
DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n3p243 

original articleRBCDH

Licence
Creative Commom          

CC
BY

1 Federal University of Santa Cata-
rina, Laboratory of Biomechanics, 
Florianópolis, SC, Brazil

2 University of Texas at Austin. 
Human Performance Laboratory. 
Austin, TX. USA

3 Auckland University of Techno-
logy, Sport Performance Research 
Institute. School of Sport and 
Recreation. Auckland, AKL. New 
Zealand

4 Exercise Research Laboratory, 
School of Physical Education, 
Federal University of Rio Grande 
do Sul, Porto Alegre, Brazil

Received: 04 July 2011
Accepted: 26 January 2012

Frequency band analysis of muscle 
activation during cycling to exhaustion 
Análise da ativação muscular durante a pedalada até a 
exaustão utilizando bandas de frequência
Fernando Diefenthaeler1,2 
Rodrigo Rico Bini3

Marco Aurélio Vaz4

Abstract – Lower limb muscles activation was assessed during cycling to exhaustion using 
frequency band analysis. Nine cyclists were evaluated in two days. On the first day, cyclists 
performed a maximal incremental cycling exercise to measure peak power output, which 
was used on the second day to define the workload for a constant load time to exhaustion 
cycling exercise (maximal aerobic power output from day 1). Muscle activation of vastus 
lateralis (VL), long head of biceps femoris (BF), lateral head of gastrocnemius (GL), and 
tibialis anterior (TA) from the right lower limb was recorded during the time to exhaus-
tion cycling exercise. A series of nine band-pass Butterworth digital filters was used to 
analyze muscle activity amplitude for each band. The overall amplitude of activation and 
the high and low frequency components were defined to assess the magnitude of fatigue 
effects on muscle activity via effect sizes. The profile of the overall muscle activation during 
the test was analyzed using a second order polynomial, and the variability of the overall 
bands was analyzed by the coefficient of variation for each muscle in each instant of the 
test. Substantial reduction in the high frequency components of VL and BF activation 
was observed. The overall and low frequency bands presented trivial to small changes for 
all muscles. High relationship between the second order polynomial fitting and muscle 
activity was found (R2 > 0.89) for all muscles. High variability (~25%) was found for muscle 
activation at the four instants of the fatigue test. Changes in the spectral properties of the 
EMG signal were only substantial when extreme changes in fatigue state were induced.
Key words: Electromyography; Fatigue; Frequency analysis.

Resumo – A ativação dos músculos do membro inferior foi avaliada durante a pedalada até 
a exaustão utilizando bandas de frequência. Nove ciclistas foram avaliados em dois dias. 
No primeiro dia, os ciclistas realizaram um teste de carga incremental para a determinação 
da máxima potência aeróbia, sendo esta utilizada como carga de trabalho para o teste de 
carga constante até a exaustão durante o segundo dia de avaliações. Foi adquirida durante 
o teste de carga constante a ativação dos músculos vastus lateralis (VL), porção longa do 
biceps femoris (BF), porção lateral do gastrocnemius (GL), e tibialis anterior (TA) do mem-
bro inferior direito. Uma série de nove filtros digitais do tipo passa-banda Butterworth foi 
utilizada para a determinação da amplitude do sinal obtido de cada banda de frequência. As 
ativações musculares oriundas das nove bandas, das bandas de alta frequência e das bandas 
de baixa frequência foram definidas para a análise dos efeitos da fadiga muscular por meio 
da magnitude das alterações. O padrão da ativação global das nove bandas durante o teste 
de carga constante foi determinado utilizando um polinômio de segunda ordem, enquanto 
a variabilidade da ativação foi avaliada por meio do coeficiente de variação. Reduções 
substanciais nas bandas de alta frequência foram observadas para os músculos VL e BF ao 
longo do teste. A ativação das nove bandas e das bandas de baixa frequência apresentou 
alterações triviais. Uma elevada capacidade preditiva do padrão de ativação muscular foi 
observada utilizando o polinômio de segunda ordem (R2 > 0,89). Uma elevada variabilidade 
(~25%) foi observada para a ativação muscular ao longo do teste. Alterações substanciais nas 
características da ativação muscular foram observadas apenas quando mudanças extremas 
no estado de fadiga muscular foram induzidas.
Palavras-chave: Eletromiografia; Fadiga; Bandas de frequencia.
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INTRODUCTION

Fatigue has been defined from different perspectives. Abbiss and Laursen1 
defined fatigue as the sensation of tiredness associated with decrements 
in muscular performance. Changes in fatigue state in endurance cycling 
performance are not fully understood because fatigue involves the inter-
action of various physiological systems1. Neuromechanical adaptation to 
different fatigue states in cycling has been observed via changes in pedal 
force application2, joint kinematics3, and joint kinetics4. However, the link 
between changes in joint kinetics and kinematics observed in previous 
studies and muscle activation is conflicting.

