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ABSTRACT: Increasingly, applications of machine learning techniques for digital soil 
mapping (DSM) are being used for different soil mapping purposes. Considering the 
variety of models available, it is important to know their performance in relation to soil 
data and environmental variables involved in soil mapping. This paper investigated 
the performance of eight machine learning algorithms for soil mapping in a tropical 
mountainous area of an official rural settlement in the Zona da Mata region in Brazil. 
Morphometric maps generated from a digital elevation model, together with Landsat-8 
satellite imagery, and climatic maps, were among the set of covariates to be selected by 
the Recursive Feature Elimination algorithm to predict soil types using machine learning 
algorithms. Mapping performance was assessed using the confusion matrix, and the Z-test 
among the Kappa indexes of the matrices. In a conventional soil survey, the soils described 
and classified in the Brazilian System of Soil Classification [Argissolos Vermelho-Amarelos 
Distróficos – PVAd (Acrisols), Cambissolos Háplicos Tb Distróficos - CXbd (Cambisols), 
Gleissolos Háplicos Háplicos Tb Distróficos - GXbd (Gleysols), Latossolos Amarelos 
Distróficos - LAd (Xanthic Ferralsos), Latossolos Vermelho-Amarelos Distróficos - LVAd 
(Rhodic Ferralsols), and Neossolos Litólicos Distróficos - RLd (Neossols)] were grouped 
into composite mapping units (MU) using the conventional method. The eight algorithms 
showed similar performance without statistical difference (Kappa 0.42-0.48). The mapping 
of soils with varying slopes (LAd, LVAd, CXbd) showed lower accuracy, whereas soils on 
hydromorphic lowlands (GXbd) were classified more accurately. In map algebra, the result 
was rather satisfactory, with 63-67 % agreement between the conventional soil map 
and maps produced by machine learning. The areas with the largest disagreement in 
the DSM occurred in the LAd unit due to subtle color variation in the Latossolos mantle 
without a clear relation to any environmental variable, highlighting difficulties in DSM 
regarding hill slope landforms. Model performance was satisfactory, and good agreement 
with the conventional soil map demonstrates the importance of the DSM as a potential 
complementary tool for assisting soil mapping in mountainous areas in Brazil for the 
purpose of land use planning.

Keywords: soil classification, machine learning, pedometrics, land use planning, agrarian 
reform.
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INTRODUCTION
Soil mapping is key for guiding decision makers in natural resource assessments, 
environmental modelling, and land use studies. The soil mapping process requires the 
knowledge and experience of a senior pedologist for the stages of soil surveying, soil 
classification, and soil mapping (Kempen et al., 2012; Resende et al., 2014). For mapping 
soils, the pedologist makes use of environmental information, such as climate, lithology, 
vegetation, and landforms; analyses and interpretations of soil samples collected in the 
area of interest; and consideration of all elements involved in soil-landscape dynamics 
(Nolasco-Carvalho et al., 2009; Brady and Weil, 2013; Schaefer, 2013). Through a 
systematic analysis of field observation and supporting data during the mapping, the 
pedologist identifies the relationships between soils and landscape features and establishes 
the soil mapping unit boundaries to be drawn on the map (Nolasco-Carvalho et al., 2009; 
Brevik et al., 2016).

The Digital Soil Mapping (DSM) technique has shown great potential in producing spatial 
information (McBratney et al., 2003). Basically, the DSM allows maps of soil spatial 
distribution to be created by means of numerical models that take soil environmental 
covariates into account, allowing inferences to be made of spatial and temporal variations 
of soil types and their properties (Lagacherie and McBratney, 2007). Digital Soil Mapping 
studies make use of spatially dense maps of covariates, related to soil formation and 
processes, that are usually available. 

Due to DSM’s increasing popularity, the number of models and the procedures for 
optimizing modelling performance has increased (Minasny and McBratney, 2016). Some 
models applied to soil mapping include the following: geostatistical (Kempen et al., 2012); 
fuzzy membership (Nolasco-Carvalho et al., 2009; Taghizadeh-Mehrjardi et al., 2015; 
Rizzo et al., 2016); and Clorpt techniques based on environmental correlation, usually 
applying Artificial Neural Networks - ANNs, CART, and regression models (Brungard et al., 
2015; Heung et al., 2016; Chagas et al., 2017).

In a recent review on the use of DSM for soil mapping in Brazil (ten Caten et al., 2012), 
the approaches used up to 2011 show three main classification models applied for DSM 
(ANNs, logistic regression, and decision tree). Up to then, studies had not used open 
source software, such as SAGA and R. In the following years, due to the development and 
free sharing of codes for soil modeling on open source platforms, several models run in 
R software became popular in research dealing with soil mapping. After 2011, Logistic 
regression continued to feature among the most used models for mapping soil classes in 
Brazil (Souza, 2013; Vasques et al., 2015; Chagas et al., 2017; Jeune et al., 2018), along 
with the following: ANNs (Arruda et al., 2016), maximum likelihood (Demattê et al., 2016), 
fuzzy logic and expert knowledge (Silva et al., 2014), and tree-based models (Bazaglia 
Filho et al., 2013; Höfig et al., 2014; Rizzo et al., 2016). 

Studies aiming to compare machine learning algorithms have recently increased 
(Collard et al., 2014; Brungard et al., 2015; Taghizadeh-Mehrjardi et al., 2015; Heung et al., 
2016; Chagas et al., 2017; Mosleh et al., 2017; Zeraatpisheh et al., 2017; Jeune et al., 
2018), enabling comparison and identification of algorithms with the best performance 
for specific soil-landscape conditions. Model performance has been reported as showing 
differences due to classifier parameters and configurations (Brungard et al., 2015; 
Heung et al., 2016; Chagas et al., 2017; Jeune et al., 2018), as well as the sampling 
density within soil classes (Collard et al., 2014; Brungard et al., 2015; Zeraatpisheh et al., 
2017) and the taxonomic level of soil classification (Taghizadeh-Mehrjardi et al., 2015; 
Mosleh et al., 2017; Zeraatpisheh et al., 2017). In addition to these factors influencing 
model performance, contrasting results in creating spatial soil information may be 
intrinsic to soil-landscape characteristics that directly relate to available datasets and 
models used for mapping, and studies have not yet fully covered the diversity of soils 
across Brazilian territory.
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The aim of this paper was to investigate the performance of machine learning algorithms 
on soil mapping in a mountainous area of the Zona da Mata region, state of Minas Gerais, 
Brazil. The main objectives were: 1) to perform soil mapping on a 1:50,000 scale using 
a conventional method to serve as a reference map for comparison with soil maps of 
DSM models; 2) to select the most relevant set of environmental covariates to generate 
soil class maps using machine learning algorithms; and 3) to compare machine learning 
algorithms for soil mapping in a hilly, dissected tropical landscape.

