Acessibilidade / Reportar erro

CHARACTERISTIC STRENGTHS IN THE COMPRESSION AND IN THE STATIC BENDING AS PARAMETERS TO ESTIMATE CHARACTERISTIC SHEAR STRENGTH FOR TIMBER DESIGN

RESISTÊNCIAS CARACTERÍSTICAS NA COMPRESSÃO E FLEXÃO ESTÁTICA COMO PARÂMETROS PARA A ESTIMATIVA DA RESISTÊNCIA CARACTERÍSTICA AO CISALHAMENTO NO PROJETO DE MADEIRA

ABSTRACT

To simplify the characterization of wood species, the Brazilian standard document ABNT NBR 7190-1 (2022) establishes the determination of mechanical properties employing the characteristic strength in the compression parallel to grain (fc0,k). This mechanical property is estimated using the linear relation given by the following expression fv0,k = 0.12·fc0,k Brazilian and European standard documents support the estimation of fv0,k using relations among properties. However, the European guidelines in the EN 384 (2019) have used the conventional characteristic strength in the static bending test (fM,k). Thus, this study aimed to investigate the efficiency of the ratio fv0,k = 0.12·fc0,k for adopting 30 hardwoods. The variance analysis results demonstrate the divergence among the experimental outcomes and those values estimated using the relation cited. Therefore, regression models at two parameters were considered to obtain more accurate estimates of fv0,k by adopting fc0,k, and fM,k as independent variables. Regarding the results, the geometric (R² = 80.80%) and linear (R² = 74.19%) models were the most accurate for the estimates of fv0,k in terms of fc0,k, and fM,k, respectively. This fact evinces the good accuracy of the models under consideration, which may provide a more rigorous structural design compared to the correlation currently prescribed by the ABNT NBR 7190-1 (2022).

Keywords:
Brazilian hardwood; characteristic strengths; Shear strength estimates

RESUMO

Para simplificar a caracterização de espécies de madeira, o documento normativo brasileiro ABNT NBR 7190-1 (2022) estabelece a determinação de propriedades mecânicas por meio da resistência característica na compressão paralela às fibras (fc0,k). Essa propriedade mecânica é estimada utilizando-se da relação linear dada pela expressão a seguir fv0,k = 0.12·fc0,k. Ambos os documentos normativos europeu e brasileiro prescrevem a estimativa da fv0,k empregando-se relações entre propriedades, embora as diretrizes da europeia contidas na EN 384 (2019) utilize a resistência característica convencional obtida no teste de flexão estática (fM,k). Assim, esse estudo teve o objetivo de investigar a eficiência da relação fv0,k = 0.12·fc0,k para 30 espécies folhosas. Os resultados da análise de variância demonstram a divergência entre os resultados experimentais e aqueles estimados utilizando-se da relação citada. Portanto, modelos de regressão em função de dois parâmetros foram considerados para se obter estimativas mais precisas da fv0,k através da adoção da fc0,k e fM,k como variáveis independentes. Com relação aos resultados, os modelos geométrico (R² = 80.80%) e linear (R² = 74.19%) foram os mais precisos para a estimativa da fv0,k em termos da fc0,k e fM,k, respectivamente. Este fato evidencia a boa precisão dos modelos em questão, o que pode proporcionar um dimensionamento estrutural mais rigoroso quando comparado à correlação atualmente prescrita pela ABNT NBR 7190-1 (2022).

Palavras-Chave:
Madeiras folhosas brasileiras; resistências características; estimativas da resistência ao cisalhamento

1. INTRODUCTION

Due to the growing demand for efficient and sustainable buildings, wood is being considered as the forthcoming industrial resource due to greater recognitions and broader applications for the civil construction (Araujo et al., 2016Araujo VA, Cortez-Barbosa J, Gava M, Garcia JN, Souza AJD, Savi AF, Morales EAM, Molina JC, Vasconcelos JS, Christoforo AL, Lahr FAR. Classification of wooden housing building systems. BioResources. 2016; 11(3): 7889-7901. doi:10.15376/biores.11.3.DeAraujo
https://doi.org/10.15376/biores.11.3.DeA...
; Kuzman and Sandberg, 2017Kuzman MK, Sandberg D. Comparison of timber-house technologies and initiatives supporting use timber in Slovenia and in Sweden – the state of the art. iForest - Biogeosciences and Forestry. 2017; 10(6): 930-938. doi:10.3832/ifor2397-010
https://doi.org/10.3832/ifor2397-010...
; Wieruszewski and Mazela, 2017Wieruszewski M, Mazela B. Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Drvna Industrija. 2017; 68(4): 259-367. doi:10.5552/drind.2017.1728
https://doi.org/10.5552/drind.2017.1728...
; Żmijewki and Wojtowicz-Jankowska, 2017Żmijewki T, Wojtowicz-Jankowska D. Timber – material of the future – examples of small wooden architectural structures. IOP Conference Series: Materials Science and Engineering. 2017; 245(8): 1-9. doi:10.1088/1757-899X/245/8/082019
https://doi.org/10.1088/1757-899X/245/8/...
; Nesheim et al., 2021Nesheim S, Malo KA, Labonnote N. Effects of interconnections between timber floor elements: dynamic and static evaluations of structural scale tests. Eur J Wood Wood Prod. 2021; 79: 1163-1182. doi:10.1007/s00107-021-01709-y
https://doi.org/10.1007/s00107-021-01709...
, Niebuhr and Sieder, 2021Niebuhr P, Sieder M. High cycle fatigue behaviour of a timber to timber connection with self tapping screws under lateral loading. Eur J Wood Wood Prod. 2021; 79: 785-796. doi:10.1007/s00107-021-01699-x
https://doi.org/10.1007/s00107-021-01699...
).

