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ABSTRACT

Toll-like receptors 3 and 7 (TLR3 and 7) mediate immune responses 
through the recognition of viral single-stranded RNA and double-
stranded RNA and therefore play important roles in host defense. 
Differences in TLR3 or 7 may affect host resistance to RNA viral infection. 
To illuminate these differences, the partial coding sequence (CDS) 
of TLR3 and 7 genes were cloned and amplified from the Phasianus 
colchicus and Numida meleagris, total 64 avian species of TLR3 and 
7 sequences were later analyzed. Based on the results, 315 non-
synonymous mutation sites and 202 synonymous mutation sites were 
also observed in the avian TLR3, and 227 non-synonymous mutation 
sites and 174 synonymous mutation sites were observed in the avian 
TLR7. Among these sites, 44 and 45 sites were observed in functional 
regions of TLR3 and 7, used common variation of amino acids in most 
avian species. A number of these different sites appeared to affect 
the recognition and were also visualized. H59Y, E60K, G64R, E93K, 
L112S, K117E, N118K, R120H, V123M, L163F, R443Q, R459K, E460D, 
C485H, and F511L for TLR3, and I432V, M437V, and T732S for TLR7 
were considered. It is possible that these sites bind to ligands and play 
crucial roles in viral recognition. These data indicated that the positive 
selection has occurred in the avian TLR3 and 7 genes.

INTRODUCTION

Toll-like receptors (TLRs) are the most-characterized receptors 
among the pattern recognition receptors (PRRs). PRRs are recognized as 
a diverse range of pathogen associated molecular patterns (PAMPs) and 
play a critical role in antimicrobial host defense (Medzhitov, 2001). Toll-
like receptors are critical proteins linking innate and acquired immunity 
(Akira, 2001). TLRs are evolutionarily conserved with homologs present 
in insects, fish, mammals, and birds (Kimbrell & Beutler, 2001; Roach et 
al., 2005; Satake & Sasaki, 2010; Valanne et al., 2011). Ranges of TLR 
genes have been identified in avian species (Boyd et al., 2001; Fukui et 
al., 2001; Iqbal et al., 2005; Philbin et al., 2005; Yilmaz et al., 2005; 
Brownlie & Allan, 2011; Keestra et al., 2013). All avian TLR family have 
10 members that include TLR1 type 1 and type 2, TLR2 type 1 and type 
2, TLR3, TLR4, TLR5, TLR7, TLR15, and TLR21. However, not all birds 
have exact 10 TLRs. Several species have duplicated TLR7, others not 
functional TLR5 (Brownlie & Allan, 2011; Velova et al., 2018). TLR1, 
TLR2, TLR4, and TLR5 have recognized bacterial components, such as 
peptidoglycans (PGN), lipopolysaccharides (LPS), cell wall lipids, and 
flagellum (Brownlie & Allan, 2011). TLR15 has recognized yeast-derived 
components (Boyd et al., 2012). TLR21 has recognized microbial DNA 
and is homologous with fish (Keestra et al., 2010). The recognition of 
viral RNA depends on TLR3 and TLR7, which recognize viral double-
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stranded RNA and single-stranded RNA (Alexopoulou 
et al., 2001; Heil et al., 2004). 

Due to the important roles in resistance to 
pathogen invasion, TLR genes have been conserved 
throughout evolution. Mutations in TLRs may have 
a profound influence on the host’s response to 
pathogens and are also associated with resistance 
to and susceptibility to diseases (Chen et al., 2009; 
Hawn et al., 2009; Al-Qahtani et al., 2012; Goyal 
et al., 2012; O’Dwyer et al., 2013). There are many 
studies researching mutations in human TLRs (Misch 
& Hawn, 2008; Mukherjee et al., 2019). Several 
studies have focused on avian TLR gene mutations 
and polymorphisms (Alcaide & Edwards, 2011; Ruan 
et al., 2012; Ruan et al., 2015; Swiderska et al., 2018; 
Velova et al., 2018). In the present study, we explored 
different genetic patterns of TLR3 and 7 in the 
Phasianus colchicus, Numida meleagris, and other 62 
avian species. The results were helpful to understand 
the genetic evolution of avian TLR3 and 7.

