Acessibilidade / Reportar erro

MODELING DIAMETER DISTRIBUTION OF TREE SPECIES IN A SEMIDECIDUOUS FOREST FRAGMENT

MODELAGEM DA DISTRIBUIÇÃO DIAMÉTRICA DE ESPÉCIES ARBÓREAS EM FRAGMENTO DE FLORESTAS ESTACIONAL SEMIDECIDUAL

ABSTRACT

Modeling diameter distribution in natural forests is an important tool for understanding the native woody species dynamics, supporting decision-making for degraded lands management and restoration. Therefore, this work aimed to fit probabilistic density functions to evaluate the diameter structure of three tree species with economic interest, such as Campomansesia xanthocarpa Marl. Ex. O. Berg, Piptadenia gonoacantha (Mart.) J.F. Macbr. and Zeyheria tuberculosa (Vell.) Bureau ex Verl., in a Semideciduous Seasonal Forest fragment at São Paulo State, Brazil. The data came from 83 temporary plots of 10 m x 20 m systematically distributed along 164 ha. Log-normal, Gamma, and Weibull functions were fitted to the three species using the fitdistrplus-package in the R program. Kolmogorov-Smirnov's adherence test was used to evaluate the fits at a 5% probability level. The functions were selected employing Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC), in addition to a graphical analysis of the fitted functions. The results indicated that the three species diameter structure is positively asymmetric, representing the exponential pattern, representing continuous natural regeneration. AIC and BIC statistics indicated the Log-normal function to describe the diameter distribution of C. xanthocarpa and Z. tuberculosa, while the Gamma function was the most appropriate for P. gonoacantha. For the three species, the graphical analysis showed the Gamma function results in the best fit without tendency for estimating frequency density per diameter class.

Keywords:
Diameter structure; Probabilistic density functions; Adherence test

RESUMO

A modelagem da distribuição diamétrica em florestas naturais é uma ferramenta importante para compreender a dinâmica de espécies nativas lenhosas, auxiliando na tomada de decisão para o manejo e a recuperação de áreas degradadas. Dessa forma, o objetivo deste trabalho foi ajustar funções de densidade probabilística para avaliar a estrutura diamétrica de três espécies arbóreas de interesse econômico, como Campomansesia xanthocarpa Marl. Ex. O. Berg, Piptadenia gonoacantha (Mart.) J.F. Macbr. e Zeyheria tuberculosa (Vell.) Bureau ex Verl., em um fragmento de Floresta Estacional Semidecidual no estado de São Paulo, Brasil. Os dados foram provenientes de 83 parcelas temporárias de 10 m x 20 m distribuídas sistematicamente ao longo de 164 ha. As funções Log-normal, Gamma e Weibull foram ajustadas para as três espécies por meio do pacote fitdistrplus no programa R. O teste de aderência de Kolmogorov-Smirnov foi aplicado a 5% de probabilidade para avaliar os ajustes. As funções foram .selecionadas por meio do Critério de Informação Akaike (AIC) e do Critério de Informação Bayesiano de Schwaarz (BIC), além da análise gráfica das funções ajustadas. Os resultados indicaram que a estrutura diamétrica das três espécies é assimétrica positiva, as quais apresentam o padrão exponencial, sugerindo uma regeneração natural contínua. As estatísticas de AIC e BIC indicaram a função Log-normal para descrever a distribuição diamétrica de C. xanthocarpa e Z. tuberculosa, enquanto a função Gamma foi a mais adequada para P. gonoacantha. Para as três espécies, a análise gráfica mostrou que a função Gamma resultou no melhor ajuste, não apresentando tendências nas estimativas da densidade de frequências por classe de diâmetro.