In view of the excellent mechanical-strength and density relation, wood is basically a smart alternative for timber-based tall buildings, whose structure weights correspond to a high proportion of loads to be resisted (Pries and Mai, 2013Pries M, Mai C. Fire resistance of wood treated with a cationic silica sol. Eur J Wood Wood Prod. 2013; 71(2): 37-244. doi:10.1007/s00107-013-0674-7
https://doi.org/10.1007/s00107-013-0674-...
; Ramage et al., 2017Ramage MH, Burridge H, Wicher-Busse M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF, Scherman O. The wood from the tress: The use of timber in construction. Renewable and Sustainable Energy Reviews. 2017; 68: 333-359. doi:10.1016/j.rser.2016.09.107
https://doi.org/10.1016/j.rser.2016.09.1...
; Lima Jr. et al., 2018Lima Jr. MP, Biazzon JC, De Araujo VA, Munis RA, Martins JC, Cortez-Barbosa J, Gava M, Valarelli ID, Morales EAM. Mechanical Properties Evaluation of Eucalyptus grandis Wood at Three Different Heights by Impulse Excitation Technique (IET). BioResources. 2018; 13(2): 3377-3385. doi:10.15376/biores.13.2.3377-3385
https://doi.org/10.15376/biores.13.2.337...
; Huber et al., 2018Huber JAJ, Ekevad M, Girhammar UA, Berg S. Structural robustness and timber buildings – a review. Wood Material Science & Engineering. 2018;1-22. doi:10.1080/17480272.2018.1446052
https://doi.org/10.1080/17480272.2018.14...
; Araujo, 2021Araujo VA. Timber construction as a multiple valuable sustainable alternative: main characteristics, challenge remarks and affirmative actions. International Journal of Construction Management. 2021; 1-10. doi:10.1080/15623599.2021.1969742
https://doi.org/10.1080/15623599.2021.19...
). Buildings with wood-designed structures offer good performance to seismic events, as heavier structures are subjected to greater seismic forces (Ramage et al., 2017Ramage MH, Burridge H, Wicher-Busse M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF, Scherman O. The wood from the tress: The use of timber in construction. Renewable and Sustainable Energy Reviews. 2017; 68: 333-359. doi:10.1016/j.rser.2016.09.107
https://doi.org/10.1016/j.rser.2016.09.1...
).

In addition to the efficiency of wood for structural buildings, this material is still natural, biodegradable, renewable and recyclable and therefore it is effectively an environmentally friendly solution (Wang et al., 2014Wang L, Toppinen A, Juslin H. Use of wood in green building: a study of expert perspectives from the UK. Journal of Cleaner Production. 2014; 65: 350-361. doi:10.1016/j.jclepro.2013.08.023
https://doi.org/10.1016/j.jclepro.2013.0...
; Araujo et al., 2016Araujo VA, Cortez-Barbosa J, Gava M, Garcia JN, Souza AJD, Savi AF, Morales EAM, Molina JC, Vasconcelos JS, Christoforo AL, Lahr FAR. Classification of wooden housing building systems. BioResources. 2016; 11(3): 7889-7901. doi:10.15376/biores.11.3.DeAraujo
https://doi.org/10.15376/biores.11.3.DeA...
; Souza et al., 2018Souza AM, Nascimento MF, Almeida DH, Silva DAL, Almeida TH, Christoforo AL, Lahr FAR. Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production. 2018; 193: 549-562. doi:10.1016/j.jclepro.2018.05.087
https://doi.org/10.1016/j.jclepro.2018.0...
; Lima Jr. et al., 2018Lima Jr. MP, Biazzon JC, De Araujo VA, Munis RA, Martins JC, Cortez-Barbosa J, Gava M, Valarelli ID, Morales EAM. Mechanical Properties Evaluation of Eucalyptus grandis Wood at Three Different Heights by Impulse Excitation Technique (IET). BioResources. 2018; 13(2): 3377-3385. doi:10.15376/biores.13.2.3377-3385
https://doi.org/10.15376/biores.13.2.337...
; Araujo, 2021Araujo VA. Timber construction as a multiple valuable sustainable alternative: main characteristics, challenge remarks and affirmative actions. International Journal of Construction Management. 2021; 1-10. doi:10.1080/15623599.2021.1969742
https://doi.org/10.1080/15623599.2021.19...
). Due to efficiency of the wood as a structural element, timber construction has become the most popular, economic and practical housing solution in the Northern Hemisphere (Araujo et al., 2016Araujo VA, Cortez-Barbosa J, Gava M, Garcia JN, Souza AJD, Savi AF, Morales EAM, Molina JC, Vasconcelos JS, Christoforo AL, Lahr FAR. Classification of wooden housing building systems. BioResources. 2016; 11(3): 7889-7901. doi:10.15376/biores.11.3.DeAraujo
https://doi.org/10.15376/biores.11.3.DeA...
). As a result, the construction of buildings with six or more floors has been observed in the last decade (Ramage et al., 2017Ramage MH, Burridge H, Wicher-Busse M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF, Scherman O. The wood from the tress: The use of timber in construction. Renewable and Sustainable Energy Reviews. 2017; 68: 333-359. doi:10.1016/j.rser.2016.09.107
https://doi.org/10.1016/j.rser.2016.09.1...
). Expressive uses of wood are being confirmed. While wood is the main material in 80% of houses in Scotland and New Zealand, it is also applied for nearly 7% of the Brazilian residences (Mahapatra et al., 2012Mahapatra K, Gustavsson L, Hemström. K Multistorey wood-frame buildings in Germany, Sweden and The UK. Construction Innovation. 2012; 12: 62-85. doi:10.1108/14714171211197508
https://doi.org/10.1108/1471417121119750...
; Araujo et al., 2018Araujo VA, Vasconcelos JS, Morales EAM, Savi AF, Hindman DP, O’Brien MJ, Negrão JHJO, Christoforo AL, Lahr FAR, Cortez-Barbosa J, Gava M, Garcia JN. Difficulties of wooden housing production sector in Brazil. Wood Material Science & Engineering. 2018; 11(3): 1-10. doi:10.1080/1748 0272.2018.1484513
https://doi.org/10.1080/1748 0272.2018.1...
, 2020Araujo V, Vasconcelos J, Biazzon J, Morales E, Cortez J, Gava M, Garcia J. Production and market of timber housing in Brazil. Pro Ligno. 2020; 16(1): 17-27.).