MATERIALS AND METHODS
Sources of avian breeds

The Numida meleagris and the Phasianus colchicus 
used in this study were obtained from Beijing Shahe 
breeder. We arranged four repeats of individuals. All 
procedures were approved by the Animal Care and 
Use Committee of Beijing University of Agriculture 
(Beijing, China). 

Molecular cloning of TLR3 and 7 and 
sequence accession number

The total RNA was obtained from spleens using 
TRIzol (Invitrogen, USA). The total RNA, a random 
primer, dNTPs, and M-MLV reverse transcriptase 
(Promega, USA) were used for cDNA synthesis. PCR 
was performed to amplify the target gene using three 
pairs of specific primers for TLR3 and four pairs of 
specific primers for TLR7 (Table1). PCR reactions were 
performed with pfu polymerase (Promega, USA). The 
25 μl PCR reaction contained 50 pmol of each forward 
and reverse primers, 2 μl template cDNA, 200 μM each 
of deoxynucleotide triphosphate mixture and 2.5 U Pfu 
DNA polymerase (Promega) in 1× Pfu DNA polymerase 
buffer. Amplification conditions were as follows: initial 
denaturation at 94°C for 2 min, 35 cycles at 94°C for 
30 s, annealing at 56°C for 30 s, and extension at 72°C 
for 3 min, followed by a final extension at 72°C for 10 
min. PCR amplicons were verified by 1% agarose gel 
electrophoresis, then ligated into a pEASY-Blunt simple 
cloning vector (TransGen, Beijing, China). Recombinant 

plasmids were characterized by PCR using gene specific 
and vector primer pairs. Recombinant plasmids with 
avian TLR3 and 7 were sequenced from both ends by 
Sangon Biotech Co., Ltd. Sequences for TLR3 and 7 for 
Numida meleagris and the Phasianus colchicus were 
deposited in the GenBank database under accession 
number MG604328-MG604332. Other sequences of 
TLR3 and 7 of 62 avian species were acquired from 
GenBank, the accession numbers are shown in Table 2.

Analysis of variation sites

Nucleotide sequences for avian TLR3 and TLR7 
were aligned in MegAlign by the ClustalW method 
(DNAstar version 8.1.3). The nucleotide homology 
was showed in a report of MegAlign. The functional 
regions were detected with the analysis tools provided 
at the website (http://smart.embl-heidelberg.de and 
http://split.pmfst.hr). The relative frequency of non-
synonymous (dN) and synonymous (dS) substitutions 
was calculated and constructed using the MEGA7 
software (version 7) (Kumar, et al., 2016). Crystal 
structures and non-synonymous sites in the avian 
TLR3 and 7 were visualized by PDB (Protein Data Bank, 
ID:1ZIW and 5GMF) models and PyMOL software 
(version 2.3, DeLano Scientific LLC).

RESULTS AND DISCUSSION

The full-length open reading frame (ORF) for avian 
TLR3 was 3036 nucleotides that encoded 1011 amino 
acids. The ORF for avian TLR7 was 3180 nucleotides 
and encoded 1059 amino acids. Partial nucleotide 
sequences were also analyzed for homology. The 
nucleotide sequence alignment showed that Phasianus 
colchicus and Numida meleagris share 93.6%-95% 
homology with chicken TLR3 and 7. The homology 
between Numida meleagris and the Phasianus 
colchicus was 92.8%-94.1% for TLR3 and 7.