Palavras-Chave:
Estrutura diamétrica; Funções de densidade probabilística; Teste de aderência

1. INTRODUCTION

The Seasonal Semideciduous Forest, also known as Atlantic Interior Forest and Semideciduous Seasonal Forest, is one of the forest typologies that compose the Atlantic Forest biome, especially in the western region of Serra do Mar. This forest has expansive in São Paulo State, Brazil, with remnants of 1,744,701 ha (7.0%) in medium to advanced succession stages (Ramos et al., 2015Ramos VS, Durigan G, Franco GADC, Siqueira MF, Rodrigues R. R. Árvores da Floresta Estacional Semidecidual: guia de identificação de espécies. 2. ed. São Paulo: Editora da Universidade de São Paulo; 2015.). The Seasonal Semideciduous Forest covers a smaller area than the Dense Ombrophylous Forest, with 3,512,662 ha (10.1%), in larger size of the São Paulo State territory (Ramos et al., 2015Ramos VS, Durigan G, Franco GADC, Siqueira MF, Rodrigues R. R. Árvores da Floresta Estacional Semidecidual: guia de identificação de espécies. 2. ed. São Paulo: Editora da Universidade de São Paulo; 2015.; SIMA, 2020SIMA - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo. Inventário florestal do Estado de São Paulo: Mapeamento da cobertura vegetal nativa. São Paulo: Instituto Florestal; 2020. [cited 2022 March 30]. Available from: https://smastr16.blob.core.windows.net/home/2020/07/inventarioflorestal2020.pdf
https://smastr16.blob.core.windows.net/h...
).

Campomansesia xanthocarpa Ex. O. Berg (Guabiroba), Piptadenia gonoacantha Mart. J.F. Macrbr. (Pau-jacaré), and Zeyheria tuberculosa Vell. Bureau ex Verl. (Ipe-tobacco) are considered as typical species of the Seasonal Semideciduous Forest (APG IV, 2016APG IV - The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 2016; 181(1): 1-20. doi: /10.1111/boj.12385.
https://doi.org/10.1111/boj.12385...
; Cole et al., 2019Cole TCH, Hilger HH, Stevens P. Angiosperm phylogeny poster (APP) – Flowering plant systematics. PeerJ Preprints. 2019; 7: e2320v6. doi:10.7287/peerj.preprints.2320v6
https://doi.org/10.7287/peerj.preprints....
). C. xanthocarpa has potential for conservation and genetic improvement programs due to the commercial use of its fruits (Kampa et al., 2020Kampa MB, Homczinski I, Roque RH, Figueiredo Filho A, Peres FSB, Tambarussi EV. Genetic variability in nusery-grown progenies of Campomanesia xanthocarpa Mart. ex O. Berg. Scientia Forestalis. 2020; 48(125): e2935. doi: 10.18671/scifor.v48n125.10
https://doi.org/10.18671/scifor.v48n125....
) and for health treatment, such as reducing blood glucose (Biavatti et al., 2004Biavatti MV, Farias C, Curtius F, Brasil LM, Hort S, Schuster L, et al. Preliminary studies on Campomanesia xanthocarpa (Berg) and Cuphea carthagenensis (Jacq.) J. F. Macbr. Aqueous extract: weight control and biochemical parameters. Journal of Ethnopharmacology. 2004; 93: 385-389. doi:10.1016/j.jep.2004.04.015
https://doi.org/10.1016/j.jep.2004.04.01...
). In contrast, P. gonoacantha species is used for firewood and charcoal (Carvalho, 2003Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica, Colombo: Embrapa Florestas; 2003. ISBN 8573831677.), in addition to its pharmacological potential, while Z. tuberculosa is recommended for landscaping due to its crown appreciation (Lorenzi, 2008Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. 5. ed. Nova Odessa: Instituto Plantarum; 2008.).