Despite the evident potential for reforestation and the demand for new houses, the use of wood for housing in Brazil is practically insignificant when compared to traditional masonry buildings (Araujo et al., 2018Araujo VA, Vasconcelos JS, Morales EAM, Savi AF, Hindman DP, O’Brien MJ, Negrão JHJO, Christoforo AL, Lahr FAR, Cortez-Barbosa J, Gava M, Garcia JN. Difficulties of wooden housing production sector in Brazil. Wood Material Science & Engineering. 2018; 11(3): 1-10. doi:10.1080/1748 0272.2018.1484513
https://doi.org/10.1080/1748 0272.2018.1...
). The lacks of qualified labor and knowledge of species and properties have contributed to the inadequate utilization of wood, resulting in the erroneous production of buildings with unexpected lifespans and misuse of material advantages (Pedreschi et al., 2005Pedreschi R, Gomes FC, Mendes LM. Avaliação do desempenho da madeira na habitação utilizando abordagens de sistemas. Cerne. 2005; 11(3): 283-293.).

In this scenario, Almeida et al. (2020)Almeida JPB, Aquino VBM, Wolenski ARV, Campos CI, Chahud E, Lahr FAR, Christoforo AL. Analysis of relations between the moduli of elasticity in compression, tension, and static bending of hardwoods. BioResources. 2020; 15(2): 3278-3288. doi:10.15376/biores.15.2.3278-3288.
https://doi.org/10.15376/biores.15.2.327...
argue about the importance of elaboration of studies to provide, for the Brazilian market, sufficient information about the benefits and features of timber construction and the physical and mechanical properties of lignocellulosic materials to enable the design of rational projects for timber-based structures.

In addition to prescribing procedures for dimensioning of timber structures [ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.], the Brazilian standard document ABNT NBR 7190-3 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, Brazil: 2022. has established methods for the complete experimental characterization of the physical-mechanical properties of this biomaterial. In order to simplify the characterization of wood, this Brazilian normative allows the determination of mechanical properties as a function of the characteristic compression strength parallel to the grain (fc0,k).

Among the prescribed estimates, there is the determination of characteristic shear strength parallel to the grain (fv0,k) through the linear relation (Equation 1) between fc0,k and fv0,k values. Concerning hardwoods, the ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. implicitly adopts λ equal to 0.12, according to the standard calibration.

(Eq. 1) f V 0 , k = λ f c 0 , k

Due to expressive volume of native tree species cataloged in the Brazilian Amazon – around 7700 as raised by Steege et al. (2016)Steege H, Vaessen RW, Cárdenas-López D, Sabatier D, Antonelli A, Oliveira SM, Pitman NCA, Jørgensen PM, Salomão RP. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports. 2016; 6(29549): 1-15. doi:10.1038/srep29549
https://doi.org/10.1038/srep29549...
– every effective procedure for the characterization of wood species is highly desirable, since the economic resources can be allocated to the characterization of unfamiliar hardwoods as a strategy to promote their uses as well as reduce predatory utilization of the most usual species.