Endurance cycling performance has been related to higher aerobic 
power production, which mostly depends on the contribution of energy 
resources from Type I fibers5. Moreover, potential increases in motor unit 
recruitment resulted in higher oxygen uptake6, lower pedaling cadence7, 
and higher pedal force3 during fatigue in cycling. It has been hypothesized 
that a reduction on the percentage of high frequency motor unit recruit-
ment results in lower frequency spectrum of surface electromyograms8. 
However, evidence of additional recruitment of less efficient high frequency 
motor units was not provided by previous research9. Controversial evi-
dence has been shown in muscle recruitment priority and its effects on 
electromyography spectral properties during fatigue10-12. Therefore, it is 
not clear whether changes in fatigue state do not affect muscle recruitment 
or whether changes in muscle activation are not detectable using surface 
electromyography.

Most research on cycling using electromyography to detect muscle 
fatigue had focus on amplitude analysis of the overall activation13,14. Am-
plitude analysis of muscle activation is usually conducted using low pass 
filters or root mean square (RMS) analysis. Both options reduce the high 
spectral properties of the muscle activation signal because they attenuate 
fast changes in muscle activation from filtering or averaging (in the case of 
RMS), which minimizes the effects of fatigue on higher spectral changes15. 
The partition of the activation signal into different frequency bands has 
been done using continuous15,16 and discrete wavelets17, because the spectral 
analysis of the activation signal using the traditional fast Fourier transform 
may not be appropriate during dynamic contractions14. These methods are 
based on the assumption that shifts in the spectral properties of the signal 
(e.g. lower overall power spectrum) are linked to changes in the motor 
unit recruitment priority (e.g. higher contribution of low frequency motor 
units)18. However, only von Tscharner16 provided evidence of changes in 
spectral analysis of the gastrocnemius medialis and vastus lateralis muscles 
during a “mild” fatigue cycling exercise. Increases in intensity of low fre-
quency components of vastus lateralis activation (<100 Hz) and moderate 
frequency components of gastrocnemius medialis activation (60-240 Hz) 
were related to a greater recruitment of slow motor units15. Therefore, it is 
not clear yet how much fatigue affects the frequency contents of lower limb 
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muscle activation during cycling and if it is possible to detect changes in 
muscle recruitment based on the analysis of spectral properties of surface 
electromyographic signals.

To analyze how much fatigue state during cycling to exhaustion af-
fected the activation of lower limb muscles, we compared the magnitude 
of changes in muscle activation through frequency band analysis. A series 
of band-pass Butterworth filters were used for the analysis of the signal 
amplitude in different frequency bands. We hypothesized that, towards 
the end of the cycling test, cyclists would present greater contribution of 
the low frequency components of lower limb muscle activation. The reason 
for this hypothesis is based on the potential overall increase in the number 
of small and medium size motor units and a decrease in large size motor 
units, following the proposed fatigue mechanism described by De Luca8.

METHODS

Subjects
Nine competitive cyclists (elite/category 1 riders according to Ansley and 
Cangley19) volunteered to participate in this study. All participants signed 
an Informed Consent Term in agreement with the Committee of Ethics 
in Research with Humans of the University of Texas at Austin (protocol # 
2005-08-0035). The cyclists were asked to avoid high-intensity or exhaus-
tive exercise at least 24 hours before the laboratory trials. The mean and 
standard deviation values for age, body mass, maximal oxygen uptake 
(VO2MAX), peak power output, and power/mass ratio of the subjects were 
31.0 ± 7.0 years, 74.1 ± 7.6 kg, 61 ± 4.7 ml.kg-1.min-1, 424 ± 36 W, and 5.75 
± 0.46 W.kg-1, respectively.