The diameter distribution allows understanding its ecological aspects of forest species, providing subsidies for forest management and monitoring (Dardengo et al., 2017Dardengo JFE, Rossi APB, Silva CJ, Silva M. Spatial structure of Theobroma Subincanm Mart. and Theobromaspeciosum Willd. ex Sprend. the Parque Nacional do Juruena, Mato Grosso State, Brazil. Revista Árvore. 2007; 41(1): e410101. doi:10.1590/1806-90882017000100001
https://doi.org/10.1590/1806-90882017000...
). Therefore, diameter distribution analyses are fundamental as an indicator of forest structure. In addition, it is possible to identify different typologies and the intensity of natural regeneration at the species and forest level, as well as to measure the growth stock (Scolforo, 2006Scolforo JRS. Biometria florestal: modelos de crescimento e produção florestal. Lavras: UFLA/FAEPE; 2006.).

The probabilistic density functions provide a mean to analytically describe the diameter structure of species and forests. In the literature, there are some functions used for this purpose, in which we highlight the Log-normal, Gamma, and Weibull for natural forest formations (Machado et al., 2009Machado DAS, Augustynczik ALD, Nascimento RGM, Figura MA, Silva LCRD, Miguel EP, et al. Diameter distribution of Araucaria angustifolia (bert.) O. Ktze. in a fragment of Mixed Ombrophylous Forest. Scientia Agraria. 2009; 10(2):103-110.; Dalla Lana et al., 2013Dalla Lana M, Brandão, CFLS, Pellico Netto S, Marangon LC, Retslaff FAS. Diametric distribution of E Scheweilera ovata in a Dense Ombrophilus Forest fragment - Igarassu, Pernambuco, Brazil - Igarassu, PE. Floresta. 2013; 43(1): 59-68. doi:10.5380/rf.v43i1.25252
https://doi.org/10.5380/rf.v43i1.25252...
). Therefore, this work aimed to fit probabilistic density functions to evaluate the diameter structure of three tree species with economic interest in a Semideciduous Seasonal Forest fragment at São Paulo State, Brazil.

2. MATERIAL AND METHODS

This study was carried out in 164 hectares (ha) of a Semideciduous Seasonal Forest fragment in Assis, São Paulo State, Brazil. The area is located in the Middle Paranapanema region, between coordinates 22° 29' 17'' S and 50° 25' 26'' W, at an altitude of approximately 500 m above sea level. The region's relief ranges from flat to gently undulating.

According to the Köppen's classification, the region's climate is represented by a transition between humid subtropical climate types, warmer and with a defined dry season, and subtropical hot summer climate (Durigan, 2010Durigan G, Engel VL, Torezan, Melo ACG, Marques MCM, Martins SV, et al. Legal rules for ecological restoration: na additional barrier to hinder the success of initiatives? Revista Árvore. 2010; 34(3): 471-485. doi:10.1590/S0100-67622010000300011
https://doi.org/10.1590/S0100-6762201000...
). The rainfall is concentrated in the summer, with average annual precipitation around 1,400 mm, and the winter is dry, with average temperatures of 21.8 °C and the possibility of severe frosts (Brando and Durigan, 2005Brando PM, Durigan G. Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecology. 2005; 175: 205-215. doi:10.1007/s11258-005-0014-z
https://doi.org/10.1007/s11258-005-0014-...
).

The fixed area sampling method and the systematic sampling process were used in this study, with the allocation of 83 temporary sampling units of 10 m x 20 m. The total area sampled was 16,600 m2, representing 1.01% of the forest fragment. Data were collected between March and July 2020. The first plot was randomly established and, subsequently, the other sampling units were allocated at distances of 100 m from each other on the East-West axis and 200 m on the North-South axis.

The diameter of 5 cm was established as the minimum value to include a tree in the sample.

Subsequently, descriptive statistics and histograms were calculated to evaluate the heterogeneity of the diameter structures. The number of diameter classes and their intervals were defined using the Sturges' method (1926)Sturges H. The choice of a class interval. Journal of the American Statistical Association. 1926; 21: 65-66. doi:10.1080/01621459.1926.10502161
https://doi.org/10.1080/01621459.1926.10...
.