The extracellular domain of the TLR, especially 
the leucine-rich repeat domain (LRR), is a region for 
recognizing pathogens (Jin and Lee, 2008; Werling, et 
al., 2009). Cytoplasmic domains of the TLR, especially 
the Toll/interleukin-1 receptor domain (TIR), is a region 
for signal transduction (Verstak, et al., 2009). Three 
hundred and fifteen non-synonymous mutation sites 
and 202 synonymous mutation sites were observed in 
the avian TLR3, including 60 sites for Numida meleagris 
and 44 sites for the Phasianus colchicus. Sixty-two 
variable sites were located in the extracellular domain, 
including 34 sites in LRR regions. Eighteen variable 
sites were also located in the cytoplasmic domain, 
including 9 sites in the TIR region. Two hundred and 
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twenty-seven non-synonymous mutation sites and 174 
synonymous mutation sites were observed in the avian 
TLR7, including 58 sites for Numida meleagris and 64 
sites for the Phasianus colchicus. Eight-two variable 
sites were located in the extracellular domain, including 
34 sites in the LRR domain, and 8 variable sites were 
located in the cytoplasmic domain, including 2 sites in 
the TIR domain. Two sites were located in the trans-
membrane domain. Among these sites, 44 amino acid 
sites were observed in LRR and TIR region of TLR3 and 
used common variation of amino acids in most avian 
species (Table 3), including G64R, L163F, and H627Y in 
a-helix structure, V123M, V224R, N381S, and E383Q 
in b-sheet structure (Figure 1). Forty-five mutation sites 
were also observed in LRR and TIR region of TLR7 and 
used common variation of amino acids in most avian 
species (Table 4), including T175N, F176L, and E341Q 
sites in a-helix structure, F51S, R56T, V216I, Q664E, 
I689V, and I739M in b-sheet structure (Figure 1). These 
sites located in a-helix or b-sheet may affect structure 
of TLR and recognition function.

Three-dimensional structures of avian TLR3 and 
TLR7 were helpful for further speculating on the role 
of these variable sites (Choe et al., 2005). The sites 
that are located at the external and LRR domains may 
be more important than others (Botos, et al., 2011). 
Moreover, it reported that two N-terminal half-sites 
in both dimer subunits of TLR3 are the viral dsRNA 
binding sites (Alexopoulou et al., 2001; Leonard et al., 
2008; Liu et al., 2008; Zhang et al., 2017). In this study, 
H59Y, E60K, G64R, E93K, L112S, K117E, N118K, 
R120H, V123M, L163F, R443Q, R459K, E460D, 
C485H, and F511L for avian TLR3 were considered 
in all 51 avian species (Figure 1). The sites located at 
long loop of TLR7, termed ‘Z-loop’, may also be the 
viral ssRNA binding sites (Zhang et al., 2016; Zhang 
et al., 2017; Diebold et al., 2004). In this study, I432V, 
M437V, and T732S for avian TLR7 were considered in 
all 49 avian species (Figure 1). These sites may bind 
to ligands and play crucial roles in viral recognition. 
Fully characterizing the functions of these sites would 
require a large number of experiments. 

Figure 1 – Visualization of amino acids corresponding to nonsynonymous single nucleotide variations in the extracellular domain of avian TLR3 (left) and TLR7 (right) based on the 
protein structure predicted by CPHmodels 3.0. The predicted ligand binding sites were marked with dotted box. 
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There is mounting evidence suggesting that there 
are species-specific components to TLR (Werling 
et al., 2009). Differences in avian TLR3 and TLR7 
reflect the differences in geography and microbial 
environments (Liu et al., 2006; Alcaide & Edwards, 
2011). These variable TLRs recognize the same or 
similar pathogens and perform the same functions. 
Different avian TLR3 and TLR7 sequences could also 
affect the host’s resistance to viruses. These variable 
sites in the extracellular LRR domain, especially the viral 
binding sites that have been reported, play a dramatic 
role in recognizing viruses. Further functional research 
regarding these differences may clarify the impacts of 
these variable sites in avian TLR3 and 7.

The dS/dN represents the proportion between 
the Ka (Synonymous mutation) and the Ks (non-
synonymous mutation). This ratio determines whether 
there was any selective pressure on the TLR3 and 7 
genes. This finding indicates positive selection occurred 
in avian TLR3 and 7 genes because the frequency 
of synonymous (dS)/frequency of non-synonymous 
(dN) (dS/dN of TLR3 is 0.64; dS/dN of TLR7 is 0.77). 
Mutations will be retained in avian TLR3 and 7. This 
property was highly conserved through gene evolution 
and the more important function of recognizing 
viruses (Liu et al., 2006; Bergman et al., 2010; Alcaide 
& Edwards, 2011).