MATERIALS AND METHODS

Study area

The present study was carried out in the area of the Dênis Gonçalves Settlement of 
Agrarian Reform (21° 34’ 30” S and 43° 12’ 33” W, and 21° 39’ 36” S and 43° 09’ 15” 
W), with a total area of 4,213.60 hectares. The area occupies lands in the municipalities 
of Goianá, Chácara, Coronel Pacheco, and São João Nepomuceno, located in the 
mesoregion of the Zona da Mata of the Minas Gerais State, Brazil (Figure 1) from 409 
to 928 m altitude. 

The climate in the region is classified as Cwb (Köppen classification system), subtropical, 
and mesothermic, with mild summers, and rainfall concentrated from October to 
April, and cold and dry winters (May to September) (Alvares et al., 2013). The mean 
annual temperature is 18.7 °C, and mean annual rainfall is 1,528 mm. It is located 
in the Atlantic Forest biome, formerly a semi-deciduous forest area. Two main rivers 
cross through the settlement: the Cágado River, in the southern part of the border 

Figure 1. Localization of the soil pits used for soil classification in the Dênis Gonçalves Settlement, Mesoregion of the Zona da Mata 
region, Minas Gerais, Brazil.
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between the municipalities of Chácara and São João Nepomuceno, and the Rio Novo, 
in the northern parts of the lands of Coronel Pacheco and Goianá, all part of the 
Paraíba do Sul basin.

The settlement is split along the middle by a group of mountains named “Serra da 
Babilônia”, which forms three distinct environments: the first one, the “Serra”, with 
rocky outcrops steep in the east-west direction. This is a typical structural environment, 
favoring the emergence of a truncated hydrography in the southern part. Towards the 
north, the landscape is dominated by low hills (morrotes) with gently rolling to rolling 
slopes and elongated valley bottoms, dominated by meandering streams that create 
hydromorphic environments dominated by Gleysols. The third environment is located to 
the south of the mountain range, with predominance of high, mountainous topography 
and flat valley bottoms, embedded, and elongated. These landscapes are characteristic 
of the Zona da Mata region, which usually has low fertility soils covered with pastures, 
coffee fields, and forests (Resende et al., 2014) and highly dissected landscapes of the 
“mares de morros” (sea-of-hills) (Ab’Sáber, 1975; Silva and Mello, 2011). In this area, 
rivers generally have terraces and alluvial plains (Silva and Mello, 2011; Schaefer, 2013; 
Resende et al., 2014).

Soil survey and soil mapping unit composition 

A total of 20 soil pits were opened for complete morphological description and sample 
collection. Additionally, 124 pits (extra samples) were collected (mini-pits and auger 
samples), characterized, and classified, for a total of 144 sites of soil sampling and 
description (Figure 1). The soils were surveyed in a systemic way throughout the area, 
considering the existing tracks and roads within the geoenvironments, stratified by a 
senior pedologist. In addition, the settlement was stratified into regions according to 
knowledge obtained from settler families (Table 1).

Soil sampling and description was carried out according to the IBGE (2015). To define 
the sampling sites, the area was stratified into geoenvironmental units (lowlands and 
terraces, hydromorphic plains, upland tops, and colluvial slopes). 

The soil samples were subjected to physical and chemical analyses according to Claessen 
(1997) and classified at the third level of classification, according to the Brazilian Soil 
Classification System - SiBCS (Santos et al., 2013).

Table 1. Soil classes and number of soil pits surveyed per class in the Dênis Gonçalves settlement

Soil Class/Taxa SiBCS(1) Soil Class/Taxa 
(WRB - IUSS)(2)

Soil pit
Full 
profile

Extra 
sample Total

CXbd - Cambissolos Háplicos Tb 
Distróficos Dystric Cambisols 5 33 38

GXbd  - Gleissolos Háplicos Tb 
Distróficos Gleysols 1 17 18

LAd – Latossolos Amarelos Distróficos Xanthic Ferralsols 9 22 31
LVAd  - Latossolos Vermelho-Amarelos 
Distróficos Rhodic Ferralsols 3 20 23

PVAd - Argissolos Vermelho-Amarelos 
Distróficos Rhodic Acrisols 2 17 19

RLd - Neossolos Litólicos Distróficos Neosols - 15 15
Total 124

(1) Brazilian System of Soil Classification (SiBCS). (2) International soil classification system (IUSS Working 
Group WRB, 2015). Full profile = sites where the soil pits were opened for sampling and morphological 
description of all pedogenetic horizons; Extra sample = sites where soil pits were opened for characterization 
and description.



Meier et al. Digital soil mapping using machine learning algorithms in a tropical...

5Rev Bras Cienc Solo 2018;42:e0170421

The mapping units (MUs) were defined by grouping areas of soils on a 1:50,000 scale, 
according to the Technical Handbook of Pedology (IBGE, 2015). The MUs were delineated 
using visual interpretation of the soil pattern distribution in the area. Soil-landscape 
relationships were established using visual interpretation of field observations, soil 
descriptions, and the following subsidiary maps: 1) satellite imagery (GeoEye sensor 
obtained from the Google Earth platform, with spatial resolution of 0.41 m); 2) digital 
elevation model - DEM [generated from Advanced Land Observing Satellite (ALOS) 
images with 12.5 m of spatial resolution]; and 3) maps derived from the DEM (i.e., slope, 
elevation, solar radiation, aspect).

Covariates used for digital soil mapping - DSM

A set of 73 covariates related to soil formation factors were used on DSM models. The 
data were obtained from the following freely available databases:

•	 Orbital images, with 5 m spatial resolution, obtained from the Google Earth platform 
(Google, 2016), were used for mapping the stream. The Euclidean distance from the 
drainage network (eddrainage) was calculated;

•	 Map of soil units on a 1:650,000 scale (FEAM/UFV/SEMA, 2010);

•	 Geological map on a 1:100,000 scale (Delgado et al., 2013);

•	 Bioclimatic variables (BIO01, BIO02,…, BIO19) from nineteen maps derived from 
monthly temperature and rainfall data of WorldClim – Global Climate Data (Fick and 
Hijmans, 2017);

•	 Spectral imagery of the Landsat-8 satellite, acquired on October 11, 2015: band 1 
(430-450 nm), band 2 (450-510 nm), band 3 (530-590 nm), band 4 red (640-690 nm), 
band 5 near infrared (850-880 nm), band 6 SWIR1 (1570-1650 nm), band 7 SWIR2 
band (2110-2290 nm), band 8 panchromatic band (500-680 nm), band 9 Cirrus (1360-
1380 nm), band 10 thermal infrared band TIRS1 (10600-11190 nm), and band 11 
thermal infrared band TIRS2 (11500-12510 nm), (USGS archives, path/row = 217/75);