Log-Normal, Gamma, and Weibull probability density functions (Table 1) were fitted by the Maximum Likelihood method using the fitdistrplus-package (Muller and Dutang, 2015Muller MLD, Dutang C. fitdistrplus: an R package for fitting distributions. Journal of Statistical Software. 2015; 64(4): 1-34. doi:10.18637/jss.v064.i04.
https://doi.org/10.18637/jss.v064.i04....
) of the R program (R Core Team, 2021R Core Team. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing; 2021.). The estimation quality of the fits was assessed by the Kolmogorov-Smirnov's adherence test (α = 0.05). In addition, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC) statistics were used to select the best function for each species.

Table 1
Probability density functions fitted for tree species in a Semideciduous Seasonal Forest fragment.
Tabela 1
Funções de densidade de probabilidade ajustadas para espécies arbóreas em um fragmento de Floresta Semidecídua Estacionai

3. RESULTS

3.1. Diameter distribution and descriptive statistics

In this study, a total of 61 C. xanthocarpa tree stems were measured in 36 sampling units, 88 Z. tuberculosa stems in 42 sampling units and 91 P. gonoacantha stems in 43 sampling units (Table 2). C. xanthocarpa showed the lowest number of stems, range, and maximum diameter, as well as the lowest values for other descriptive statistics. The sample of Z. tuberculosa resulted in the highest number of diameter classes between the three species and two times more than C. xanthocarpa.

Table 2
Descriptive statistics of the variable diameter at 1.3 m above ground for tree species in a Semideciduous Seasonal Forest fragment.
Tabela 2
Estatística descritiva da variável diâmetro a 1,3 m do solo para as espécies arbóreas em um fragmento de Floresta Estacionai Semidecidual.

Figure 1 shows the histograms of the studied species, in which positive asymmetry was verified with mean diameter greater than the median value (Table 2). In addition, the distributions present the pattern of a negative exponential curve for native forests. However, the first class for C. xanthocarpa and Z. tuberculosa showed lower frequency than the upper class (Figure 1). Z. tuberculosa showed some classes without tree stems for diameters greater than 30 cm, with only one individual in the 60 cm to 65 cm class (Figure 1).

Figure 1
Diameter distribution histograms of tree species in a Semideciduous Seasonal Forest fragment.
Figura 1
Histogramas da distribuição diamétrica de espécies arbóreas em um fragmento de Floresta Estacional Semidecidual.

P. gonoacantha showed more tree stems distributed in the upper diameter classes when compared to the other species, with 54% concentrated in the diameter classes lower than 20 cm (Figure 1). In addition, although there was a negative exponential distribution tendency, a second mode was observed for P. gonoacantha in the diameter class of 20 cm to 25 cm.

3.2 Fitting probability density functions

Log-normal, Gamma, and Weibull functions presented adherence to the observed species distributions, resulting in non-significance by the Kolmogorov-Smirnov's test (D) at the 5% probability level (Table 3). Log-normal function resulted in the lowest D value statistics for C. xanthocarpa, followed by Gamma and Weibull. In addition, the lowest D value resulted by Weibull function for P gonoacantha, followed by Log-normal and Gamma. In contrast, lowest value was presented by the Log-normal for Z. tuberculosa, followed by Gamma and Weibull (Table 3).

Table 3
Parameters and statistics of probabilistic density functions fitted for tree species in a Semideciduous Seasonal Forest fragment.
Tabela 3
Parâmetros e estatísticas das funções de densidade probabilística ajustadas para as espécies arbóreas em um fragmento de Floresta Estacional Semidecidual.

Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC) allowed us to score the functions according to the estimation quality of the fits (Table 3). Log-Normal function was the one that most minimized the loss of information for C. xanthocarpa and Z. tuberculosa. On the contrary, Gamma function presented the lowest AIC and BIC values for P. gonoacantha. In addition to the classification, the quality of the fits can be evaluated by fitted curves in Figure 2.

Figure 2
Fitted curves of probabilistic density functions for tree species in a Semideciduous Seasonal Forest fragment.
Figura 2
Curvas ajustadas das funções de densidade probabilística para as espécies arbóreas em um fragmento de Floresta Estacional Semidecídua.