Some researchers have investigated the efficiency of relations between properties prescribed by the standard documents. In Brazil, they have considered the ABNT NBR 7190 (1997)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190: Projeto de estruturas de madeira. Rio de Janeiro, Brazil: 1997., which is the last version before the recent update to ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.. Thus, there are studies from Lahr et al. (2017)Lahr FAR, Christoforo AL, Varanda LD, Chahud E, Araujo VA, Branco LAMN. Shear and longitudinal modulus of elasticity in wood: relations based on static bending tests. Acta Scientiarum Technology. 2017; 39(4): 433-437. doi:10.4025/actascitechnol. v39i4.30512
https://doi.org/10.4025/actascitechnol. ...
, Almeida et al. (2018)Almeida AS, Lanini TLS, Caetano JA, Christoforo AL, Lahr FAR. Evaluation of Stiffness in Compression Perpendicular to Grain of Brazilian Tropical Wood Species. Current Journal of Applied Science and Technology. 2018; 28(5): 1-7. doi:10.9734/CJAST/2018/42945
https://doi.org/10.9734/CJAST/2018/42945...
and Almeida et al. (2020)Almeida JPB, Aquino VBM, Wolenski ARV, Campos CI, Chahud E, Lahr FAR, Christoforo AL. Analysis of relations between the moduli of elasticity in compression, tension, and static bending of hardwoods. BioResources. 2020; 15(2): 3278-3288. doi:10.15376/biores.15.2.3278-3288.
https://doi.org/10.15376/biores.15.2.327...
about the relations between properties of stiffness of hardwoods.

Regarding fv0,k, Matos and Molina (2016)Matos GS, Molina JC. Resistência da Madeira ao Cisalhamento Paralelo às Fibras Segundo as Normas ABNT NBR 7190:1997 e ISO 13910:2005. Revista Matéria. 2016; 21(4): 1069-1079. doi:10.1590/S1517-707620160004.0098
https://doi.org/10.1590/S1517-7076201600...
obtained, through tests for Eucalyptus saligna species, a λ equal to 0.13, whose value is close to the specifications of the ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.. On the other hand, Christoforo et al. (2019)Christoforo AL, Almeida AS, Lanini TLS, Nogueira RS, Lahr, FAR. Estimation of the Characteristic Value of Wood Strength. Journal of the Brazilian Association of Agricultural Engineering. 2019; 39(1): 127-132. doi:10.1590/1809-4430-Eng.Agric.v39n1p127-132/2019
https://doi.org/10.1590/1809-4430-Eng.Ag...
obtained a λ equal to 0.23 for a grouping of five hardwood species. This result is according to the experiment of Couto et al. (2020)Couto NG, Almeida JPB, Govone JS, Christoforo AL, Lahr FAR. Relação entre a resistência ao cisalhamento e a resistência à compressão paralela às fibras de madeiras folhosas. Ambiente Construído. 2020; 20(4): 319-327. doi:10.1590/s1678-86212020000400475
https://doi.org/10.1590/s1678-8621202000...
, which verified a λ equal to 0.22 for a set of 10 hardwoods, being a value approximately 80% higher than stated in ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.. These aforementioned studies highlight the need for a review about the ratio mentioned that is still implicit in the updated Brazilian standard document through its calibration. This justification is motivated by the interest of the academic field on the correlation between mechanical properties. These studies from literature were designed making use of a reduced number of species, in which the aim was to determine only the coefficient λ for the best description of the linear relation between fv0,k and fc0,k. Besides, these studies did not investigate the different regression models such as exponential, geometric and logarithmic.

Both Brazilian ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. and European EN 384 (2019)European Standard – EN. EN 384: Structural timber – Determination of characteristic values of mechanical properties and density. Brussels: 2019. standards allow the determination of fv0,k through the correlation of properties. However, fv0,k values are estimated by the conventional characteristic strength in the static bending test (fM,k). In this context, making use of a significant number of hardwood species, this study aims to investigate the statistical equivalence among the experimental values of fv0,k and the estimated values (Equation 1) as well as provide, in case of divergence, models of regression as a function of fc0,k and fM,k, respectively.

2. MATERIALS AND METHODS

2.1 Materials

Thirty hardwood species were adopted in this study (Table 1), which were bought as normally acquired in local markets through planks – this consideration reflected the way in which wood has been used/obtained for structural purposes in the Brazilian construction. Thus, age and origin of the tropical trees were not identified due to the lack of information.

Table 1
Scientific name and identification number (ID) of 30 tropical hardwood species.
Tabela 1
Nome científico e número de identificação (ID) de 30 espécies de folhosas tropicais.

2.2 Methods

Experimental tests were carried out in the dependences of the Laboratory of Wood and Timber Structures (LaMEM) of the University of São Paulo (USP), São Carlos, Brazil. For that, it was adopted twelve specimens per species and mechanical property under investigation, which resulted in 1080 experimental determinations. The extraction of specimens was executed with dimensions of specimens in millimeters for testing and obtainment of sampling values of bending (fM), compression (fc0) and shear (fv0) strength along the direction parallel to the grain.

After testing, values of fc0, fv0 e fm were determined (Equations 2, 3 and 4) for each specimen, according to ABNT NBR 7190-3 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, Brazil: 2022..

(Eq. 2) f c 0 = F c 0 , m a x A
(Eq. 3) f v 0 = F v 0 , m a x A v 0
(Eq. 4) f M = M m a x W e

Where, Fc0,max , Fv0,max , A, Av0, Mmax and W, represent, respectively, the maximum force in the compression, maximum shear force, initial area of transversal section of specimen for compression, initial area of critical section of specimen for shear stress, maximum bending moment from static test, and modulus of transversal section of static bending specimen. According to the prescriptions from the ABNT NBR 7190-3 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, Brazil: 2022., the load was applied monotonically increasing at 10 MPa/min for static bending and compression tests and at 2.5 MPa/min for shear stress test.