•	 Digital elevation model (DEM) of the Alos Palsar imagery (Advanced Land Observing 
Satellite - Phased Array type L-band Synthetic Aperture Radar), with spatial resolution 
of 12.5 meters [Japan Aerospace Exploration Agency - Alos Palsar (2016)], was used to 
derive a total of 40 morphometric maps of covariates. The following covariates were 
generated using the RSaga package (Brenning et al., 2018): aspect, convergence 
index, curvature of cross section, curvature of flow line, general curvature, longitudinal 
curvature, maximum curvature, minimal curvature, flat curvature, profile of curvature, 
tangential curvature, total curvature, curvature classified, hydrological gradient, 
diurnal anisotropic heating, difference of hydrological gradient, mass balance index 
(balance between erosion and deposition), elevation above the sea level, mid-slope 
position, multi-resolution index of valley bottom flatness (MRVBF), normalized height, 
real surface area, slope, slope height, diffuse solar radiation 1 (January), diffuse solar 
radiation 2 (June), direct solar radiation 1 (January), direct solar radiation 2 (June), 
duration of radiation 1 (January), duration of radiation 2 (June), total solar radiation 
1 (January), total solar radiation 2 (June), standardized height, surface of specific 
points, terrain ruggedness index, convexity of surface, texture of surface, valley 
depth, terrain ruggedness, and topographic wetness index (TWI).

Selection of covariates for digital soil mapping

Due to the large amount of data available for use as covariates in modelling, it was 
necessary to use a data-mining technique to select the most suitable dataset as an 
optimal set of predictors to run the model, affording the lowest error.
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We used a selection process where the covariates were ranked based on their importance, 
selecting the top ten with highest importance for soil mapping. The selection procedure 
was performed by using the Recursive Feature Elimination (RFE) algorithm, implemented 
on the Caret Package (Kuhn, 2017), combined with correlation analyses for removal of 
covariates with 95 % or higher correlation with others.

Recursive Feature Elimination is an algorithm that performs a backward selection, which 
avoids refitting many models at each step of the search (Kuhn and Johnson, 2013). When 
the full model is created, a measure of variable importance is computed and shows the 
ranks of predictors from most to least important (Kuhn, 2013). In this study, we used 
the Random Forest based RFE, which ranks the predictors based on the Gini index, as 
implemented in the Random Forest algorithm (Breiman, 2001).

The selection was run in two phases: the first, in which the highly correlated covariates 
were identified and the ones with the highest correlation removed (Kuhn, 2017), and 
the second, in which an importance rank was determined by RFE, allowing selection of 
the most important ones. In the first phase, categorical covariates were left out, and 
continuous ones were used in a pair-wise analysis that was run using the ‘findcorrelation’ 
function, as implemented in the Caret Package (Kuhn, 2017) to determine the correlation 
among covariates without their being assessed in a prediction model. A correlation matrix 
was generated, and the absolute values of pair-wise correlations were considered in the 
analyses. In these analyses, if two covariates have a high correlation, the function looks 
at the mean absolute correlation of each covariate and removes the covariate with the 
largest mean absolute correlation. A threshold value greater than or equal to 98 % was 
established as the critical value for the covariate to be removed. Once the dataset had 
been reduced by removing highly correlated covariates, the RFE procedure was run, 
establishing 10 as the maximum number of covariates to be left in the model. 

Recursive Feature Elimination algorithm selection is an iterative process that eliminates 
the least important predictors from the model based on an initial measure of predictor 
importance (Kuhn and Johnson, 2013). We selected Random Forest as the base model 
for running the RFE. First, a full Random Forest model is created using all covariates, 
and a measure of covariate importance is computed to rank the covariates from most 
to least important. Secondly, the Random Forest model is tuned and trained iteratively 
with the most important covariates and without the least important ones until only 10 
covariates remain.

Machine Learning Algorithms

Eight algorithms were assessed: Random Forest (RF), Extreme Gradient Boosting 
(xgBoost), Ranger Random Forest (Ranger), Weighted Subspace Random Forest (WSRF), 
Support Vector Machine with Linear Kernel (SVMLinear), Support Vector Machine with 
Polynomial Kernel (SVMPoly), Bagged AdaBoost (AdaBag), and Extra Trees - Random 
Forest by randomization (ExtraTree). All algorithms were implemented in the Caret 
package (Kuhn, 2013) and run on the R program (R Development Core Team, 2016) 
using the available parameters.

Random Forest (Ranger), Weighted Subspace Random Forest (WSRF), 
Random Forest by randomization (Extra Trees)

Random Forest (RF) is a general term used for a set of “tree-based” classifiers. The 
method was developed as an extension to the regression tree classifier (CART) to 
improve model performance (Breiman, 2001) and applied to predictions of discrete and 
categorical variables.

The working principle of RF operation is the same as that used in CART, except that many 
trees are constructed, resulting in a “model of forests” and, in addition, during growth of 
the trees there is no pruning. For each tree, only a subset of the prediction variables is 
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used. The number of predictors used in the construction of each tree and the number of 
trees to be constructed in the forest vary, depending on the dataset (Liaw and Wiener, 
2018). Each tree is constructed from samples selected from the total dataset by using 
the bootstrap method (Efron and Gong, 1983). This selection allows more robust error 
estimates with a second set of samples, called Out-of-Bag (OOB), also selected from the 
total dataset by the bootstrap and excluded from the prediction.

Variant models have been developed from the principle of RF operation [e.g., Ranger 
(Wright and Ziegler, 2015; Wright, 2017), WSRF (Meng et al., 2012), and ExtraTrees 
(Simm and Abril, 2014)]. Ranger has shown to be efficient in soil nutrient mapping on an 
ensemble model by Hengl et al. (2017a) and in soil properties by Hengl et al. (2017b).

The Weighted Subspace Random Forest (WSRF) is an algorithm that can classify large 
datasets using a mechanism similar to RF, but applied to small subsets. It is a new method 
of weighting variables used in sample selection, rather than using the traditional method 
of random selection. This new approach is particularly useful in models using large 
dimension datasets (Meng et al., 2012). However, the error effect of setting the weights 
when using low dimension datasets is substantial and may result in poor performance 
of the model (Li and Zhao, 2009).