Log-normal function overestimated the frequencies in the second and third classes for C. xanthocarpa. Gamma function, although similar to the Log-normal, showed better estimates for the first diameter classes. Weibull function resulted in a lower quality of the fit, underestimating the frequency density in the first classes and overestimating them in the third and fourth diameter classes (Figure 2).

Gamma function resulted in better statistical performance for P. gonoacantha compared to the other functions, although it underestimated the frequency density in the first diameter class. Log-normal function overestimated for the second and third classes, while it underestimated for the fourth, fifth and sixth diameter classes. In contrast, Weibull also showed good fit, but underestimated in the first diameter class (Figure 2).

Log-normal fit overestimated the frequency density in the second class and underestimated it in the fourth diameter class for Z. tuberculosa. Weibull underestimated in the second and third classes and overestimated in the fifth, while Gamma function provided the best fit in the classes up to 30 cm in diameter. However, it was not possible to describe the behavior after 40 cm, since trees in the upper classes were not sampled, with only one tree in the 60 cm to 65 cm class, which was not estimated by the three fitted functions (Figure 2).

4. DISCUSSION

Although the species P. gonoacantha and Z. tuberculosa showed similar stem numbers, Z. tuberculosa showed greater homogeneity than P. gonoacantha by means of variation, in which P. gonoacantha resulted in greater diameter variability (Table 2). In addition, we found that the mean diameter was higher than the median value, which is considered a positive asymmetric distribution (Table 2).

Atendency of negative exponential or "reversed-J" shapes were observed when the diameter distributions were evaluated (Figure 1). However, the first diameter class for C. xanthocarpa and Z. tuberculosa showed a lower frequency density compared to the upper ones (Figure 1). This result indicates the presence of factors that influence the regeneration of these species, such as different successional stages within the same area.

In addition to recent anthropic disturbances, it is noteworthy that the studied fragment is located in a region of ecological contact between the Cerrado and Atlantic Forest biomes. This local characteristic may influence the species establishment and development in the site (Durigan and Leitão Filho, 1995Durigan G, Leitão Filho HF. Florística e fitossociologia de matas ciliares do oeste paulista. Revista Instituto Florestal. 1995; 7(2): 197-239.; Durigan and Ratter, 2006Durigan G, Ratter JA. Successional changes in cerradão and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinburgh Journal of Botany. 2006; 63(1): 119-130. doi:10.1017/S0960428606000357
https://doi.org/10.1017/S096042860600035...
).

The existence of sites with clearings and lianas were verified in the forest fragment, in which forest fires remnants were also observed. These factors highlight the hypothesis of disturbance, as well as the re-establishment process of the forest structure. These facts also corroborate the lack of larger diameter stems for Z. tuberculosa, which is considered a late species in a forest succession (Carvalho, 2003Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica, Colombo: Embrapa Florestas; 2003. ISBN 8573831677.).

