 
to inoculation with A. brasilense strain Ab-V5 alone (Lemos et al., 2013) and together 
with Ab-V6 (Feldmann et al., 2018), but this requires further investigation. Despite the 
positive results obtained so far with strains Ab-V5 and Ab-V6 in Brazil, in addition to 
other strains such as Sp7, Sp245, Sp246, Sp 262, Sp S82, Cd, M15, M16, M18, and M22 
(Boddey et al., 1986, Baldani et al., 1986, 1987; Ferreira et al., 1987), evaluations with 
wheat are far behind those with corn, probably because of the small area and the low 
economic return of the crop in Brazil. However, the results reported in other countries, 
and a major example is Argentina (Cassán et al., 2015; Cassán and Diaz-Zorita, 2016b; 
Cassán et al., 2020), but also in Iran (Arzanesh et al., 2011), Russia (Shelud’ko et al., 
2010), and Australia (Kazi et al., 2016) encourage the use of A. brasilense to increase 
the profitability and sustainability of the crop.

Rice

Rice, corn, and wheat are responsible for using approximately 50 % of the N-fertilizers 
consumed worldwide (Ladha et al., 2016). In Brazil, the strains Ab-V5 and Ab-V6 have 
also been used for the rice crop, although on a much lower scale than corn and wheat. 
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In the country, rice is cropped in two different systems, the rainfed cultivation, also called 
“upland cultivation”, and the irrigated cultivation, occupying 367,000 and 1.298 million ha 
in the 2019/2000 crop season, respectively (Conab, 2020). 

Garcia et al. (2016) evaluated the productivity of upland rice inoculated with A. brasilense 
strains Ab-V5 and Ab-V6. Four different doses, 0, 100, 200, and 300 mL ha-1 of an inoculant 
with the concentration of 2 × 108 cells mL-1, and four methods of application (seeds, 
at sowing in-furrow, spraying of the soil immediately after sowing, and foliar spraying 
at the beginning of tillering) were evaluated. The best results were obtained when the 
plants were inoculated with 200 mL ha-1 of the inoculant, resulting in an increase of 
10 % in yield in comparison to the non-inoculated control, with no differences between 
the methods of inoculation. 

To evaluate the effects of flood irrigated rice inoculation, Dos Santos et al. (2019) inoculated 
seeds with Ab-V5 and Ab-V6 in addition to 81 kg ha-1 of N, split twice, corresponding to 
60 % of the recommended dose for the crop. Grain yield of the treatment inoculated 
and receiving 60 % of the N-fertilizer was equal to that of plants receiving 100 % of the 
N dose, indicating the possibility of reducing in 40 % the application of N-fertilizer. 

In another study comparing liquid and peat inoculants with Ab-V5 and AbV-6 in upland 
rice cultivation in four regions of Brazil, both types of inoculants were efficient, but 
the liquid inoculant showed the best results for yield. On average, plants inoculated 
with liquid inoculant had root dry mass of 32.4 g plant-1, while on plants receiving peat 
inoculant, the average was 29.5 g plant-1. The use of liquid inoculant in rice ensured 
average productivity close to 3,500 kg ha-1, while for the peat inoculant the productivity 
was close to 3,000 kg ha-1 (Guimarães et al., 2020).

Sugarcane

Sugarcane was introduced in Brazil when the country was still a colony of Portugal, more 
than 500 years ago, as a strategy for the occupation of the territory and with the main 
objective of producing sugar. The crop adapted well to the Brazilian edaphoclimatic 
conditions, increasing the cropped area since then (Antunes et al., 2019). In 1975, 
sugarcane started to be also used as raw material for ethanol production as biofuel, 
towards decreasing the dependence on petroleum (Pazuch et al., 2017; Antunes et al., 
2019; De Paula et al., 2019). Because the sugarcane biofuel is produced from renewable 
sources and is less polluting, its use is environmentally attractive. The expanded use 
of sugarcane increased the interest for the crop, such that today Brazil is the largest 
world producer, followed by India, China, and Thailand (FAO, 2018). In 2019/2020, 
the sugarcane production was estimated at 642.7 million tons, grown in an area of 
8.44 million ha (Conab, 2020).