Protocol
All tests were performed on a stationary cycle ergometer Lode Excalibur 
Sport V2.0 (Groningen, The Netherlands) adapted with drop handlebars, 
clipless pedals, and a racing saddle. Cycle ergometer dimensions replicated 
cyclists’ bicycle configuration for saddle height and horizontal position 
and vertical and horizontal position of the handlebars. During the pro-
tocol, oxygen uptake and carbon dioxide produced were measured using 
an open-circuit indirect gas exchange system Physiodyne FLO-1B System 
(Physio-Dyne Instrument Corp., New York, USA). Heart rate was continu-
ously assessed from a telemetric monitor (Polar Electro Oy S610, Finland).

During the first evaluation session, baseline measurements (e.g. body 
mass and height) were conducted. After that, cyclists performed a sub-
maximal test to estimate the workload related to 90% of their predicted 
maximal heart rate20. The initial workload was set for the cyclists to achieve 
50% of the maximal predicted heart rate, with increments of 10% every 
five minutes up to 90% of the predicted maximal heart rate with a 90 rpm 
pedaling cadence. While cyclists were in the resting period, power output 
at maximal predicted heart rate was determined by a regression equation 
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between heart rate and power output. A maximal incremental cycling test 
was then conducted with an initial workload of 60% of the power output of 
the maximal predicted heart rate for four minutes and was increased to 75%, 
90% and 100% every two minutes. If the cyclist had not achieved VO2MAX 
at the 100% stage of the incremental cycling, the workload was increased 
5% every minute until voluntary exhaustion. Cyclists were instructed to 
keep their pedaling cadence stable during the whole test (~90 rpm) using 
visual feedback from the screen of the bicycle ergometer.

After 48 hours, cyclists returned to the laboratory for a second evalu-
ation session. In this session, they performed a time to exhaustion cycling 
exercise at constant load on the same cycle ergometer from the first session 
using the same configuration from the first session. Power output was set 
at the maximal power output measured during the first evaluation session 
and the cyclists were instructed to maintain the pedaling cadence close to 
90 rpm until volitional exhaustion.

Data acquisition
Surface electromyography (EMG) was used to measure muscle activity 
from vastus lateralis (VL), long head of biceps femoris (BF), lateral head of 
gastrocnemius (GL), and tibialis anterior (TA) muscles from the right lower 
limb during the test. Bipolar single differential surface EMG sensors (99.9% 
Ag, 10 mm x 1 mm, 10 mm spaced apart; Delsys DE-2.1, Delsys Inc., USA) 
were used to obtain the EMG signals. The electrodes were positioned on 
the skin after careful shaving and cleaning of the area, using an abrasive 
cleaner and alcohol swabs to reduce skin impedance, in accordance to the 
International Society of Electromyography and Kinesiology21. EMG sensors 
were placed one third of the muscle length from the midpoint (to avoid the 
musculotendinous junction) longitudinally over the belly of the muscles in 
the approximate fibers direction. To minimize movement artifacts, elec-
trode cables were taped to the skin. EMG signals were collected employing 
a Delsys Bagnoli electromyography system and the software EMGworks 
system 3.5 (Delsys Inc., USA) at a sampling rate of 1080 Hz per channel 
and amplified with a gain of 1 K.

One reflective marker attached to the pedal axis was measured using 
a six-camera infrared Vicon system (Oxford Metrics, England) at 120 Hz, 
with markers attached to the pedal axis and crank axis. EMG and kinematic 
data were synchronized by an internal trigger from the Vicon 612 analog-
to-digital system (Oxford Metrics, England). Only data from horizontal 
and vertical displacement of pedal axis was exported for further analysis.

Data analysis
EMG signals were windowed for 10% of the total time for each cyclist for 
four instants of the test (10%, 40%, 70%, and 90% of the total time for 
each cyclist). For each time-window (i.e. 10-20%, 40-50%, 70-80%, and 
90-100%), the signals were analyzed using a series of fifth order zero lag 
band-pass Butterworth digital filters. Nine frequency bands based on the 
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continuous wavelets described elsewhere16 were adapted to the discrete 
analysis of band-pass filtering, and are shown in Table 1.

Table 1. Nine frequency bands selected from previous continuous wavelet model21 used on the series of band-
pass digital filtering of EMG signals of each muscle. The high and low frequency parameters were used for the 
band stop of the Butterworth filter.