Specimens were tested with moisture content (MC) at 12% since it is prescribed by the ABNT NBR 7190-3 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, Brazil: 2022. as the equilibrium moisture content (EMC). However, for those that did not achieve the EMC, the strengths were corrected as recommended by the Brazilian standard (Equation 5).

(Eq. 5) f 12 % = f M C [ 1 + 3 ( MC 12 ) 100 ]

In this equation, f12% and fMC% are the strength at 12% and at a certain moisture content, respectively.

To determine the characteristic strength (fw,k - fc0,k, fv0,k and fM,k ), all sampled values at 12% MC were sorted in ascending order (f1f2f3fn=f12) . Then, according to ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022., fw,k was taken as the highest value among f1 and those values obtained through relations (Equations 6 and 7) given by the code.

(Eq. 6) f w , k = f m [ 1 1.645. δ ] 0.70 f m
(Eq. 7) f w , k = [ 2 f 1 + f 2 + f 3 + + f ( n / 2 ) 1 ( n / 2 ) 1 f n / 2 ] 1.10

In which, fm is the average value of sampled strengths and δ represents the coefficient of variation of samples. In favor of safety, the ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. admits that strengths have normal distributions and δ does not exceed 18%. Although the present study seeks to estimate fv0,k through fM,k as considered by the European standard document EN 384 (2019)European Standard – EN. EN 384: Structural timber – Determination of characteristic values of mechanical properties and density. Brussels: 2019., the sample dimensions, laboratory procedures and equations to determine characteristic strengths were used in accordance to the Brazilian standard document ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. for purposes of comparing results.

In order to verify the effectiveness of the estimation of fv0,k in terms of fc0,k (Equation 1), the analysis of variance (ANOVA) at 5% significance was adopted. Null hypothesis (H0) was featured by the equivalence among experimental and calculated values (fv0,k and 0.12·fc0,k) of the thirty species, while the alternative hypothesis (H1) was based on the no equivalence situation. With P-value greater than or equal to the significance level adopted (P-value ≥ 0.05), the H0 is accepted, then the estimate (Equation 1) offers good estimation for fv0,k. In the P-valor < 0.05, H1 is adopted otherwise and, therefore, equations that are more precise must be determined.

In case of H1 is true, models of regression (Equations 8 9 10 11) were further adopted to estimate fv0,k (dependent variable - y) of the thirty species in terms of fc0,k and fM,k (independent variables - x), respectively. Then, these equations were analyzed through analysis of variance at a 5% significance level with respect to the prediction of experimental results.

(Eq. 8) y = a + b x [ Linear ]
(Eq. 9) y = a e b x [ Exponential ]
(Eq. 10) y = a + b i n ( x ) [ Logarithmic ]
(Eq. 11) y = a x b [ Geometric ]

In which, a and b are parameters of models, which are adjusted by the method of least squares. Thereby, two hypotheses were formulated: null (H0) and alternative (H1). H0 is accepted if P-value is superior to the significance level (P-valor > 0.05), which implies that the model under test is not representative (variations of x are not able to explain the variations of y). For P-value ≤ 0.05, H0 is accepted otherwise, that is, the tested model is representative.

In order to assess the quality of adjustments, the values of the coefficient of determination (R²) were determined for each model, which allows selecting those representative situations (P-value ≤ 0.05) with better estimates. Finally, normality test of Anderson-Darling was executed to validate the distribution of values.

3. RESULTS

Results for characteristic strengths (fv0,k, fc0,k and fM,k ) [Table 2] were obtained in accordance with the ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. for thirty hardwoods studied (Table 1).

Table 2
Results of fc0,k, fv0,k and fM,k of 30 hardwoods studied.
Tabela 2
Resultados da fc0,k, fv0,k and fM,k das 30 espécies estudadas.

Hardwood species studied (Table 2) included all strength classes (C20, C30, C40, C50 and C60) prescribed by ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022., which evinces the broad scope and relevance of the results. Thereby, two hardwoods were classified as C20 (cedro doce and quarubarana), two species as C30 (castanheira and cedro amargo), seven species as C40 (angelim amargoso, copaíba, goiabão, louro verde, pau-óleo, piolho and rabo de arraia), seven as C50 (angelim saia, castelo, canatudo, cutiúba, louro preto, parinari and umirana) and twelve species as C60 (angelim ferro, angelim vermelho, garapa, itaúba, jatobá, maçaranduba, mandioqueira, oiticica amarela, oiuchu, quina rosa, sucupira and tachi).

In the sequence, the results of ANOVA at 5% significance and the normality test of AndersonDarling to evaluate the fv0,k in terms of fc0,k (Equation 1) are also presented. It was possible to see that the groups of values – fv0,k (experimental values) and fv0,k (Equation 1) – are not equivalent (P-Value = 0.000), indicating an inaccuracy of fv0,k (Equation 1) from the ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.. Subsequently, results of Anderson-Darling test confirmed the assumption of normal distribution of data with P-value equal to 0.960.