The doses of N-fertilized applied to the sugarcane in Brazil are modest, on average 
45 kg ha-1 of N at planting and 80 kg ha-1 in the ratoon (new shoot at the base of 
sugarcane, after cropping). Interestingly, despite the low application, it has been 
observed that the accumulation of N by the culture is high, reaching up to 200 kg ha-1 
in the sugarcane-plant cycle and 180 kg ha-1 in the ratoon (Urquiaga et al., 1992). This 
accumulation of N in quantities significantly higher than the doses applied stimulated 
the investigation of natural N replacement (Urquiaga et al., 1992, 2012). Several 
important Brazilian studies have been performed since the 1990s and suggested that 
BNF is greatly responsible for N supply to the plants, avoiding the depletion of N from 
the soil and ensuring productivity maintenance (Lima et al., 1987; Urquiaga et al., 
1992, 2012; Oliveira et al., 2003, 2006). Urquiaga et al. (1992) provided convincing 
evidence that several sugarcane cultivars are capable of obtaining large and significant 
contributions of N from plant-associated diazotrophic bacteria. A variety of diazotrophic 
species started to be isolated, described, and studied, with an emphasis on Acetobacter 
diazotrophicus (Gillis et al., 1989; Reis et al., 1994; Kirchhof et al., 1998), later reclassified 
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as Gluconacetobacter diazotrophicus (Yamada et al., 1997), and Burkholderia tropica 
(Reis et al., 2004), reclassified as Paraburkholderia tropica (Sawana et al., 2014). 
In Argentina, Tejera et al. (2005) reported that Azospirilum isolates showed specific 
associations and probably endophytic colonization of sugarcane.

In 2012, Lopes et al. (2012) evaluated 54 sugarcane families regarding inoculation 
with two inoculants carrying A. brasilense, the first with strains Ab-V5, Ab-V6, and 
Ab-V7 (named Triazo), and the other with A. brasilense strain IC26. There was no 
addition of N to any treatment or control. Different sugarcane families showed 
significantly different inoculation responses; however, in general inoculated plants 
performed better than the non-inoculated control. In a similar study conducted by 
Lopes et al. (2019), 27 sugarcane families were evaluated for inoculation with Triazo, 
and another inoculant containing a mix of bacteria isolated from sugarcane stems 
and roots, that included G. diazotrophicus Pal5, Azospirillum amazonense CBAmC 
(reclassified as Nitrospirillum amazonense by Lin et al., 2014), Burkholderia tropica 
Ppe8 (reclassified as Paraburkholderia tropica, Sawana et al., 2014), Herbaspirillum 
rubrisubalbicans HCc103, and Herbaspirillum seropedicae HRC54. The inoculation 
with Triazo showed better results than the mix of species for the plant length and 
diameter parameters. Gonçalves et al. (2020) investigated the interaction of sugarcane 
inoculation with strains Ab-V5, Ab-V6 and five doses of N-fertilizer (0, 30, 60, 90, and 
120 mg dm-3) in topdressing; the inoculation with A. brasilense benefited several 
growth parameters but, as expected, only when associated with N-fertilizer. Although 
there are still few studies with the inoculation with A. brasilense strains Ab-V5 and 
Ab-V6 in sugarcane, the results are promising, especially by stimulating root growth, 
as shown in figure 2. In addition, there is a commercial inoculant at the Brazilian 
market carrying N. amazonense strain BR 11145.

Pasture grasses

In addition to agriculture, livestock is of great importance to the economy of Brazil. Beef 
production is estimated to reach 10.5 million tons in 2020 (USDA, 2020). In 2019, 8.7 
million tons were consumed domestically, and 2.2 million tons were exported, mainly 
to China and Hong Kong. Most of the meat is exported in natura, followed by processed 
meats (Abiec, 2019). Livestock production in Brazil takes place mostly in pasture fields, 
which nowadays occupy about 180 million hectares (Mha), 60 Mha of them are natural 
grasslands (Unipasto, “Associação para o Fomento à Pesquisa de Melhoramento de 
Forrageiras Tropicais”, unpublished data). 