Band 1 2 3 4 5 6 7 8 9

High 48.45 75.75 110.00 149.00 193.45 244.45 300.80 363.80 431.65

Low 26.95 48.45 74.80 108.00 146.95 191.75 242.20 297.40 359.35

Each muscle’s EMG signal was filtered using each of the nine combina-
tions of high and low band stop (frequency bands). EMG signals of each 
of the nine frequency bands that resulted from the filtering process were 
then rectified, and separated into ten revolutions of the crank. The highest 
vertical displacement of the reflective marker attached to the pedal axis was 
used to define the transition between each pedal revolution and applied to 
compute averages of EMG signals of each revolution for each respective 
frequency band. The result of this process was nine average amplitude 
values for each frequency band per muscle per time-window. The sum of 
the nine average frequency bands was calculated for the analysis of the 
overall activation of each muscle (i.e. activation of all frequency bands 
of the EMG signal). The fifth, sixth and seventh bands were averaged to 
compute the high frequency components of the signals, which would po-
tentially represent the response of greater motor units15. The first and the 
second bands were averaged to compute the low frequency components of 
the signals, which would represent the response of smaller motor units15. 
The high and low frequency pairs and the overall muscle activation were 
then normalized by their individual responses at the 10% of the test, where 
fatigue would be expected to be minimal. The overall, high and low values 
of the 40%, 70% and 90% of the test were then normalized by their results 
at the 10% of the test. This second normalization by the 10% of the test 
aimed between-subjects comparison, because the cyclists were expected 
not to be fatigued at the 10% of the test. The overview of signal processing 
and EMG data analysis is shown in Figure 1.

Statistical analysis
Data were averaged for the nine cyclists for the overall, high and low fre-
quency bands. Each pair of time-window (i.e. 10 vs. 40%, 10 vs. 70%, and 
so on) was compared using effect sizes as described by Rhea22. Six pairs of 
comparison were done between the four instants of the test (i.e. average 
of 10% – average of 40%/ pooled standard deviation) and averaged for the 
overall, high and low frequency bands for each muscle. The average of the 
effect sizes of the six pairs of comparison for each variable (overall, high 
and low bands) and for each muscle were then scaled for trivial (<0.25), 
small (0.25 - 0.50), moderate (>0.50 - 1.0) or large effects (>1.0)22. We chose 
large effect sizes for discussion of results to ascertain non-overlap between 
mean scores greater than 55%23. 
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Figure 1. Flow diagram of the EMG signal processing.

The profile of the overall muscle activation during the test was analyzed 
fitting a second order polynomial to assess whether mean activation would 
increase or decrease. Variability of the overall bands was computed by the 
coefficient of variation for each muscle in each instant of the test.

RESULTS

Time to exhaustion performance was 405 ±81 s, maximal oxygen uptake 
was 61 ±5 ml.kg-1.min-1, power output was 424 ±36 W, and maximal heart 
rate was 184 ±11 bpm.

The profile of the four muscles activation was fitted by a second order 
polynomial and the results are presented in Figure 2. All polynomial fit-
ting resulted in high prediction of the data with worst results for the BF.

A comparison of each time-window of the test indicated large decreases 
in VL and BF high frequency component at the 90% of the test compared 
to the 10% of the test. All other muscles and comparisons did not result in 
large differences (see Table 2).

Between-subjects variability in muscle activation for the four muscles 
in each instant of the test is shown in Figure 3. High levels of variability 
were found for all four muscles, with coefficients of variation up to 43% for 
VL, 28% for BF, 30% for GL, and 48% for TA, respectively.

Figure 3. Between-subjects coefficient of variation of the overall activation of the vastus lateralis (VL), biceps 
femoris (BF), gastrocnemius lateralis (GL), and tibialis anterior (TA) muscles for the 40, 70 and 90% of the total 
time of the test. Because the average overall activation of each subject was normalized by their own results at 
the 10% of the test, the coefficient of variation is zero, and therefore it is not shown.
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Figure 2. Average data of the overall muscle activation normalized by the 10% of total time of the test. 
Polynomial fitting profile of the vastus lateralis, biceps femoris, gastrocnemius lateralis, and tibialis anterior. 
Strength of the relationship between the predicted values and the mean results indicated by R2.

Table 2. Effects sizes of the overall, high frequency (HF) and low frequency (LF) bands of vastus lateralis (VL), 
biceps femoris (BF), gastrocnemius lateralis (GL), and tibialis anterior (TA) during the test.