As an alternative to the Brazilian ratio (Equation 1), the adjustments (Figure 1) were obtained through the regression models (Equations 8 9 10 11) for the estimate of fv0,k in terms of fc0,k considering the thirty hardwoods described (Table 1).

Figure 1
Regression models to estimate fv0,k in terms of fc0,k: (a) linear; (b) exponential; logarithmic (c); and (d) geometric.
Figura 1
Modelos de regressão para se estimar fv0,k em termos da fc0,k: (a) linear; (b) exponencial; logarítmico (c); e (d) geométrico.

As result, all adjustments (Figure 1) were significant (P-value < 0.05), which suggests that variations of fc0,k are able to explain the variations of fv0,k. Among the models under consideration, the geometric model (Figure 1D, Equation 12) is the most accurate option, with R² equal to 80.80%.

(Eq. 12) f v 0 , k = 0.34 ( f c 0 , k ) 0.90

In the sequence, results of adjustment (Figure 2) were obtained from the models of regression (Equations 8 9 10 11) in the estimation of fv0,k through fM,k.

Figure 2
Models of regression to estimate fv0,k from fM,k: (a) linear; (b) exponential; logarithmic (c); and (d) geometric.
Figura 2
Modelos de regressão para se estimar fv0,k a partir da fM,k: (a) linear; (b) exponencial; logarítmico (c); e (d) geométrico.

Analogously to the models of regression considering fc0,k (Figure 1), all tested adjustments through the consideration of fM,k for estimation of fv0,k were significant (P-value < 0.05). Therefore, variations of fM,k are able to explain those variations of fv0,k. Concerning the models, the linear one (Figure 2A) is the more accurate, with (R² = 74.19%).

In order to measure any errors from the estimates of fv0,k (Equations 1, 12 and 13), a calculation (Equation 14) was used, since this compared fv0,k(experimental) and fv0,k(estimated). Then, errors (Table 3) were identified for each wood species under consideration. From, the three estimates (1, 12 and 13) demonstrated, in percentage, average errors were of 46.90%, 10.80% e 12.77%, respectively.

Table 3
Percentage errors from the estimate of fv0,k using models (Equations 1, 12 and 13).
Tabela 3
Erros percentuais da estimativa da fv0,k ao se utilizar os modelos (Equações 1, 12 e 13).
(Eq. 13) f v 0 , k = 1.33 + 0.14 ( f M , k )
(Eq. 14) E r ( % ) = 100 | f v 0 , k ( e x p e r i m e n t a l ) f v 0 , k ( e s t i m a t e d ) | | f v 0 , k ( e x p e r i m e n t a l ) |

4. DISCUSSION

With respect to ANOVA result that revealed the Brazilian ratio to be inaccurate to estimate fv0,k, this is in line with results presented in Christoforo et al. (2019)Christoforo AL, Almeida AS, Lanini TLS, Nogueira RS, Lahr, FAR. Estimation of the Characteristic Value of Wood Strength. Journal of the Brazilian Association of Agricultural Engineering. 2019; 39(1): 127-132. doi:10.1590/1809-4430-Eng.Agric.v39n1p127-132/2019
https://doi.org/10.1590/1809-4430-Eng.Ag...
and Couto et al. (2020)Couto NG, Almeida JPB, Govone JS, Christoforo AL, Lahr FAR. Relação entre a resistência ao cisalhamento e a resistência à compressão paralela às fibras de madeiras folhosas. Ambiente Construído. 2020; 20(4): 319-327. doi:10.1590/s1678-86212020000400475
https://doi.org/10.1590/s1678-8621202000...
, but not in accordance with Matos and Molina (2016)Matos GS, Molina JC. Resistência da Madeira ao Cisalhamento Paralelo às Fibras Segundo as Normas ABNT NBR 7190:1997 e ISO 13910:2005. Revista Matéria. 2016; 21(4): 1069-1079. doi:10.1590/S1517-707620160004.0098
https://doi.org/10.1590/S1517-7076201600...
. The reason why this last work does not agree to the results herein found out may be due the fact that only one species was investigated, and given the natural variability of wood, it was not representative.

Regarding the estimate of fv0,k as a function of fc0,k, results (Figure 1) pointed to geometric model as the most accurate equation (R² = 80.80%.). This type of regression is not in accordance to the linear equation adopted in ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.. It is worth mentioning that even when comparing the normative linear ratio to the linear regression found out (R² = 78.86%), the second is much more accurate, which emphasizes the poor prediction power of the normative one.

Results presented concerning fv0,k estimated in terms of fM,k (Figure 2) confirms that the linear regression (R² = 74.19%) was the more accurate equation determined, being in accordance to the regression type prescribed by the European standard EN 384 (2019)European Standard – EN. EN 384: Structural timber – Determination of characteristic values of mechanical properties and density. Brussels: 2019. that utilizes fM,k as independent variable. Besides, both exponential and geometric regression also presented R² larger than 70%.

Concerning errors calculated for estimations (Equations 1, 12 and 13) in comparison to the experimental results, outcome evinces the good accuracy of the estimates of fv0,k using the proposed models of regression, especially when being estimated as a function of fc0,k. Then, fc0,k showed to be a more precise variable than fM,k, which is recommended by EN 384 (2019).