For the P. gonoacantha, Marangon et al. (2008)Marangon LC, Feliciano ALP, Brandão CFLS, Alves Junior FT. Relações florísticas, estrutura diamétrica e hipsométrica de um fragmento de Floresta Estacional Semidecidual em Viçosa (MG). Floresta. 2008; 38(4): 699-709. and Machado et al. (2010)Machado ELM, Gonzaga APD, Carvalho WAC, Souza JS, Higuchi P, Santos RM, et al. Temporal fluctuations in the diametric distribution patterns of the trees and shrub community and 15 populations in a forest fragment. Revista Árvore. 2010; 34(4): 723-732. doi:10.1590/S0100-67622010000400017
https://doi.org/10.1590/S0100-6762201000...
observed that more than 85% and 90% of the diameters, respectively, were present in classes lower than 20 cm. Since this species is classified as pioneer (Marangon et al., 2007Marangon LC, Soares JJ, Feliciano ALP, Brandão CFLES. Phytosociological structure and sucession classification of the arboreous component in fragment of seasonal semideciduous forest in Viçosa, Minas Gerais. Cerne. 2007; 13(2): 208-221.; Gusson et al., 2009Gusson AE, Lopes SDF, Dias Neto OC, Vale VSD, Oliveira APD, Schiavini, I. Soil chemistry and structure in a fragment of Seasonal Semidecidous Forest in Ipiaçu, Minas Gerais, Brazil. 2009; 60(2): 403-414. doi:10.1590/2175-7860200960212
https://doi.org/10.1590/2175-78602009602...
; Sá et al., 2012Sá D, Lopes S, Prado Júnior JAD, Schiavini I, Vale V, Oliveira AP, et al. Structure and ecological groups of a fragment seasonal semideciduous forest in Triângulo Mineiro, Brazil. Caminhos Geografia. 2012; 13: 89-101.; Guedes and Krupek, 2017Guedes JS, Krupek RA. Ecological characteristics and phytosanitary of tree species in a Rain Forest fragment of southeast region of São Paulo State. Revista Ambiência. 2017; 13(2): 311-324. doi: 10.5935/ambiencia.2017.02.04
https://doi.org/10.5935/ambiencia.2017.0...
) or early secondary (Leite and Rodrigues, 2008Leite EC, Rodrigues RR. Phytosociology and successional characterization of a fragment of Tropical Seasonal Forest in Southeastern Brazil. Revista Árvore. 2008; 32(3): 583-595. doi:10.1590/S0100-67622008000300019
https://doi.org/10.1590/S0100-6762200800...
), it is possible that the P. gonoacantha showed better development and reached higher diameters, due to the presence of clearings and areas in initial succession stage. In addition, the second mode for P. gonoacantha (Figure 1) can be explained by natural disturbances and anthropic interventions that resulted in a multimodal distribution for the same species (Ebling and Péllico Netto, 2015Ebling ÂA, Péllico Netto S. Modeling the occurrence of cohorts in the diametric structure of Araucaria Angustifolia (Bertol.) Kuntze Cerne. 2015; 21(2): 251-257. doi:10.1590/01047760201521111667
https://doi.org/10.1590/0104776020152111...
).

For the C. xanthocarpa, this species is expected to reach diameter classes greater than 16 cm, resulting in a longer tail for its diameter curve. New recruitment will depend on the presence of regenerating trees with diameters lower than 5 cm, in addition to a seedling bank and dispersing organisms. This seedling bank is essential for a community's perpetuation and represented by many trees in tropical regions (Durigan et al., 2010Durigan G. Plano de manejo da Estação Ecológica de Assis. São Paulo: Instituto Florestal; 2010. [cited 2022 March 30]. Available from: https://smastr16.blob.core.windows.net/iflorestal/2013/03/Plano_de_Manejo_EEc_Assis.pdf
https://smastr16.blob.core.windows.net/i...
). In addition, a good fruiting of adult trees is also important for the continuity of these species, ensuring a considerable number of seeds. Furthermore, the presence of dispersers is necessary for C. xanthocarpa, since this species depends on the zoochory for fruits and seeds dispersions.

For the conservation purposes, non-disturbance tends to support the forest development to higher succession strata, as well as the canopy closure in gaps. According to Durigan and Ratter (2006)Durigan G, Ratter JA. Successional changes in cerradão and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinburgh Journal of Botany. 2006; 63(1): 119-130. doi:10.1017/S0960428606000357
https://doi.org/10.1017/S096042860600035...
, climate evidence and field observations indicate that the forests would be expanding rapidly at the present over the absence of anthropic impacts, such as fires and cattle raising. Therefore, non-pioneer species, such as C. xanthocarpa (Klauberg et al., 2010Klauberg C, Paludo GF, Bortoluzzi RLC, Mantovani A. Floristics and structure of a Mixed Rain Forest remnant on the Catarinense Plateau. Biotemas. 2010; 23(1): 35-47. doi:10.5007/2175-7925.2010v23n1p35.
https://doi.org/10.5007/2175-7925.2010v2...
) and Z. tuberculosa (Crepaldi and Peixoto, 2013Crepaldi MOS, Peixoto AL. Floristic and phytosociology in a fragment handled by quilombolas in Santa Leopoldina, Espírito Santo: tools for restoration in the Central Corridor of the Atlantic Forest. Boletim do Museu de Biologia Mello Leitão. 2013; 31: 5-24.), tend to develop better at these sites in short-to medium-term.