VL (%diff; ES, 
magnitude)

BF (%diff; ES, 
magnitude)

GL (%diff; ES, 
magnitude)

TA (%diff; ES, 
magnitude)

10% vs. 40%

Overall ß4%; 0.2, T ß2%; 0.1, T Ý5%; 0.2, T ß10%; 0.4, S

HF ß6%; 0.6, M ß6%; 0.9, M ß4%; 0.5, M ß1%; 0.2, T

LF Ý2%; 0.2, T Ý6%; 0.7, M Ý11%; 0.9, M Ý4%; 0.5, M

10% vs. 70%

Overall ß37%; 0.1, T ß27%; 0.1, T Ý31%; 0.1, T ß19%; 0.8, M

HF ß18%; 0.5, M ß11%; 0.6, M ß12%; 0.3, S ß12%; 0.3, S

LF ß16%; 0.1, T Ý11%; 0.7, M Ý17%; 0.7, M Ý24%; 0.4, S

10% vs. 90%

Overall Ý43%; 0.1, T Ý26%; 0.5, M ß15%; 0.1, T ß48%; 0.3, S

HF ß15%; 1.0, L ß8%; 1.2, L ß12%; 0.5, M ß17%; 0.2, T

LF Ý12%; 0.3, S Ý14%; 0.7, M Ý14%; 0.9, M Ý21%; 0.5, M

40% vs. 70%

Overall Ý2%; 0.1, T ß2%; 0.1, T ß1%; 0.1, T ß4%; 0.2, T

HF ß3%; 0.1, T Ý1%; 0.1, T Ý1%; 0.1, T ß2%; 0.2, T

LF ß4%; 0.3, S Ý2%; 0.2; T Ý1%; 0.1, T Ý6%; 0.2, T

40% vs. 90%

Overall Ý23%; 0.1, T Ý6%; 0.6, M ß16%; 0.4, S ß16%; 0.1, T

HF ß3%; 0.4, S ß1%; 0.4, S ß3%; 0.1, T ß9%; 0.1, T

LF Ý2%; 0.1, T Ý8%; 0.4, S Ý4%; 0.2, T Ý14%; 0.4, S

70% vs. 90%

Overall Ý5%; 0.1, T Ý19%; 0.6, M ß5%; 0.3, S Ý3%; 0.1, T

HF ß4%; 0.3, S ß2%; 0.3, S ß2%; 0.2, T Ý1%; 0.1, T

LF Ý6%; 0.4, S Ý3%; 0.2, T Ý2%; 0.1, T Ý2%; 0.1, T

Abbreviations are used for percentage differences between means (%diff), effect sizes (ES), and magnitude 
of inferences (T – trivial, S – small, M – moderate, and L – large). Large changes are highlighted in bold and 
italics. Increases and decreases in percentage difference are indicated accordingly (Ý and ß).
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DISCUSSION

Highly trained cyclists were evaluated in our study using a time to exhaus-
tion cycling exercise test with constant load to induce high levels of fatigue. 
The analysis of four muscles related to power production during cycling 
was conducted and substantial declines were observed in high frequency 
bands for VL and BF comparing the 10% to the 90% of the test. No sub-
stantial changes were observed for other muscles or between different time 
instants of the test.

Previous research described the effects of fatigue on physiological (e.g. 
heart rate6) and biomechanical variables (e.g. joint kinematics3), without 
attention to the frequency components of muscle activation signals. Only 
one study reported changes in the spectral properties of the VL muscle, 
suggesting higher recruitment of small motor units during a “mild” fa-
tigue cycling exercise in non-cyclists16. Different from previous studies, 
our results indicate either (1) a reduction in greater motor units instead of 
a higher activation of small motor units due to any substantial changes in 
low frequency components or (2) a decrease in the frequency of activation 
of large motor units with fatigue. Therefore, our results indicate that the 
high frequency component of VL and BF activation can be sensitive to 
changes in fatigue state.

During cycling to fatigue, higher VL and GL and unchanged BF RMS 
values were observed in one study14, different from the unaffected RMS 
values found for VL and GL and reduced RMS values for TA24. The RMS 
is an analog of the overall muscle activation computed in our study, which 
does not indicate whether changes in muscle activation are related to 
combined or isolated changes in each frequency component. If the high 
frequency component increases to the same extent of the decrease in the 
low frequency components, the RMS (and overall muscle activation) would 
not be affected. Therefore, the analysis of frequency contents of muscle 
activation is a better approach to determine the effects of fatigue in cycling.