Based on the TLR3 and 7 polymorphisms and their 
correlations with human and mouse susceptibility to 
viral infections, we propose that avian TLR3 and 7 
differences may be associated with either resistance 
or susceptibility to avian infectious diseases (Schott 
et al., 2007; Lee et al., 2013; Piaserico et al., 2015; 
He et al., 2017). This study may be helpful to further 
understand the varied resistance to viral diseases that 
exist between different avian species.
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Tables 1 to 4:

Table 1 – PCR primers used in this study.

Primers (5’-3’)

avTLR3p1 ATGCTGGAGGAGGTGAAGA

avTLR3p2 TGCAGTCCCTGGAGAGTTAA

avTLR3p3 ACACAGGATGTTTACATGCGATTGG

avTLR3p4 CCCTTGAAAACATGAACTGGAATCTC

avTLR3p5 AAGCAGGAATATCTGAGTTTGAAGC

avTLR3p6 GCATAGTATCTAAACGTTTGTGACCC

avTLR7p1 ATGACAAATCTTTCAGAGGTGGCT

avTLR7p2 GGGGATATGGTTAATAGTCAGGGTC

avTLR7p3 GAAACGCTACTAACCTGACCCTGAC

avTLR7p4 CAGCGTCACCGATCTCCTTTATG

avTLR7p5 CCAAGCAGCTGGTTTAAGAACATCA

avTLR7p6 TCGGGGAACGGTAGTCAGAAGGT

avTLR7p7 GAGCATTCAGCTGAGCAAAAAG

avTLR7p8 CAGTTTCCTGGAGAAGTTTGTTGTA
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Li X, Li Q, Ruan W Identification of Avian Toll-Like Receptor 3 and 7 and 
Analysis of Gene Variation Sites