(a) (b) (c)

Figure 2. Sugarcane roots of variety RB 93 5744 grown under controlled greenhouse conditions in 
sandy soil and inoculated or not with Azospirillum brasilense strains Ab-V5 and Ab-V6, with different 
levels of mineral-N: (a) non-inoculated plants grown with 2 mg L-1 of N; (b) non-inoculated plants 
grown with 2 mg L-1 of N; (c) plants inoculated with Ab-V5 + Ab-V6 and receiving 2 mg L-1 of N. 
Photo: Dr. Leopoldo Sussumu Matsumoto.
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A main and common limitation of livestock in pasture fields is soil degradation, resulting 
in a lack of nutrients, unable to meet the animal demands (Steinfeld et al., 2006; 
Fonte et al., 2014). In Brazil, estimates are that about 70 % of the pasture areas are at 
some level of degradation (Lapig, 2018; Embrapa, 2012). As deforestation should not be 
an option (Steinfeld et al., 2006; Don et al., 2011), increasing soil fertility, productivity, 
and nutritional quality of pasture grasses using PGPB may represent a key strategy 
(Campos et al., 2012; Hungria et al., 2016). 

The majority of the areas under pastures in Brazil are with brachiarias (Urochloa spp. 
syn. Brachiaria spp.) that nowadays occupy about 86 Mha (Unipasto, unpublished 
data). The first commercial inoculant for pastures in Brazil was launched in 2016, 
carrying strains Ab-V5 and Ab-V6 as inoculants for Urochloa brizanta and Urochloa 
ruziziensis, also resulting from a public-private partnership of Embrapa Soja and Total 
Biotecnologia. The experiments to confirm the agronomic efficiency were performed 
in three different Brazil cities (Londrina-PR, Ponta-Grossa-PR, and Três Lagoas-MS) for 
three years, with 13 cuts per plant species. The authors highlighted the importance 
of comparing the performance of plants receiving N-fertilizer, as A. brasilense is not 
capable of supplying all plant N demand, and the main objective is to recover the 
fertility of soils with pastures. In comparison to the control receiving only N-fertilizer 
(40 kg ha-1 of N at sowing), when the N-fertilizer was combined with seed inoculation 
with A. brasilense strains Ab-V5 and Ab-V6, forage biomass production by U. brizantha 
and U. ruziziensis increased by 17.3 and 12.5 %, respectively (Hungria et al., 2016) 
(Table 2; Figure 3). Besides, N accumulation in shoots increased by an average of 25 % 
(Figure 3), indicating that the cattle would have not only more food but also a food 
of better quality. The increase of N in tissues was equivalent to a second application 
of 40 kg ha-1 of N-fertilizer. It is worth mentioning that a higher accumulation of dry 
matter implies an increase of CO2 sequestered from the atmosphere estimated by 
the authors in 0.309 Mg ha-1 of CO2-eq. This highlights another environmental benefit 
from inoculation since pastures are greatly responsible for the greenhouse gas (GHG) 
emissions in Brazil (Hungria et al., 2016).

In another study performed under field conditions in Araguaína, state of Tocantins, 
northern Brazil, Leite et al. (2019a) reported increases in the number of tillers, height, 
and dry mass of roots of U. brizantha inoculated with Ab-V5 and Ab-V6; the inoculant was 
at the concentration of 2 × 108 CFU mL-1 and seeds received 200 mL ha-1. The authors 

Figure 3. Shoot biomass production and total N accumulated in the biomass of Urochloa (=Brachiaria) brizantha and Urochloa 
ruziziensis inoculated or not with Azospirillum brasilense strains Ab-V5 and Ab-V6; all treatments received 40 kg of N ha-1 at sowing. 
Asterisks denote statistical difference between inoculated and non-inoculated (p<0.05, Tukey). Data represent the means of 13 cuts, 
each with four replicates, in three years for each pasture species. Modified from Hungria et al. (2016). 
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estimated that the inoculation with Ab-V5 and Ab-V6 allowed the reduction of 20 % in 
the need for N fertilizer. 

Increases in U. brizantha root dry weight with the inoculation of Ab-V5 and Ab-V6 in 
addition to 25 kg ha-1 of N were also observed by Heinrichs et al. (2020), of up to 
36 % when compared the non-inoculated and fertilized control. In another analysis, the 
authors demonstrated that, in the case of plants that did not receive N-fertilizer, the 
root dry weight values were 3,095 kg ha-1 for non-inoculated plants and 3,532 kg ha-1 
for inoculated plants, statistically different. Rocha and Costa (2018) also observed that 
the inoculation of U. brizantha and 50 kg ha-1 of N contributed significantly to increases 
in height, chlorophyll content, biomass, dry mass, and number of tillers in comparison 
to plants receiving only N-fertilizer (Table 2).