The use of ExtraTree (Extremely Randomized Trees) is similar to RF. The difference is that 
whereas each branch of the forest in RF chooses the best cut-off threshold for categorical 
values, ExtraTree chooses the cut-off value (evenly) randomly. However, like RF, the 
categorical data with the highest gain (or better score) is chosen after the cutoff limit 
is set (Simm and Abril, 2014).

Support Vector Machine (with Linear Kernel/with polynomial Kernel)

The Support Vector Machine (SVM) algorithm, introduced by Cortes and Vapnik (1995), 
performs a binary classification. The basic idea of the model is to find a hyperplane 
that best separates the points of two classes by maximizing the margin between 
those points of both classes that are closest to each other, called support vectors. 
The SVM function can easily work with non-linear patterns by transforming the 
original data into new features, which is a basic characteristic of the kernel function. 
This hyperplane from the maximized margins is used as a criterion for subsequent 
classification (Kuhn, 2013).

The SVM has been applied to soil mapping due to its ability to handle large datasets, 
learning complex data-classes and making decisions regarding separation, and also 
because it is based on traditional statistical methods applied to pedometric studies 
(Brungard et al., 2015; Brevik et al., 2016; Heung et al., 2016; Forkuor et al., 2017). 
In addition, the SVM performs well in low-dimension datasets and has high power for 
generalizing information (Li and Zhao, 2009). 

To run the SVM, we used the kernlab package (Karatzoglou et al., 2016). The SVM 
with radial basis function (SVMRadial) uses machine learning and kernel functions for 
pattern recognition.

Bagged AdaBoost (AdaBag)

AdaBag is an algorithm that makes possible to implement two popular tree-based models: 
boosting and bagging. The main difference between these two ensemble model methods 
is that boosting builds its base classifiers in sequence, updating a distribution over the 
training examples to create each base classifier, whereas bagging combines individual 
classes in repetitions of bootstrap training (Alfaro et al., 2015).

Adaboost can process weighted data, and the classification error rate for each test is used 
to update the distribution over the training samples. The weights of the classification 
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errors of the samples are increased, while the weights of the correct classifications 
decrease, controlling the error rate and forcing the classifier to focus on more difficult 
samples (Alfaro et al., 2013).

Extreme Gradient Boosting (xgBoost)

Extreme Gradient Boosting (xgBoost) is a hybrid algorithm of the tree model, applied to 
regression and classification predictions. It is an ensemble model that works based on 
prediction of the weak set, which is highly effective and widely used (Chen and Guestrin, 
2016). Its scalable working mechanism is based on stages with increases in the number 
of trees. A differential aspect of the model is its ability to handle sparse data. On soil 
science, the model has been applied to mapping soil nutrients (Hengl et al., 2017a) and 
soil properties in the United States (Ramcharan et al., 2018).

The model is optimized by adjusting parameters, such as the number of interactions, 
the maximum number of tree branches, the multiplication parameters of tree shrinkage 
after each interaction, reduction in the influence of each tree, the amount of space for 
future trees, minimum number of weighted input features, the sum of the instances, and 
the percentage of samples for sampling (Chen et al., 2017). The model is trained in an 
additive way, using learned patterns to redefine the parameters (Chen and Guestrin, 2016).

Model training and evaluation

The soil taxonomic classes described at 144 sites (Table 1) were used as the dataset for 
training and validating the models. The number of soil sites per MU was as follows: CXbd 
(38), GXbd (18), LAd (31), LVAd (23), PVAd (19), and RL (15). Six MUs with a single soil 
component were defined within the settlement area for the soil mapping using machine 
learning. This soil mapping approach followed the guideline for a 1:50,000 scale of soil 
mapping, considering the detail of spatial information and the soil survey approach 
(IBGE, 2015).

Model training used 10-fold cross-validation repeated 5 times. This method is 
suggested as the most weighted in evaluation of model performance when the 
datasets are not large enough to be split into training and external validation samples 
(Kuhn, 2013).

To evaluate the performance of the algorithms for soil mapping, the confusion matrix was 
used to derive the Kappa indexes and the overall accuracy. The matrix is constructed 
using a discrete multivariate technique to evaluate thematic accuracy (Congalton and 
Green, 2009). The Kappa coefficient (K) is a measure of actual agreement minus chance 
agreement. In other words, it is a measure of how much the classification data agrees 
with the reference data, and it can be calculated as follows:

K =
n Σc

i=1 nii – Σc
i=1 ni+ + n+i

n2 – Σc
i=1 ni+ + n+i

							           Eq. 1

in which K is the estimate of the Kappa; nii is the value in row i and column i; ni+ is 
the sum of line i, and n+i is the sum of column i of the confusion matrix; n is the total 
number of samples; and c is the total number of classes. The Kappa index ranges from 
0 to 1, and performance is considered moderate for values between 0.20-0.60 (Landis 
and Koch, 1977). 

To perform a statistical analysis for detecting difference between the Kappa obtained 
by the algorithms, when mapping the soil, we used the Z-test, which compares pairs of 
algorithms according to the following equation:

Z =
|K1 – K2|

√var(K1) – var(K2)
							           Eq. 2
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In which Z is the value that defines the test, K1 and K2 are the Kappa values of 
algorithms 1 and 2 taken for the comparison; and “var” is the variance of Kappa 
algorithms 1 and 2, respectively. The Z value makes possible to evaluate the difference 
between classifiers in performing the mapping with the available data. The statistical 
significance test follows the null hypothesis considered in this study, where there 
is a 5 % confidence interval, with a Z value greater than 1.96, which is significant 
(Congalton and Green, 2009).

Variability of Mapping Units among DSM models

To identify areas in the map where the machine learnings showed greater variability 
in mapping the soil MUs, we analyzed the eight maps generated from the algorithms, 
performing zonal statistical analysis with the Zonal statistical function from the “Spatial 
Analyst Tools” package of the ArcGis 10.2 software. Variability analysis runs a per-pixel 
calculation among the soil maps to calculate the MU “Variety” (i.e., calculate the number 
of unique MUs at each pixel). If the classifiers agree on mapping a MU at one pixel, the 
function returns the number one (one unique MU); for two different MUs assigned, it returns 
the number two, and so forth. Hence, the larger the number of classifier disagreement, 
the larger the mapping variability.

Analysis of agreement between conventional map and digital soil maps 

Concordance analysis between the conventional soil map and the soil maps from the 
machine learning algorithms was performed to give a comparative measure in terms of 
area mapped for each MU. The soil in the conventional map was converted to a raster file 
and analyzed by map algebra using Boolean logic. To calculate pixel-by-pixel agreement, 
a concordant pixel returns the value 1 and a non-concordant one returns the value zero.