Table 3 – Avian TLR3 differences sites at functional region.
Stru Aa

(codon)
Avian number Aa

(codon)
Avian number

Site

57 LRR Q(CAA) 0/2-4/27/34/39/40/47 E(GAA) 1/5-12/15-22/24-26/28-31/33/35/37/38/41/42/44-46/48-50

59 LRR H(CAC) 0/2-4/17/34/38-41/46/47 Y(TAT) 1/5-8/10/12/16/18-22/24-26/29/30/32/33/35/37/42/44/48-50

60 LRR E(GAA) 0/2-4/34/39/47 K(AAG) 1/5-12/15-22/24-33/35/37/38/40/41/44-46/48-50

64 LRR G(GGA) 0/2/8/12/24/35/37-42/44-50 R(AGA) 1/3-7/9-11/15-18/20-22

93 LRR E(GAG) 0-2/5-12/15-19/21-22/24-26/28-31/33/35/37-
42/46/48/49

K(AAG) 3-4/20/27/32/34/44/45/47/50

112 LRR L(TTG) 0/1/5-11/15/16/19-22/24-33/37-42/44/45/48-50 S(TCG) 3-4/17/46

117 LRR K(AAG) 0/1/3-12/15/16/18/19/21/22/24-26/28/29/31-34/37-
40/42/46-49

E(GAG) 17/20/27/35/41/44/45/50

118 LRR N(AAC) 0-2/5/7-12/15/16/18/19/21/22/24-26/28-33/35/37-
40/42/46/48/49

K(AAA) 6/17/20/27/41//44/45/50

120 LRR R(CGT) 0/2/5/7-11/18/19/21/24/25/29/30/32/33/35/37-
40/42/44/46

H(CAT) 1/3/4/12/15-17/20/22/26-28/31/34/41/45/47-50

123 LRR V(GTG) 0/2-4/34/35/39/47-49 M(ATG) 1/5-12/15-21/26-33/37/38/41/42/44/45/46/50

163 LRR L(TTA) 0-6/8/10-12/15/16/18/19/21/22/24-26/28-35/37-
40/46/47/49

F(TTC) 7/9/17/20/27/41/42/44/45/48/50

165 LRR A(GCG) 0/2-12/16/18/19/21/22/24-26/29/30/32-35/37-
40/42/46-49

T(ACA) 1/15/17/27/28/31/41/44/45/50

224 LRR V(GTT) 0/2/5-12/14/16/18/19/21-26/29/30/32-35/37-
40/42/46/47/49

I(ATT) 1/15/17/20/27/28/31/41/44/45/48/50

229 LRR K(AAA) 0/2-4/14/23/34/39/47 Q(CAA) 1/5-12/15-20/22/24/25/27/28/30-33/35/37/38/41/42/44-46/48-50

237 LRR D(GAT) 0-8/11-12/14-16/18/19/21-26/28-33/35/37-40/42/46-49 N(AAT) 10/17/20/27/41/44/45

247 LRR E(GAG) 0/2-4/14/23/34/39/47 Q(CAA) 1/6-11/15/16/18-22/24/25/27-32/35/37/38/40/42/45/46/48-50

252 LRR E(GAG) 0/6/14/23/30/39/46-50 K(AAG) 1-2/5/7-8/10/12/15-22/24-29/31-33/35/37/38/40-42/45

253 LRR D(GAT) 0/2-4/14/23/26/34/39/40/47 H(CAT) 1/5-12/15/16/21/22/24/25/28-33/35/37/38/42/46/48/49

262 LRR H(CAT) 0/3-4/8/33/39 R(CGT) 1-2/5/7/9/10/12-15/17-32/37/38/40/41/44-46/48/50

292 LRR H(CAC) 0/26/14/39/47 Y(TAC) 1-6/8/9/12/15-25/27-33/35/37/38/40-42/45/46/48-50

381 LRR N(AAT) 0/1/5/14/17/23/35/39/46 S(AGT) 2/6-12/15/16/18-21/24-29/31-33/37/38/40-42/44/45/48-50

383 LRR E(GAG) 0/2-4/6-12/14/16/18/19/21-26/29/30/32-35/37-
39/42/46/47/49

Q(CAG) 1/15/17/20/27/28/31/40/41/44/45/50

443 LRR R(CGG) 0/10/14/15/17/19/20/27/39/41/44/49/50 Q(CAA) 1-9/11-12/16/18/21-26/28-35/37/38/42/45-48

459 LRR R(AGG) 0/7/9/12/24/25/29/39 K(AAA) 1/3-6/8/10/11/14-23/26-28/30/32/34/35/37/38/40-42/44-49

460 LRR E(GAA) 0-2/5-10/14/15/17/19-28/30-33/35/37-41/44/45/48-50 D(GAT) 3-4/12/16/18/34/46/47