This better accuracy of fv0,k through fc0,k (Brazilian standard) may be explained by anatomical differences between hardwood and softwood, since the correlation given in EN 384 (2019) is purposely calibrated for the last one, and there is no available estimate for hardwoods. However, as already claimed, the good accuracy of the European estimate makes it useful for Brazilian hardwoods as well.

5. CONCLUSION

The analysis of variance revealed the divergence between fv0,k (experimental) and 0.12·fc0,k groups, since the model (Equation 1) currently admitted in the calibration of the Brazilian standard ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022. does not give accurate estimates of fv0,k.

All models of regression applied for the estimate of fv0,k through fc0,k and fM,k were significant. The suggested models (Equations 12 and 13) showed a wider coverage of shear strength due to the very representative number of hardwood species under evaluation in this study.

In the estimate of fv0,k, when compared to the model (Equation 1) given implicitly by ABNT NBR 7190-1 (2022)Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022., the suggested models (Equations 12 and 13) provide relatively lower errors. This finding indicates the good accuracy of the models proposed, which lead to a more accurate structural design when compared to the current correlation admitted in the Brazilian standard. Therefore, results found out justifies the adoption of these ratios/correlations in the future update of normative recommendations.

6. REFERENCES

  • Associação Brasileira de Normas Técnicas – ABNT. NBR 7190: Projeto de estruturas de madeira. Rio de Janeiro, Brazil: 1997.
  • Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-1: Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Rio de Janeiro, Brazil: 2022.
  • Associação Brasileira de Normas Técnicas – ABNT. NBR 7190-3: Projeto de estruturas de madeira – Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, Brazil: 2022.
  • Almeida AS, Lanini TLS, Caetano JA, Christoforo AL, Lahr FAR. Evaluation of Stiffness in Compression Perpendicular to Grain of Brazilian Tropical Wood Species. Current Journal of Applied Science and Technology. 2018; 28(5): 1-7. doi:10.9734/CJAST/2018/42945
    » https://doi.org/10.9734/CJAST/2018/42945
  • Almeida JPB, Aquino VBM, Wolenski ARV, Campos CI, Chahud E, Lahr FAR, Christoforo AL. Analysis of relations between the moduli of elasticity in compression, tension, and static bending of hardwoods. BioResources. 2020; 15(2): 3278-3288. doi:10.15376/biores.15.2.3278-3288.
    » https://doi.org/10.15376/biores.15.2.3278-3288
  • Araujo VA. Timber construction as a multiple valuable sustainable alternative: main characteristics, challenge remarks and affirmative actions. International Journal of Construction Management. 2021; 1-10. doi:10.1080/15623599.2021.1969742
    » https://doi.org/10.1080/15623599.2021.1969742
  • Araujo VA, Cortez-Barbosa J, Gava M, Garcia JN, Souza AJD, Savi AF, Morales EAM, Molina JC, Vasconcelos JS, Christoforo AL, Lahr FAR. Classification of wooden housing building systems. BioResources. 2016; 11(3): 7889-7901. doi:10.15376/biores.11.3.DeAraujo
    » https://doi.org/10.15376/biores.11.3.DeAraujo
  • Araujo V, Vasconcelos J, Biazzon J, Morales E, Cortez J, Gava M, Garcia J. Production and market of timber housing in Brazil. Pro Ligno. 2020; 16(1): 17-27.
  • Araujo VA, Vasconcelos JS, Morales EAM, Savi AF, Hindman DP, O’Brien MJ, Negrão JHJO, Christoforo AL, Lahr FAR, Cortez-Barbosa J, Gava M, Garcia JN. Difficulties of wooden housing production sector in Brazil. Wood Material Science & Engineering. 2018; 11(3): 1-10. doi:10.1080/1748 0272.2018.1484513
    » https://doi.org/10.1080/1748 0272.2018.1484513
  • Christoforo AL, Almeida AS, Lanini TLS, Nogueira RS, Lahr, FAR. Estimation of the Characteristic Value of Wood Strength. Journal of the Brazilian Association of Agricultural Engineering. 2019; 39(1): 127-132. doi:10.1590/1809-4430-Eng.Agric.v39n1p127-132/2019
    » https://doi.org/10.1590/1809-4430-Eng.Agric.v39n1p127-132/2019
  • Couto NG, Almeida JPB, Govone JS, Christoforo AL, Lahr FAR. Relação entre a resistência ao cisalhamento e a resistência à compressão paralela às fibras de madeiras folhosas. Ambiente Construído. 2020; 20(4): 319-327. doi:10.1590/s1678-86212020000400475
    » https://doi.org/10.1590/s1678-86212020000400475
  • European Standard – EN. EN 384: Structural timber – Determination of characteristic values of mechanical properties and density. Brussels: 2019.