As the soil map was composed by MUs with soil associations up to three soil classes, 
the map was reclassified for maps of a single MU component (i.e., soil map of the first, 
second, and third soil class component of the MU). For each DSM map comparison, the 
concordance with the three maps of MU components were added up, and agreement 
was expressed as the area of matching soil classes on both maps.

RESULTS AND DISCUSSION

Soil mapping using a conventional method

The soils described in the settlement were classified at the third categorical level, revealing 
a predominance of the following classes: Argissolos Vermelho-Amarelos Distróficos (PVAd), 
Cambissolos Háplicos Tb Distróficos (CXbd), Gleissolos Háplicos Tb Distróficos (GXbd), 
Latossolos Amarelos Distróficos (LAd), Latossolos Vermelho-Amarelos Distróficos (LVAd), 
and Neossolos Litólicos Distróficos (RLd). A total of seven MUs were formed for the soil 
mapping purpose (Figure 2).

Latossolos cover a large area, corroborating previous soil surveys in a nearby region 
(the Coronel Pacheco research station) (Santos et al., 1980), whereas Argissolos occur 
as inclusions or in association with Latossolos. At the hilltops, Latossolos are most 
developed and easily distinguishable and mapped on flat or convex slopes in the uplands. 
On a landscape scale, color distinction at the second level is difficult due to the small 
difference between the 5YR and 7.5YR; hence, we mapped associations between these 
Latossolos classes (Figure 2).

Shallow Cambissolos on deep saprolites are also frequent in the area, also mapped in 
association, mainly occurring on steep concave slopes, where erosion is greater than 
pedogenesis (Schaefer et al., 2013).
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In the lowlands, the typical MU is the association of Gleissolos and Cambissolos (GXbd2), 
identified on the satellite image with a gray pattern indicating seasonal flooding, whereas 
Gleissolos (GXbd1) are found on the darkest areas of the image, indicating swampy areas 
of permanent waterlogging.

The areas of highland ridges on the steep slopes of the Serra da Babilônia with sparse rocky 
outcrops contain Neossolos Litólitcos (RL), which are associated with shallow Cambissolos, 
since soils in these areas are difficult to map separately due to the scale adopted (1:50,000).

Covariates selected for soil mapping using machine learning

The ten covariates selected for soil mapping, ranked by importance, were as follows: 
4 morphometric covariates (slope height, standardized height, TWI, and MRVBF); 3 images 
from Landsat-8 (bands 1, 7, and 11); two climatic maps [rainfall of the coldest trimester (BIO19) 
and the annual temperature range (BIO07), which stands for the maximum temperature of 
the warmest month, minus the minimum temperature of the coldest month]; and the map of 
Euclidean distance from the drainage network (eddrainage). The high number of covariates 
related to landform is due to the influence of relief on the soil formation process in the area, 
where topography and landform are key factors for soil diversity. 

The contribution of each covariate to the soil-mapping model (Figure 3), measured as 
the percentage of decreasing accuracy, highlights the morphometric covariates as 
highly important in mapping soil distribution in the study area. The Multi-resolution 
index of valley bottom flatness (MRVBF) is the most important, contributing 21.6 %. 
The TWI contributed 15.5 % and slope height 13.6 %. The two bioclimatic covariates, 
related to temperature and rainfall, scored around 17.5 % each, and were the second 
more important. The covariates selected were derived from a large variety of sources 
(Figure 3), including spectral information from satellite imagery, Euclidian distance from 
the drainage network, and bioclimatic and morphometric sources.

Evaluation of soil mapping with machine learning algorithms 

Soil mapping using the machine learning algorithms exhibited a Kappa index ranging 
from 0.42 to 0.48 and an overall accuracy ranging from 0.54 to 0.58 (Table 2), which can 
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Figure 2. Conventional soil map showing the distribution of soil mapping units (MUs) and their areas of occurrence in the Dênis 
Gonçalves Settlement, in the Zona da Mata region, Minas Gerais, Brazil.
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be considered moderate (Landis and Koch, 1977). Overall, the xgBoost showed better 
performance, with a higher Kappa (0.48). It had low performance in mapping Latossolos 
Vermelho-Amarelos (39 %) and high performance in mapping Gleissolos (85 %). The 
ExtraTree, in contrast, was less accurate in mapping Argissolos (41 %) but showed high 
performance in mapping Gleissolos (94 %), like the RF, which mapped Gleissolos with 
94 % accuracy. 

The RF algorithm showed low efficiency in mapping CXbd (28 % accuracy). The MU CXbd 
were not adequately distinguished from Latossolos (LAd and LVAd units), although CXbd 
has more soil data (38) than Latossolos (LAd - 31 and LVAd - 23 soil pits) (Table 2). The 
area mapped as Cambissolos is also larger than areas of Latossolos. When comparing 
the algorithms performance on mapping the LVAd, the lowest accuracy was that of the 
SVMPoly, with not a single classification of this soil correctly allocated to this MU (Table 2); 
the best performance on mapping LVAd was achieved by the ExtraTree algorithm (43 %).

Overall, the algorithms showed moderate performance in distinguishing CXbd from 
Latossolos (LAd and LVAd). Conversely, all algorithms showed good performance in 
mapping GXbd, in which the lowest accuracy was 82 % by the AdaBag algorithm, and 
the highest 94 % (RF, Ranger, and ExtraTree). These results indicate that the covariates 
used made it difficult to distinguish some soils on dissected terrain (Table 2).

The soil maps obtained with each algorithm are shown in figure 4. In a cursive rapid visual 
analysis, no significant differences are noticed, except for the LVAd, which was mapped 
with the smallest area by the SVMPoly (Figure 4f), since the SVMPoly misclassified LVAd 
as CXbd (Table 2b). Similarly, confusing LVAd with CXbd occurred with all algorithms. 
Two MUs, CXbd, and LVAd, showed highest standard deviation in the size of area mapped 
(Table 3) comparing all the DSM maps, as a result of their confusing and difficult mapping. 
The results showed that the SVMLinear has an advantage over the SVMPoly. 

Most MUs were mapped in a similar way for all algorithms, especially in the highlands, 
where RLd occurs (standard deviation of area mapped = 0.4 %). The MU LAd was mapped 
in a similar way by all algorithms, as well as GXbd, which occurs near the drainage 
network (Figure 4), and showed standard deviation of 0.9 %. Among algorithms, the 
mapping of PVAd showed more dissimilarity in its spatial distribution and mapped area 
in the SVMPoly mapping, which showed only 5.3 % of the area occupied by this soil type, 
whereas four algorithms showed a percentage of PAVd of around 8-9 % of the settlement. 