485 LRR C(TGT) 0/31/32/34/35/37-42/44-50 H(CAT) 1-5/7/8/11/12/15-18/20-22/24-29

511 LRR F(TTT) 0/2-4/34/39/41/47 L(CTT) 1/5-9/11/12/15-22/24-28/30-33/38/40/42/44-46/48/50

603 LRR A(GCA) 0/2-12/16-18/21/24-26/29/30/32/33/37-39/41/42/45-50 V(GTA) 1/15/20/22/27/28/31/44

604 LRR Y(TAT) 0/2-6/8-12/16/18/19/21/22/24-26/29/30/32-35/37-
40/42/46-49

D(GAT) 17/27/28/31/41/44/45/50

609 LRR Q(CAG) 0-4/12,24-26/29/32/34/39/40/47 R(AGG) 5/7/9-11/16-18/20-22/27/30/33/37/38/41/42/44-46/50

627 LRR H(CAT) 0/2-12/16/18/19/21/22/24-26/29/30/32-35/37-
40/42/46-49

Y(TAT) 1/15/17/20/27/28/31/41/44/45/50

705 TIR N(AAT) 0-2/5/6/8/11/15/17/19-22/24-29/31-33/35/38-42/44-
46/48-50

D(GAT) 3/4/9/10/16/18/30/34/37/47

716 TIR E(GAA) 0/3/4/12/16/24/25/32/34/39/46/47 K(AAA) 1/2/5-11/15/17-22/26-31/33/35/37/38/40/41/44/45/48-50

719 TIR Q(CAA) 0/2-5/16/39 H(CAC) 6-9/11/15/17-22/24-31/33/35/37/38/40/41/44/45/48-50

721 TIR Q(CAA) 0/3-9/11/16/18/19/21/22/24-26/29/33/35/37-
39/46/48/49

E(GAA) 1/2/15/17/20/27/28/31/41/44/45/50

723 TIR K(AAG) 0/1/7/9/10/12/17/20/26/27/34/38-41/44/45/47/50 R(AGG) 2-6/8/11/15/18/19/ 21/ 22/ 24/25/ 28/ 29/ 31/33/35/37/48/49

735 TIR I(ATA) 0-5/7-10/12/16/18/21/22/26/29/30/32-
35/37/39/40/42/48/49

V(GTA) 6/11/17/19/20/24/25/27/38/41/44/45/50

741 TIR I(ATA) 0/2/7/9/39/46/47/49 T(ACA) 1/3-6/8/10/12/15-22/24--35/37/38/40-42/44/45/48/50

746 TIR R(AGA) 0/2/7/30/34/39/40/47 K(AAA) 1/3-6/8-10/12/15-22/24-29/31-33/35/37/38/41/42/44-46/48-50

747 TIR R(AGG) 0/2-4/20/29/34/39/40/44/47 M(ATG) 1/6-12/15-19/21/22/26-28/31-33/35/37/38/41/46/48-50

767 TIR K(AAG) 0/10/15-22/24/28/30/31/33/39/46 N(AAT) 1/5-8/11/12/25-27/29/32/35/37/41/42/44/45/48-50(9/40

799 TIR N(AAT) 0/2-4/34/37-39/41/42/47 Y(TAT) 1/5-9/12/15-19/21/22/24-31/33/35/44-46/48-50

803 TIR C(TGC) 0/2-4/39/47 H(CAC) 5-10/12/15-1921/22/24-28/31-33/35/38/40-42/45/46/48-50

810 TIR R(AGA) 0-3/5/6/8/10-12/15/17/20/24-32/34/35/38-42/44-48/50 K(AAA) 4/9/16/18/19/21/22/33/37/49

812 TIR C(TGC) 0/15/24/25/28/31/39 R(CGC) 2/3/6/9/10/18-22/26-27/29/30/32-35/37-38/40-42/44-50

Abbreviations: Stru (structural character), Aa (amino acid), LRR (leucine-rich repeat domain), TIR (Toll/interleukin-1 receptor domain)
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Li X, Li Q, Ruan W Identification of Avian Toll-Like Receptor 3 and 7 and 
Analysis of Gene Variation Sites

Table 4 – Avian TLR7 differences sites at functional region.
Stru Aa

(codon)
Avian number

Aa
(codon)

Avian number

Site
51 LRR F(TTT) 0/14/23-25/32/34/36/48/56/62/63 S(TCT) 5/7/8/11-13/16/18/19/21/22/26/29/33/37-39/42/46/49/51-53/59/60