As commented before, A. brasilense can improve plant tolerance to abiotic stresses, 
and good performance under water stress was reported in pastures inoculated with 
strains Ab-V5 and Ab-V6, including U. ruziziensis (Bulegon et al., 2016, 2019) and 
U. brizantha (Leite et al., 2019a). Moreira et al. (2020) reported the results obtained in 
an experiment performed under greenhouse conditions with U. brizantha, evaluating 
the inoculation with Ab-V5 and Ab-V6 at different doses of application, 5, 10, 20, and 
40 mL kg-1 (2 × 108 CFU mL-1) and time of watering. Some plants were watered two 
days after sowing, others after 4, 8, and 16 days. The best conditions for growth and 
development of U. brizantha were obtained in low doses, 5-10 mL kg-1, and when the 
plants were watered until four days after sowing. It is worth mentioning that several 
PGBP, due to the synthesis of high amounts of phytohormones, especially IAA, should not 
be applied in higher doses, as instead of promoting, bacteria can inhibit plant growth. 

Table 2. Studies reporting benefits of inoculation with Azospirillum brasilense strains Ab-V5 and Ab-V6 in pastures in Brazil

Crop Fertilization (N) Trial Result Reference

Urochloa 
brizanta

40 kg ha-1 Field Biomass increased 17.3 % compared to the 
fertilization alone Hungria et al. (2016)

50 kg ha-1 Field
Height increased by 4.16 %, biomass by 32.8 % 

and dry mass by 41.24 % compared to the 
fertilization alone

Rocha and Costa (2018)

50 kg ha-1 Field Increase in the number of tillers, height, and 
root mass Leite et al. (2019a)

25 kg ha-1 Field Root dry mass increased 36 % compared to the 
non-inoculated Heinrichs et al. (2020)

Urochloa 
ruziziensis

40 kg ha-1 Field Biomass increased 12.5 % compared to the 
fertilization alone Hungria et al. (2016)

20 kg ha-1 Greenhouse Improvement in the duration and rate of leaf 
renewal Duarte et al. (2020a)

Cynodon 
dactylon 100 kg ha-1 Field

Inoculated and fertilized pastures with 
100 kg ha-1 N showed similar forage yield 
to non-inoculated pastures that received 

200 kg ha-1 N
Aguirre et al. (2018)

Megathyrsus 
maximus

- Field Forage accumulation increased 36 %, leaf N 
9 %, and root mass 96 % Leite et al. (2019b)

200 mg dm-3 Greenhouse Increase in dry weight of shoot and root, 
number of tillers, and relative chlorophyll index Sá et al. (2019a)

100 mg dm-3 Greenhouse
Increase in dry weight yield of shoots and roots, 
compared to the non-inoculated control without 

N-fertilizer
Lima et al. (2020)

50 kg ha-1 Greenhouse Increase in shoot dry mass and total N, P, Ca, 
and Mg accumulated in tissues Picazevicz et al. (2020)
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This effect was also reported for Ab-V5 and Ab-V6 with common bean (Hungria et al., 
2013) and soybean (Braccini et al., 2016). 

Also, under greenhouse conditions, Sá et al. (2019b) reported increases in shoot and 
root dry weight, as well an in relative chlorophyll index and N uptake of U. ruziziensis 
inoculated with Ab-V5 and Ab-V6, while Duarte et al. (2020a), in pots filled with sandy 
soil, observed that the inoculation of U. ruziziensis with these two strains improved 
mainly the duration and rate of renewal of leaves. 

The next step was to evaluate the application of strains Ab-V5 and Ab-V6 in pastures 
of Urochloa already established, and again, positive results were obtained, with 
average increases in biomass production of 20.9 % considering seven field trials 
performed in two sites in the state of Paraná, Brazil, in addition to increases in the 
contents of N and K in shoots (Hungria et al., unpublished data), and the technology 
was released in 2020. 

In addition to Urochloa spp., the benefits of inoculation with Ab-V5 and Ab-V6 have 
also been described for other pastures, including panicum (Megathyrsus maximus 
syn. Panicum maximum) (Leite et al., 2019b; Sá et al., 2019a; Carvalho et al., 
2020; Lima et al., 2020; Picazevicz et al., 2020) that nowadays occupies about 30 
Mha (Unipasto, unpublished data) and the coast-cross grass (Cynodon dactylon) 
(Aguirre et al., 2018) (Table 2).