0

Normalized height

Landsat-8 band 7

Landsat-8 band 1

Euclidian distance from the drainage

Landsat-8 band 11

Slope height

Topographic wetness index - TWI

Temperature annual range - BIO 07

Rainfall precipitation of coldest quarter -BIO 19

Multi-resolution index of valley bottom flatness - MRVBF

Mean decrease in accuracy (%)

252015105

Figure 3. Importance of covariates in the soil mapping, measured by the Gini index as implemented in the Random Forest model 
run with RFE covariate selection. 
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The SVMLinear had the worst performance, which is consistent with Brungard et al. (2015), 
who made the same observation. In this respect, in a study performed by Heung et al. 
(2016), the SVMRadial was superior to the SVMLinear in models of soil mapping at the 
order and suborder level.

Heung et al. (2016) also compared soil mapping in great group and order level classifications 
in a valley area in Vancouver, Canada, using ten machine learning algorithms. The 
authors found that RF was among those of highest performance, along with CART and 
the SVMRadial. In their study, Multinomial Logistic Regression (MLR) showed lower overall 
accuracy (0.42) than RF (0.63) for soil orders. Therefore, statistical difference was not 
investigated. Only Jeune et al. (2018) reported a statistical difference in Kappa in soil 

Table 2. Confusion matrixes of soil mapping with each machine learning algorithm

LAd CXbd LVAd PVAd GXbd RL Total LAd CXbd LVAd PVAd GXbd RL Total
Random Forest AdaBag

LAd 24 6 4 5 0 0 39 22 3 4 5 1 0 35
CXbd 5 19 13 2 0 5 44 6 24 15 3 1 6 54
LVAd 0 5 6 1 0 0 13 0 4 5 1 0 0 11
PVAd 1 1 0 8 1 1 12 3 2 0 7 1 1 13
GXbd 0 2 0 1 17 0 20 0 2 0 1 15 0 18
RL 0 4 0 2 0 9 15 0 3 0 2 0 8 13
Total 31 38 23 19 18 15 144 31 38 23 19 18 15 144
Acc. (%) 77 50 28 43 94 58 71 62 24 35 82 55
Over. Acc. 0.58 0.58
Kappa 0.47 0.48

Support Vector Machine Poly Kernel xgBoost 
LAd 22 6 4 6 1 0 38 22 4 4 4 0 0 34
CXbd 6 20 13 4 1 5 50 6 19 9 2 0 6 43
LVAd 2 6 5 1 0 0 15 1 6 10 2 0 0 19
PVAd 1 2 1 6 0 1 11 2 3 0 8 1 2 16
GXbd 0 0 0 0 16 0 16 0 1 0 1 17 0 19
RL 0 4 0 2 0 9 15 0 5 0 2 0 7 14
Total 31 38 23 19 18 15 144 31 38 23 19 18 15 144
Acc. (%) 71 52 23 29 89 60 70 51 43 41 94 47
Over. Acc. 0.54 0.58
Kappa 0.42 0.47

Support Vector Machine - Linear Kernel ExtraTree 
LAd 22 7 4 6 0 0 39 22 6 4 6 0 0 38
CXbd 6 20 14 3 0 6 49 6 19 14 1 0 5 46
LVAd 0 5 5 1 0 0 11 1 5 5 1 0 0 11
PVAd 2 0 0 6 2 0 10 1 1 0 8 1 1 12
GXbd 1 2 0 2 16 0 20 1 2 0 2 17 0 22
RL 0 4 0 2 0 8 14 0 5 0 2 0 9 16
Total 31 38 23 19 18 15 144 31 38 23 19 18 15 144
Acc. (%) 72 54 24 33 88 56 71 50 20 41 94 60
Over. Acc. 0.57 0.55
Kappa 0.45 0.44

LAd = Latossolos Amarelos Distróficos; CXbd = Cambissolos Háplicos Tb Distróficos; LVAd = Latossolos Vermelho-Amarelos Distróficos; PVAd = 
Argissolos Vermelho-Amarelos Distróficos; GXbd = Gleissolos Háplicos Tb Distróficos; RLd = Neossolos Litólicos Distróficos.
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mapping in Haiti, in which RF showed a much higher Kappa (0.55) compared to MLR 
(Kappa = 0.33) using external validation rather than cross-validation. 

A similar study using a tree-based model (i.e., Random Forest - RF) for soil mapping in 
northern Iran (Pahlavan-Rad et al., 2016) applied both RF and Multinomial Regression 
models in mapping soils classified at the great group, subgroup, and family level and 
achieved highest accuracy with RF (33.9) and MLR (22.9) at the subgroup level. Similar 
accuracy for MLR was observed by Souza (2013) for mapping soil classes in the Rio Doce 
Basin, Brazil (Kappa = 0.35).

Following a different approach to obtaining soil data, Chagas et al. (2017) used legacy 
data extracted from a soil map for training three machine learning algorithms, obtaining 
highest accuracy for Random Forest (Kappa = 0.76).

The similarity in performance of machine learning algorithms observed in the present study 
and in the literature suggests that the performance of machine learning for soil mapping 
is rather similar when evaluating the Kappa index with the Z- and t-test, highlighting that 
the quality and robustness of datasets is of greater importance than the classifier itself. 
Furthermore, the number of samples per MU and the level of taxonomic classification 
of the soil are of key importance. As Brungard et al. (2015) pointed out, the number of 
pedons within each MU directly influences the accuracy of the model. Although we did 
not test sampling size per MU, the fact that each model scored similar Kappa for the eight 
models assessed, while within each model, the accuracy of the MUs did not follow the 
trend, indicates that for some soils the sample size should be larger in order to model 
their complex distribution across the landscape. In this regard, Gleissolos and Neossolos, 
with a limited dataset compared to LVAd, scored higher accuracy.

The number of MUs in the conventional soil map (7) differs from the DSM maps (6), 
as well as the number of soil components per MU. In the conventional map, there are 
two MUs made up of two soil components and two made up of three components, while 
only two MUs have a single component. In the DSM maps, all MUs are made up of a 
single soil component. Therefore, the MUs GXbd1 and GXbd2, and LAd1 and LAd2 on 
the conventional map were combined to allow better comparison with the MUs mapped 
with the machine learning algorithms (Table 3). The correspondence among MUs of 
these two mapping approaches demonstrates generalized differences in the area for 
most MUs due to difference in MU components. A similar area and proportion for GXbd 
(around 565 ha and 13.4 % of the settlement on the conventional compared to 10.7 
to 12.9 % on the DSM maps). The LAd showed a 10 % increase in the area mapped 
by the conventional method. Cambissolos Háplicos Tb Distróficos, and for PVAd, both 
appear in soil associations, therefore could not be directly compared. The PVAd was 
not mapped as first soil component of MUs on the conventional map as its similarity to 
Latossolos allows distinction only on the textural gradient of the B horizon, and CXbd 
was second or third component on three MUs.