56 LRR R(AGA) 0/14/23/36/48/51/52/56/62 T(ACA) 3/5/7/8/11/13/18-22/24-29/32/33/37-39/41-43/49/53-55/58-61/63

60 LRR S(AGT)) 0/3/14/36/43/48/56/57/62 T(ACT) 7/13/20/26/29/32/38/39/41/42/44/46/49/53-55/59-61

135 LRR S(TCA) 0/8/36 T(ACA) 5/7/11/13/18/19/21-29/33/34/37-39/41-44/46/48/49/51-63

149 LRR K(AAA) 0/36 E(GAA) 3/5/7/8/11-13/16/18-29/32-34/37-39/41-44/46/48/51-63

152 LRR R(CGG) 0/3/5/12/13/22/23/26/29/32-34/36/38/48/51/52/56/57/62 Q(CAG) 7/8/14/18/19/21/24/25/37/39/42-43/49/53/63

159 LRR R(CGT) 0/3/14/26/34/36/42/43/56/57/62 S(AGT) 5/7/11-13/16/18/19/21-25/29/32/33/37-39/46/48/49/51-53/59/60/63

175 LRR T(ACT) 0/14/23/36/56/58/62 N(AAT) 3/7/8/13/16/18/19/21-22/24-26/29/32-34/37-39/42/43/ 46/48-49.51-53/57/63

176 LRR F(TTT) 0/7/14/23/36/56/62 L(TTG) 3/5/11-13/16/18/19/22/24/25/28/29/32/34/37/38/42/43/46/48/53/57-60/63

213 LRR N(AAT) 0/3/14/23/34/36/43/51/52/56-58/62 K(AAA) 5/7/8/11/13/16/18/19/21/22/24-26/28/32/33/37-39/ 42/46/48/49/53/59/60/63(
12/20/27/29/41/44/54/55/61

216 LRR V(GTA) 0/14/23/26/33/3652/56/62 I(ATA) 3/5/7/8/11-13/16/18-22/24/25/27/28/32/34/37-39/41-44/46/48/53-55/57-
60/63

244 LRR R(AGA) 0/12/14/23/27/28/36/56/62 M(ATG) 3/5/7/8/11/13/16/19-22/24-26/29/33/37-39/41/42/46/48/49/53-55/57/59-
61/63

247 LRR E(GAG) 0/5/14/16/20/23/27/34/36/41/44/51/52/54/56/61/62 V(GTG) 3/7/8/11-13/18/19/21/22/24-26/28/29/32/33/37-39/42/43/46/48/49/55/57-
60/63

248 LRR V(GTT) 0/13/14/23/36/39/51/52/56/62 I(ATT) 3/5/7/8/11/12/16/18-22/24-29/32-34/37/38/41-44/46/48/49/53-55/57-61/63

298 LRR K(AAA) 0/14/34/36/41/51/52/54/56/62 N(AAT) 5/7/8/11-13/16/18-22/24-26/28/29/32-33/37/39/42/44/46/48/49/53/55/58-
61/63

321 LRR K(AAG) 0/5/14/20/23/27-29/36/44/48/55-58/61/62 R(AGG) 3/7/8/11-13/16/18/21/22/24-26/32/33/37-39/41-43/46/49/51-54/59/60/63

341 LRR E(GAG) 0/14/20-29/32-34/36-39/41/42/54/59/60/62 Q(CAG) 3/5/7/8/11-13/16/18/19/43/44/46/49/51-53/55-58/61/63

418 LRR I(ATT) 0/7/14/16/20/33/41/53/54/56/62 V(GTT) 3/5/8/11/12/18/19/21-29/32/34/36-39/42-44/46/48/49/51/52/55/57-61/63

428 LRR R(CGA) 0/18 P(CCA) 3/5/7/812/13/16/19-22/24-29/32-34/36-38/41-44/46/48/49/53-55/57-61/63

429 LRR S(TCC) 0 A(GCT) 3/8/11-14/16/18-22/24/25/28/29/32-34/36-39/41-44/48/49/51-55/57/59-
61/63

432 LRR I(ATC) 0/14/23/62 L(CTC) 5/7/8/11-13/19/24/25/29/38/42/46/49/53/59/60

437 LRR M(ATG) 0/24-26/29 V(GTG) 3/5/7/11-14/16/19-23/27/28/32-34/36-39/41-44/48/49/51-63

445 LRR G(GGT) 0/3/5/8/14/16/18/21-26/32/33/38/
39/42/43/48/49/53/56/57/62

S(AGT) 19/46/51/52/59/60/63

528 LRR F(TTC) 0/8/11/12/14/21-25/33/34/36/37/43/ 46/49/51-
53/56/57/62/63

S(TCC) 5/13/16/18/20/26-29/38/41/42/44/48/54/55/59-61

530 LRR K(AAA) 0/7/12/14/20/23/27/36/37/41/44/54-56/61/62 R(AGA) 3/5/8/11/13/16/19/21/22/24-26/29/32-34/38/42/43/46/48/49/51-53/57-60/6