In conclusion, the inoculation of forage grasses with A. brasilense Ab-V5 and Ab-V6 probably 
represents the most promising technology for increasing the sustainability and productivity 
of millions of hectares with pastures in Brazil, contributing to increases in root and shoot 
biomass, N concentration in shoots, number of tillers, among others, and allowing the 
partial replacement of N-fertilizers (Duarte at al., 2020b). In addition, inoculation can play 
a very important role in combining animal production and environmental conservation 
efforts, as it improves plant nutrition, promotes soil conservation and fertility as well as 
for carbon sequestration.

Co-inoculation 

The global inoculant market has been seeking new strains, the development of new 
formulations, and the validation of application methods. In the last decade, the idea of 
inoculants combining different species of microorganisms that contribute by different 
microbial processes has gained attention, in a practice that has been called as mixed 
inoculation or co-inoculation. The most studied combinations include symbiotic rhizobia 
together with PGPB showing other properties, such as A. brasilense strains efficient in 
synthesizing phytohormones. There are currently a variety of co-inoculants on the market 
for many crops (Santos et al., 2019).

In Brazil, strains Ab-V5 and Ab-V6 have been studied in co-inoculation with rhizobia for 
soybeans (Hungria et al., 2013, 2015b; Chibeba et al., 2015; Braccini et al., 2016; Ferri et al., 
2017; Nogueira et al., 2018; Galindo et al., 2018; Prando et al., 2019; Rondina et al., 2020), 
common beans (Hungria et al., 2013), cowpea (Vigna unguiculata L. Walp.) (Galindo et al., 
2020a, 2021), peanut (Arachis hypogaea L.) (Silva et al., 2017; Freitas et al., 2020; 
Gericó et al., 2020), and alfalfa (Medicago sativa L.) (Silva et al., 2020). Interestingly, 
rhizobia have also been studied in association with Ab-V5 and Ab-V6 in corn (Dartora et al., 
2016; Fukami et al., 2018d), showing significant improvements in plant development 
when compared to the single inoculation with A. brasilense.

In soybean cultivation in Brazil, the co-inoculation with Bradyrhizobium spp. and 
A. brasilense proved to be more advantageous than single inoculation with Bradyrhizobium 
spp. In areas that have been inoculated before and showed an established population 
of soybean bradyrhizobia, Hungria et al. (2013) observed an average increase in 
soybean grain yield of 16.1 % by co-inoculation (B. japonicum strains SEMIA 5079 and 
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B. diazoefficiens SEMIA 5080 and A. brasilense strains Ab-V5 and Ab-V6), whereas the 
single inoculation with Bradyrhizobium spp. increased yield by 8.4 %, both compared 
to the non-inoculated control. Consequently, Ab-V5 and Ab-V6 guaranteed twice the 
increase in productivity provided by single inoculation with Bradyrhizobium. Again, the 
first commercial inoculant was released in a public-private partnership of Embrapa Soja 
and Total Biotecnologia in 2013. Similar results were observed by Galindo et al. (2018), 
in this case with soybean co-inoculated with Bradyrhizobium elkanii (SEMIA 5019), B. 
japonicum (SEMIA 5079), and A. brasilense (Ab-V5 and Ab-V6), with a yield increase 
of 11.2 % in comparison to the single inoculation with Bradyrhizobium. Ferri et al. 
(2017) reported that the co-inoculation of soybean with B. japonicum SEMIA 5079, B. 
elkanii SEMIA 5019 and Ab-V5 and Ab-V6 resulted in 20.3 % increase in grain yield in 
comparison to the single inoculation with B. japonicum. It is worth mentioning that 
foliar spray of A. brasilense Ab-V5 and Ab-V6 at the vegetative stage of soybean also 
improved nodule number and dry weight, plant height, and the number of pods and 
grains (Toniato et al., 2020). 