The MU areas in each map and the corresponding percentages of occurrence (Table 3), 
show large discrepancies for two MUs. For example, the mapped area for MUs for 
LVAd varied from 809 ha, mapped by the xgBoost algorithm, to 42 ha, mapped by 
the SVMPoly. The opposite was observed for CXbd, with the smallest area mapped 
by xgBoost (1,332 ha) and the largest by the SVMPoly (2,166 ha). The discrepancy 
between these two algorithms in the mapping of LVAd and CXbd can be attributed 
to the SVMPoly error in mapping soils on hillslopes, as observed in the confusion 
matrix, where all data of LVAd was allocated to CXbd (Table 2c). Apart from these 
two MUs, all the remaining MUs showed low standard deviation (0.4 to 2.1 %) in 
their mapped area.

To assess whether the maps had statistical differences based on the Kappa index values, 
we used the Z-test (significance level of 0.05), with no differences between algorithms 
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(Table 4). Although the tree-based algorithms (RF, Ranger, and WSRF) performed best in 
mapping the soils, there was no statistical difference in the mapping accuracy of these 
algorithms compared to binary regression models. 
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Figure 4. Maps generated by the classifiers RF (a), xgBoost (b), ExtraTree (c), Ranger (d), WSRF (e), SVMPoly (f), SVMLinear (g), 
and AdaBag (h). CXbd = Cambissolos Háplicos Tb Distróficos; GXbd = Gleissolos Háplicos Tb Distróficos; LAd = Latossolos Amarelos 
Distróficos; LVAd = Latossolos Vermelho-Amarelos Distróficos; PVAd = Argissolos Vermelho-Amarelos Distróficos; RLd =  Neossolos 
Litólicos Distróficos.
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In this respect, Brungard et al. (2015) investigated the performance of eleven algorithms 
and reported similar accuracies for mapping soil classes in three different sites in the 
USA with three datasets of covariates, with no statistical difference by the T-test. In most 
models, the highest performance was by RF.

Mosleh et al. (2017) compared four classifiers (MLR, RF, ANNs, and Boosted regression 
tree) for soil mapping in Iran. The authors investigated model performance on all soil 
taxonomic levels, from order to family, and found out that all algorithms had the same 
ability at any determined taxonomic level, with better accuracy at higher taxonomic levels.

Table 3. Area of the soil mapping units in the Dênis Gonçalves settlement mapped by each machine learning classifier evaluated 
and by conventional soil mapping

RF xgBoost ExtraTree AdaBag Ranger SVMLinear SVMPoly WSRF SD MU – Convent. mapping Area
MUs ha ha
CXbd 1,730 1,332 1,549 2,036 1,755 1,490 2,166 1,840 279 CXbd 152
GXbd 501 466 530 471 542 450 465 531 36 GXbd1+ GXbd2 565
LAd 970 914 929 842 999 1,083 1,103 1,034 89 LAd1 + LAd2 1,461
LVAd 433 809 602 361 289 566 42 255 238 LVAd 1,990
PVAd 347 486 363 288 380 427 223 331 81 -
RLd 232 207 240 215 249 197 214 223 17 RL 46
Total 4,213 4,213 4,213 4,213 4,213 4,213 4,213 4,213 4,213

%
CXbd 41.1 31.6 36.8 48.3 41.6 35.4 51.4 43.7 6.6 CXbd 3.6
GXbd 11.9 11.1 12.6 11.2 12.9 10.7 11 12.6 0.9 GXbd1+ GXbd2 13.4
LAd 23 21.7 22.1 20 23.7 25.7 26.2 24.5 2.1 LAd1 + LAd2 34.7
LVAd 10.3 19.2 14.3 8.6 6.8 13.4 1 6.1 5.6 LVAd 47.2
PVAd 8.2 11.5 8.6 6.8 9 10.1 5.3 7.9 1.9 -
RLd 5.5 4.9 5.7 5.1 5.9 4.7 5.1 5.3 0.4 RL 1.1
Total 100 100 100 100 100 100 100 100 100
SD = standard deviation of areas of MUs mapped with machine learning algorithms; CXbd = Cambissolos Háplicos Tb Distróficos; GXbd = Gleissolos 
Háplicos Tb Distróficos; LAd = Latossolos Amarelos Distróficos; LVAd = Latossolos Vermelho-Amarelos Distróficos; PVAd = Argissolos Vermelho-Amarelos 
Distróficos; RLd = Neossolos Litólicos Distróficos; MU - Convent. Mapping = Mapping Units of the conventional map: CXbd = Cambissolos Háplicos 
Tb Distróficos + Latossolos Amarelos Distróficos (CXbd + LAd);  GXbd 1 = Gleissolos Háplicos Tb Distróficos (GXbd); GXbd2 = Gleissolos Háplicos 
Tb Distróficos + Cambissolos Háplicos Tb Distróficos (GXbd + CXbd); LAd1 = Latossolos Amarelos Distróficos (LAd); LAd2 = Latossolos Amarelos 
Distróficos + Latossolos Vermelho-Amarelos Distróficos + Cambissolos Háplicos Tb Distróficos (LAd + LVAd + CXbd); LVAd = Latossolos Vermelho-
Amarelos Distróficos + Latossolos Amarelos Distróficos + Argissolos Vermelho-Amarelos Distróficos (LVAd + LAd + PVAd); RL = Neossolos Litólicos 
Distróficos + Cambissolos Háplicos Tb Distróficos (RLd + CXbd).

Table 4. Accuracy performance and the significance of Z-test for the kappa indexes of each classifier

RF xgbBoost ExtraTree Ranger WSRF SVMpoly SVMLinear AdaBag
Overall accuracy 0.58 0.58 0.58 0.55 0.57 0.57 0.54 0.56
Kappa 0.47 0.48 0.47 0.43 0.44 0.45 0.42 0.45
Variance 0.0038 0.0038 0.0038 0.0039 0.0039 0.0036 0.0040 0.0038

Z - Test*

RF - 0.079 0.027 0.340 0.443 0.269 0.564 0.276
xgbBoost - 0.051 0.418 0.521 0.348 0.641 0.354
ExtraTree - 0.367 0.469 0.297 0.590 0.303
Ranger - 0.103 0.075 0.226 0.064
WSRF - 0.297 0.590 0.303
SVMpoly - 0.304 0.011
SVMLinear - 0.289
AdaBag -

* Significance level (5 %); values are significant when Z > 1.96.
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Assessment of MU variability in DSM

The MU variability of the eight maps, assessed pixel by pixel (Figure 5), shows agreement 
or disagreement among machine learning algorithms in mapping. In less than 1 % of the 
areas, up to five different MUs showed disagreement in mapping. The darkest colored 
parts of the map show areas where the algorithms most disagreed, and, conversely, the 
lightest colored areas indicate where the algorithms most agreed. 