573 LRR K(AAA) 0/3/8/13/14/18-25/27-29/33/34/36-39/41-44/48/53-
56/58/61-63

E(GAA) 16/26/46/49/51/52/57/59/60

596 LRR S(AGC) 0/14/36/49/56/62 T(ACT) 5/7/8/11/13/16/18/19/22/24-29/38/39/41-43/46/48/51/52/54/55/58/61/63

661 LRR N(AAT) 0/23/36/39/56/62 S(AGC) 5/7/8/11-13/16/18/20-22/24-29/32-34/37/38/41-43/46/48/49/53-55/57-
60/63(3)

664 LRR Q(CAA) 0/3/5/7/8/11-13/16/18/19/21-26/29/33/36
/37/39/42/43/46/48/49/52/53/56/59/60/62/63

E(GAA) 20/27/28/32/34/41/44/54/55/57/58/61

671 LRR M(ATG) 0/14/23/36/56/62 S(TCA) 7/8/13/16/20/24/25/27/29/32/37/41/42/44/49/51/52/54/59/60/61

689 LRR I(ATA) 0/3/14/34/36/43/51/52/57/62 V(GTC) 12/13/29/46/59/60

694 LRR S(AGT) 0/3/14/23/36/56/58/62 N(AAT) 7/8/11/13/16/18-22/24-29/33/34/37/39/41-44/46/48/49/51-55/57/59/60/63

697 LRR L(TTG) 0/12/14/23/28/36/43/51/52/56/58/61/62 M(ATG) 5/7/8/16/19/22/24-26/29/32/37-39/42/46/48/53/63

698 LRR H(CAC) 0/36 K(AAG) 3/5/7/11-14/18-29/32/33/34/37-39/41-44/46/48/49/51-63

712 LRR I(ATA) 0/3/11/36/43/57/62 V(GTA) 5/8/12-14/18/20-29/33/37/38/41/42/44/46/48/49/53-56/58-61/63

726 LRR R(CGA) 0/3/7/13/14/16/18/22-26/28/29/33/36/
37/39/41/42/46/48/49/51-54/56-58/61/62

Q(CAA) 5/8/12/21/27/32/38/43/59/60/63

727 LRR K(AAG) 0/14/23/36/62 E(GAA) 3/5/7/8/11/-13/16/18-22/26/28/29/32-34/37-39/41-44/48/49/51-55/57-61/63

732 LRR T(ACT) 0/14/20/23/27/36/41/44/51/52/54/56/62 S(TCT) 3/5/7/8/11-13/16/18/19/21/22/24-26/29/32-34/37-39/42/43/46/48/49/53/57-
61/63

739 LRR I(ATA) 0/3/7/14/23/34/36/56/57/62 M(ATG) 5/8/11/-13/16/18-22/24-29/33/37-39/42/43/46/48/49/53/55/58-61

744 LRR R(CGT) 0/14/20/23/29/36/57/58/62/ H(CAC) 18/32-34/37/51/59/60

748 LRR I(ATA) 0/14/23/36/44/62 L(CTA) 3/7/8/11/-13/16/18/19/21/22/24-29/32/34/37-39/41-43/46/48/49/51-54/57-
60/63

751 LRR Y(TAT) 0/7/13/14/20/23-27/36/44/46/51/52/55
/56/61/62

H(CAT) 3/5/8/11/12/16/18/19/21/22/28/29/32-34/37-39/41-43/48/49/53/54/57-60/63

757 LRR I(ATT) 0/14/23/36/44/51/52/56/62/ F(TTT) 3/5/7/8/11-13/16/18-22/24-29/32-34/37-39/41-43/46/48/49/53-
55/57/58/61/63

771 LRR I(ATA) 0/3/5/7/8/13/14/18/19/21/22/26/27/29/33/34/36/37/39/41-
44/48/49/51-57/59-63

V(GTA) 12/20/23-25/28/46

Abbreviations: Stru (structural character), Aa (amino acid), LRR (leucine-rich repeat domain).