Given the positive results obtained with the co-inoculation of soybean with Ab-V5 
and Ab-V6, a large-scale program of transference of the technology to the farmers 
has begun in the state of Paraná, in a partnership between Embrapa Soja and Emater 
(“Empresa Paranaense de Assistência Técnica e Extensão Rural”). The program 
started in 2017 and consists of four stages: (i) training extension technicians; (ii) 
installation and monitoring of technical reference units; (iii) technical meetings for 
the dissemination of technology; (iv) collection, tabulation, and analysis of the results 
obtained (Nogueira et al., 2018; Prando et al., 2019). In 2017/2018, 37 reference units 
were established in 23 municipalities and attended 665 farmers. Single inoculation 
with Bradyrhizobium and co-inoculation with Ab-V5 and Ab-V6 resulted in yield gains 
of 1.8 and 5.6 bags of 50 kg ha-1, respectively, with net profits in the Brazilian money 
“reais” of R$ 126.60 and R$ 390 ha-1, respectively (Nogueira et al., 2018). Similar 
results were obtained in the following crop season, 2019/2020, with 61 reference 
units in 46 municipalities attending 925 farmers, with co-inoculation resulting in a net 
profit of R$ 296 ha-1 (Prando et al., 2019). Noteworthy, despite the very short time 
of launching the co-inoculation technology for the soybean crop, the adoption by the 
farmers impressive increases every year, for example, from 15 % in the 2018/2019 to 
25 % in the 2019/2020 cropping season; the adoption takes place faster in the North 
region (Table 3). 

Other relevant increases in grain yield were achieved by Galindo et al. (2020a) in cowpea 
co-inoculated with Ab-V5 and Ab-V6, with 25.22 % increase in yield, in comparison to 
single inoculation with Bradyrhizobium sp. Following, in another study with cowpea, 
when compared to the single inoculation with Bradyrhizobium, co-inoculation with strains 
Ab-V5 and Ab-V6 increased N use efficiency by 35.5 %, as well as N recovery and N 
accumulation, altogether leading to improved crop growth; furthermore, co-inoculation 
also provided a positive residual effect on wheat, increasing yield by 5.8 % (Galindo et al., 
2021). Impacting increases were also reported with co-inoculation of common bean with 
Rhizobium tropici SEMIA 4080 (=PRF 81) and Ab-V5, Ab-V6, with an average increase 
in grain yield of 19.6 %, in comparison to 8.3 % by single inoculation with rhizobium 
(Hungria et al., 2013).

The improvement in the development of the root system by A. brasilense Ab-V5 and Ab-V6, 
as shown for the soybean (Rondina et al., 2020), is probably a major factor contributing 
to the increased uptake of water and nutrients, resulting in higher yields in relation to 
the single inoculation with rhizobia. In addition, benefiting water absorption (Silva et al., 
2019; Freitas et al., 2020; Naoe et al., 2020) may increase tolerance to moderate periods 
of water stress (Cerezini et al., 2016; Freitas et al., 2020). Furthermore, by improvements 
in the root system, Ab-V5 and Ab-V6 may promote early nodulation, as shown for the 
soybean (Chibeba et al., 2015; Cerezini et al., 2016).
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Methods of inoculation

The use of pesticides and fungicides is a well-established practice in crop management. 
Pesticides are estimated to be applied in 85 % of the world’s agricultural grain production 
to protect plants against pests and diseases (Kim et al., 2017). These products can be 
applied directly to the seeds or in the sowing furrow and later on leaves, by spraying. 
With the increased use of inoculants on seeds, the compatibility with agrochemicals 
has also been increasingly questioned. It is well known that bacterial cells of the 
inoculants can suffer from the toxicity of chemical compounds present in pesticides 
and other agrochemicals, often resulting in drastic cellular mortality, and impairing the 
effectiveness of the inoculant (Dunfield et al., 2000; Campo et al., 2009). The same 
incompatibility has been observed for strains Ab-V5 and Ab-V6, inoculated in corn seeds 
treated with pesticides (Santos et al., 2020a,b), which may impair the benefits of the 
PGPB. To minimize the toxic effects of pesticides, alternative methods of inoculation 
to avoid the direct contact between the microorganisms and the pesticides have been 
investigated. Some of the studied methods include the inoculation in-furrow, by spraying 
the soil at sowing, and by leaf spraying in seedlings. These three inoculation methods with 
Ab-V5 and Ab-V6 were studied in corn, and in the case of leaf spray applied at the V2.5 
stage of the plant growth cycle (Fukami et al., 2016). Different doses of inoculant were 
evaluated, with one dose corresponding to the application of 1.0 × 105 cells seed-1, and 
the plants were also N-fertilized at 100 or 75 % of the recommended dose. Preliminary 
tests were carried out in a greenhouse and subsequently in the field in different producing 
areas of Brazil. All three alternative methods of inoculation proved to contribute to 
improving yield, with the best results achieved with the application of 2 and 4 doses 