The number 1 (yellow) designation corresponds to areas where all algorithms 
agreed in classification of the MU, representing 43 % of the total settlement area, 
whereas the number 2 label corresponds to areas where one algorithm classified 
the MU differently, representing 45 % of the total area. Areas labelled 3, 4, and 5, 
representing 3, 4, and 5 disagreements, respectively. Together, 3, 4, and 5 comprise 
about 12 % of the total area and therefore indicate low variability of soil mapping 
by machine learning analyses in the settlement area. As can been seen in figure 
5, the areas in green, disagreement occurring between two (2) MUs, are mostly 
the areas of LVAd that were misclassified by the SVMPoly due to confusing LVAd 
and CXbd. In the case of this study, we consider that the DSM models showing 
good agreement in mapping highlight the SVMPoly as the algorithm with the lowest 
performance for spatial mapping.
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Figure 5. Map of MU variability among the eight soil maps generated with the machine learning 
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distinct MUs assigned by the algorithms in a given pixel of the soil map, where 1 means agreement 
of all algorithms).
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Figure 6. Map of concordance/discordance between the conventional soil map and digital soil mapping with the algorithms RF (a), xgBoost 
(b), ExtraTree (c), Ranger (d), WSRF (e), SVMPoly (f), SVMLinear (g), and AdaBag (h), and map of soils where discordance occurred in both 
mapping approaches, i.e., discordance with the conventional soil map, and discordance among the eight machine learning models (i). CXbd 
= Cambissolos Háplicos Tb Distróficos + Latossolos Amarelos Distróficos (CXbd + LAd);  GXbd 1 = Gleissolos Háplicos Tb Distróficos (GXbd); 
GXbd2 = Gleissolos Háplicos Tb Distróficos + Cambissolos Háplicos Tb Distróficos (GXbd + CXbd); LAd1 = Latossolos Amarelos Distróficos 
(LAd); LAd2 = Latossolos Amarelos Distróficos + Latossolos Vermelho-Amarelos Distróficos + Cambissolos Háplicos Tb Distróficos (LAd 
+ LVAd + CXbd); LVAd = Latossolos Vermelho-Amarelos Distróficos + Latossolos Amarelos Distróficos + Argissolos Vermelho-Amarelos 
Distróficos (LVAd + LAd + PVAd); RL = Neossolos Litólicos Distróficos + Cambissolos Háplicos Tb Distróficos (RLd + CXbd).



Meier et al. Digital soil mapping using machine learning algorithms in a tropical...

18Rev Bras Cienc Solo 2018;42:e0170421

Analysis of map agreement

Maps showing concordance between the conventional soil map and the maps generated by 
the machine learning algorithms are presented in figure 6. The results of this comparison 
show good agreement in gentle hilly areas and lowland landscapes. The greatest 
disagreements occurred in the mountainous areas with varying concave and convex 
slopes and steeper slopes. The proportion of agreement between machine learning 
mapping and conventional mapping ranged from 63 to 67 %, minored by similar spatial 
pattern of the maps (Figure 6). 

The mapping agreements observed in this study for the eight algorithms are similar to 
those found by Chagas et al. (2017); they found agreement between the conventional 
map and DSM maps as follows: for RF, 68.7 %; for ANNs, 62.8 %; and for Decision 
trees, 62.3 %. The approach by Heung et al. (2016) calculated agreement based on 
point-observations from 262 soils extracted from a polygon map, which differs from the 
area-base comparison adopted in this study. Their mapping showed agreement of 72 % 
for RF and 63 % for the SVMLinear. 

Considering the mapping scale of this study (1:50,000), we can consider the results as 
superior to those of Vasques et al. (2015), who compared the agreement of a soil map of 
logistic regression with a conventional soil map on 1:100,000 and 1:20,000 scales, and 
reported agreements of 45 and 32 %, respectively. Similarly, Bazaglia Filho et al. (2013) 
compared a soil map generated by a Fuzzy k-means algorithm with conventional maps on 
a 1:10,000 scale that were produced by four experienced pedologists. Their comparison 
showed agreement ranging from 56.26 to 71.85 % for MUs classified at the order level.

In order to identify areas of uncertainty within the MUs mapped with the machine learning 
algorithms, we compared the percentage of disagreement for each MU of the conventional 
map (Figure 6i). The LAd unit showed the highest percentage of disagreement, at 52 %, 
which can be explained by the fact that its occurs as a single soil class in the MU. In 
contrast, the RL unit did not show disagreement for any of the models, whereas CXbd 
and GXbd units had the lowest disagreement among the maps (Figure 6i) at only 3 % 
for CXbd and 5 % for GXbd. Since they are in association, there is increasing probability 
of agreement with digital mapping.

As a follow up to this study, further soil sampling should be carried out in areas of 
disagreement to assess possible approaches to increase the accuracy of machine 
learning. The map of MU variability generated from all machine learning models for soil 
mapping, and maps showing agreement between the conventional soil map and the 
DSM allow identification of target areas where mapping uncertainty requires further 
soil surveys. Hence, machine learning algorithms can be envisaged as a DSM tool with 
better performance in saving resources and helping map soils in tropical areas of hilly, 
complex landforms.

CONCLUSIONS
The machine learning algorithms used showed satisfactory performance (Kappa index 
ranging from 0.42 to 0.48) in soil mapping of a tropical dissected and mountainous 
terrain. The statistical similarity between the algorithms used for mapping soils shows 
their feasibility in mapping tropical landscapes.

The most confused mapping units (MUs) were the Cambissolos (CXbd) and Latossolos 
(LVAd, LAd) on the sloping highlands, while the lowland Gleissolos (GXbd) showed the 
greatest accuracy in the mapping procedure under all machine learning models. 

By showing almost half of the area in agreement, variability of MUs mapped by DSM 
algorithms was satisfactory, whilst only a small proportion of the area showed disagreement 
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among three or more algorithm. From this, we can conclude that excluding the SVM 
polynomial bases, all machine learning procedures performed similarly. 

As DSM mapping showed satisfactory concordance with the conventional soil map, 
in combination with the other observations made in this study, the application of pedometric 
methods such as DSM algorithms should be seriously considered as a complementary 
approach to conventional methods for mapping complex tropical areas.
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