The analysis of EMG signals in terms of high and low frequency com-
ponents was previously used in isometric fatiguing tasks and revealed 
either a reduction25 or no changes in mean frequency26. In a previous study, 
a reduction in EMG signal amplitude was observed using continuous 
wavelets to measure the time related to changes in the frequency content 
of the EMG signals during a mild fatigue cycling exercise16. In our study, 
large decreases in high frequency components of VL and BF activation were 
observed when performing a discrete analysis of the frequency components 
of the signal. The employment of a widely used digital filter for EMG (i.e. 
band-pass Butterworth) via discrete partition of EMG signals into two 
components (high and low) provided a simple approach to assess changes 
in the frequency content of the signals. Changes in the spectral properties 
of the signal of VL and BF may be linked to changes in the motor unit re-
cruitment priority (e.g. increase in the number of small and medium size 
motor units and a decrease in large size motor units)18 and to activation 
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patterns of VL and BF observed in trained cyclists (push and pull actions 
during downstroke and upstroke phases, respectively).

Changes in the spectral properties of EMG signals have been theo-
retically related to changes in the conduction velocity of muscle fibers8. 
However, controversial evidence has been provided, as Macdonald et al.14 
reported no significant changes in muscle fiber conduction velocity with 
fatigue, and several studies questioned if changes in muscle fiber conduc-
tion velocity could affect the spectral properties of the EMG signals10-12. 
The results of our study indicated that the effects of exhaustive fatiguing 
exercise on the frequency content of dynamic muscle activation may be 
in line with previous studies suggesting changes in muscle activation 
conduction velocity16,24. However, the comparison of a minimum fatigue 
state (10% of the test) to a maximal fatigue state (90% of the test) was the 
only one that resulted in a reduction on the high frequency components 
of muscle activation. Due to limitations of surface EMG (e.g. movement of 
the muscle in relation to the electrodes during dynamic exercise, muscle 
temperature effects in signal frequency components), only large changes 
in fatigue state may be detectable.

The pattern of muscle activation was fitted by a polynomial function 
with high relationship between the predicted and the mean overall re-
sults. The increase of BF overall activation and the decline in TA overall 
activation with fatigue were consistent with previous findings24. However, 
the variability measured by the coefficient of variation of the results has 
been rarely explored. When looking at the coefficient of variation, we 
could observe high variability for the overall muscle activation (up to 
43% for VL at 90% of the test), indicating that neuromuscular adaptation 
to fatigue may occur and it is probably more complex than expected and 
potentially individually determined. Hug et al.27 presented similar results 
for the variability of RMS values of more than 50% for TA, almost 50% 
for GL, more than 30% for BF and almost 30% for VL during steady state 
sub-maximal cycling. Taken together, these results highlight the fact that 
high between-subjects variability in muscle activation may compromise 
inferential statistical analysis of the EMG signals from surface EMG. One 
possible explanation is that muscle coordination may vary among different 
cyclists, increasing the variation in muscle activation for between-cyclists 
analysis. Another possibility is that subjects use different neuromuscular 
strategies while activating their muscles. In addition, changes in motor unit 
recruitment and in firing rates of motor units already recruited may result 
in high variability in the profile, amplitude of activation and frequency 
content of the EMG signals between subjects.

The limitations of the present study were mostly related to the previ-
ously described limitations of surface EMG recording (i.e. adipose tissue 
filtering effects in EMG signals, cross-talking recordings from nearby 
muscles, muscle temperature effects in signal frequency components)8. 
Regarding the measurements of fatigue effects during dynamic muscle 
activation using surface EMG, the confounding effects of changes in muscle 
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temperature, synchronization and non-stationary behavior of EMG signal 
may mask the real effects of fatigue28. As previously reported, during dy-
namic exercise the effects of fatigue on muscle fiber conduction velocity 
are unlikely to be tracked using bipolar surface EMG29. Multi-polar arrays 
of electrodes have been shown to be more reliable to detect fatigue effects 
on muscle activation30.

CONCLUSION

Substantial reduction in high frequency components of VL and BF activa-
tion were observed during an exhaustive exercise in highly trained cyclists. 
Changes in the spectral properties of EMG signals were only substantial 
when extreme changes in fatigue state were induced.
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