  • Flora of Brazil. Plantas do Brasil: Herbário virtual [internet]. Botanical Garden, Rio de Janeiro, Brazil: 2020 [cited 2022 Nov 16]. Available from: floradobrasil.jbrj.gov.br
  • Huber JAJ, Ekevad M, Girhammar UA, Berg S. Structural robustness and timber buildings – a review. Wood Material Science & Engineering. 2018;1-22. doi:10.1080/17480272.2018.1446052
    » https://doi.org/10.1080/17480272.2018.1446052
  • Kuzman MK, Sandberg D. Comparison of timber-house technologies and initiatives supporting use timber in Slovenia and in Sweden – the state of the art. iForest - Biogeosciences and Forestry. 2017; 10(6): 930-938. doi:10.3832/ifor2397-010
    » https://doi.org/10.3832/ifor2397-010
  • Lahr FAR, Christoforo AL, Varanda LD, Chahud E, Araujo VA, Branco LAMN. Shear and longitudinal modulus of elasticity in wood: relations based on static bending tests. Acta Scientiarum Technology. 2017; 39(4): 433-437. doi:10.4025/actascitechnol. v39i4.30512
    » https://doi.org/10.4025/actascitechnol. v39i4.30512
  • Lima Jr. MP, Biazzon JC, De Araujo VA, Munis RA, Martins JC, Cortez-Barbosa J, Gava M, Valarelli ID, Morales EAM. Mechanical Properties Evaluation of Eucalyptus grandis Wood at Three Different Heights by Impulse Excitation Technique (IET). BioResources. 2018; 13(2): 3377-3385. doi:10.15376/biores.13.2.3377-3385
    » https://doi.org/10.15376/biores.13.2.3377-3385
  • Mahapatra K, Gustavsson L, Hemström. K Multistorey wood-frame buildings in Germany, Sweden and The UK. Construction Innovation. 2012; 12: 62-85. doi:10.1108/14714171211197508
    » https://doi.org/10.1108/14714171211197508
  • Matos GS, Molina JC. Resistência da Madeira ao Cisalhamento Paralelo às Fibras Segundo as Normas ABNT NBR 7190:1997 e ISO 13910:2005. Revista Matéria. 2016; 21(4): 1069-1079. doi:10.1590/S1517-707620160004.0098
    » https://doi.org/10.1590/S1517-707620160004.0098
  • Nesheim S, Malo KA, Labonnote N. Effects of interconnections between timber floor elements: dynamic and static evaluations of structural scale tests. Eur J Wood Wood Prod. 2021; 79: 1163-1182. doi:10.1007/s00107-021-01709-y
    » https://doi.org/10.1007/s00107-021-01709-y
  • Niebuhr P, Sieder M. High cycle fatigue behaviour of a timber to timber connection with self tapping screws under lateral loading. Eur J Wood Wood Prod. 2021; 79: 785-796. doi:10.1007/s00107-021-01699-x
    » https://doi.org/10.1007/s00107-021-01699-x
  • Pedreschi R, Gomes FC, Mendes LM. Avaliação do desempenho da madeira na habitação utilizando abordagens de sistemas. Cerne. 2005; 11(3): 283-293.
  • Pries M, Mai C. Fire resistance of wood treated with a cationic silica sol. Eur J Wood Wood Prod. 2013; 71(2): 37-244. doi:10.1007/s00107-013-0674-7
    » https://doi.org/10.1007/s00107-013-0674-7
  • Ramage MH, Burridge H, Wicher-Busse M, Fereday G, Reynolds T, Shah DU, Wu G, Yu L, Fleming P, Densley-Tingley D, Allwood J, Dupree P, Linden PF, Scherman O. The wood from the tress: The use of timber in construction. Renewable and Sustainable Energy Reviews. 2017; 68: 333-359. doi:10.1016/j.rser.2016.09.107
    » https://doi.org/10.1016/j.rser.2016.09.107
  • Souza AM, Nascimento MF, Almeida DH, Silva DAL, Almeida TH, Christoforo AL, Lahr FAR. Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production. 2018; 193: 549-562. doi:10.1016/j.jclepro.2018.05.087
    » https://doi.org/10.1016/j.jclepro.2018.05.087
  • Steege H, Vaessen RW, Cárdenas-López D, Sabatier D, Antonelli A, Oliveira SM, Pitman NCA, Jørgensen PM, Salomão RP. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports. 2016; 6(29549): 1-15. doi:10.1038/srep29549
    » https://doi.org/10.1038/srep29549
  • Wang L, Toppinen A, Juslin H. Use of wood in green building: a study of expert perspectives from the UK. Journal of Cleaner Production. 2014; 65: 350-361. doi:10.1016/j.jclepro.2013.08.023
    » https://doi.org/10.1016/j.jclepro.2013.08.023
  • Wieruszewski M, Mazela B. Cross Laminated Timber (CLT) as an Alternative Form of Construction Wood. Drvna Industrija. 2017; 68(4): 259-367. doi:10.5552/drind.2017.1728
    » https://doi.org/10.5552/drind.2017.1728
  • Żmijewki T, Wojtowicz-Jankowska D. Timber – material of the future – examples of small wooden architectural structures. IOP Conference Series: Materials Science and Engineering. 2017; 245(8): 1-9. doi:10.1088/1757-899X/245/8/082019
    » https://doi.org/10.1088/1757-899X/245/8/082019

Publication Dates

  • Publication in this collection
    26 June 2023
  • Date of issue
    2023

History

  • Received
    16 Nov 2022
  • Accepted
    09 Mar 2023
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br