Table 3. Percentage of adoption of soybean single inoculation with Bradyrhizobium spp. and 
co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense by the Brazilian farmers in 
the main producing states of Brazil. According to Anpii (Associação Nacional dos Produtores e 
Importadores de Inoculantes) and Spark smarter decisions

State
2018/2019 2019/2020

Inoculation Co-Inoculation Inoculation Co-Inoculation
South Region

Rio Grande do Sul 73 7 61 11
Santa Catarina 81 11 78 14
Paraná 71 12 68 11

Southeast Region
São Paulo 86 7 83 21
Minas Gerais 86 15 80 14

Central-West Region
Mato Grosso do Sul 83 17 84 23
Mato Grosso 85 16 85 36
Goiás-Federal District 86 19 80 25

North Region
Rondônia 93 15 91 no information
Pará 100 30 100 80
Tocantins 92 34 100 77

Northeast Region
Maranhão 95 26 100 40
Piauí 99 32 100 21
Bahia 97 8 93 14
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in-furrow or by leaf spray, with gains of up to 773 kg ha-1 even with the reduction to 
75 % of the N-fertilizer (Fukami et al., 2016). 

The same three alternative methods of inoculation were investigated in wheat, with 
the spray applied at the third tiller, and one dose corresponding to the application 
of 1.74 × 104 cells seed-1 plant-1. The best results with 75 % of N-fertilizer were 
obtained with the leaf spray of two doses, achieving yields higher than 3,000 kg ha-1 
(Fukami et al., 2016). Positive results for wheat inoculation with Ab-V5 and Ab-V6 
(concentration of 2 × 108 cells mL-1) via leaf spray were also observed by Correia et al. 
(2019), and in comparison to the treatment receiving 50 % of the N-fertilizer, leaf 
spray of 300 mL 100 kg-1 seeds increased yield by 184 kg ha-1. Galindo et al. (2019b), 
when comparing the three methods of wheat inoculation, seeds, in-furrow at sowing 
and foliar consisting of 300 mL ha-1 (2 × 108 CFU mL-1) in a field experiment in the 
Cerrados, reported that although the highest grain yield (26.7 % over the non-inoculated 
control) was achieved with seed inoculation, good results were obtained with the 
two alternative methods.

Industrial development

Given the positive results reported by the inoculation of different crops with strains Ab-V5 
and Ab-V5, a demand raised for new inoculant formulations, as the cell concentration 
achieved is lower than in rhizobial inoculants and the shelf-life is shorter. However, few 
studies have been developed in the country for this purpose (Marcelino et al., 2016; 
Oliveira et al., 2017; Santos et al., 2017; Vercelheze et al., 2019). Factors such as 
biofilm production, maintenance of the pH in the medium, encapsulation of bacterial 
cells, protection against external agents, and easy use can be evaluated and may result 
in improved formulations (Kumaresan and Reetha, 2011; Trujillo-Roldán et al., 2013; 
Bashan and de-Bashan, 2015; Marcelino et al., 2016; Santos et al., 2017). Besides that, 
there is a demand to improve the compatibility with agrochemicals and the possibility 
of pre-inoculation of seeds. 

The addition of microbial metabolites to improve inoculant performance has also been 
investigated. For example, by applying metabolites of strains Ab-V5 and Ab-V6 via leaf 
spraying, Fukami et al. (2017) obtained significantly higher expression of genes related 
to stress tolerance and defense against pathogens, indicating that the use of their 
metabolites can be better explored.

Final remarks

Based on the information presented in this review, we may conclude that A. brasilense 
strains Ab-V5 and Ab-V6 have gained prominence in Brazilian agriculture in a very 
short time (Figures 1 and 4). The great versatility of both strains, contributing to 
a variety of biological processes, opens opportunities to extend the evaluations to 
several other plant species cropped in the country. This review shows that elite strains 
of plant-growth-promoting bacteria with good performance are easily accepted and 
adopted by the farmers. One advantage of Brazil is that several farmers are familiar 
with the concept of microbial inoculants, such that the efforts towards education about 
microbial bioproducts should now be directed to small farmers with less access to 
technical information. In addition, the success achieved in Brazil can stimulate studies 
and application in other countries with local strains.
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Figure 4.  Chronology of some important steps in the prospection, identification, and release of 
Azospirillum brasilense strains Ab-V5 and Ab-V6 in Brazilian agriculture.
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