Since P. gonoacantha is considered a pioneer species, it will present a decrease in frequency density in the upper classes in medium-to-long-term, due to the mortality and successional forest fragment evolution. Consequently, considering an undisturbed ecosystem, the species tends to its characteristic distribution, in which more than 85% of the diameters are concentrated under 20 cm (Marangon et al., 2008Marangon LC, Feliciano ALP, Brandão CFLS, Alves Junior FT. Relações florísticas, estrutura diamétrica e hipsométrica de um fragmento de Floresta Estacional Semidecidual em Viçosa (MG). Floresta. 2008; 38(4): 699-709.; Machado et al., 2010Machado ELM, Gonzaga APD, Carvalho WAC, Souza JS, Higuchi P, Santos RM, et al. Temporal fluctuations in the diametric distribution patterns of the trees and shrub community and 15 populations in a forest fragment. Revista Árvore. 2010; 34(4): 723-732. doi:10.1590/S0100-67622010000400017
https://doi.org/10.1590/S0100-6762201000...
).

The diameter distribution can be one of the criteria to define the sustainable management. Therefore, the species P. gonoacantha is potential for firewood, while it is possible to obtain sawmill diameters for C. xanthocarpa in a long-term. In addition, it is possible to manage Z. tuberculosa trees of higher diameter classes for sawmill in medium-to-long-term. Although there are examples in the literature of C. xanthocarpa with maximum diameters of approximately 40 cm (Bianchini et al., 2003Bianchini E, Popolo RS, Dias MC, Pimenta JA. Diversity and structure of a tree species community in flooded area in the municipality of Londrina, Southern Brazil. Acta Botanica Brasilica. 2003; 17(3): 405-419. doi:10.1590/S0102-33062003000300008
https://doi.org/10.1590/S0102-3306200300...
, Andrzejewski et al., 2020Andrzejewski C, Longhi SJ, Callegaro RM, Santos EL. Dynamics of arboreal species in ripary decidual seasonal forest in the northwest of Rio Grande do Sul. Biofix Scientific Journal. 2020; 5: 231-238. doi:10.5380/biofix.v5i2.71871
https://doi.org/10.5380/biofix.v5i2.7187...
), 50 cm (Lorenzi, 2008Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. 5. ed. Nova Odessa: Instituto Plantarum; 2008.; Orellana et al., 2014Orellana E, Figueiredo Filho A, Péllico Netto S, Dias AN. Modeling of the diameter distribution for forest species in a fragment of mixed ombrophyllous forest. Revista Árvore. 2014; 38(2): 297-308. doi:10.1590/S0100-67622014000200010
https://doi.org/10.1590/S0100-6762201400...
; Trautenmüller et al., 2019Trautenmüller JW, Péllico Netto S, Balbinot R, Dalla Corte AP, Vendruscolo R. Modelagem da estrutura diamétrica em ecótono de floresta ombrófila mista e estacional decidual submetida a manejo florestal sustentado. BIOFIX Scientific Journal. 2019; 4(1): 26-34. doi:5380/biofix.v4i1.62627
https://doi.org/5380/biofix.v4i1.62627...
), and 70 cm (Carvalho, 2003Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica, Colombo: Embrapa Florestas; 2003. ISBN 8573831677.), trees with diameters greater than 15.92 cm were not found in the present study (Table 2).

5. CONCLUSION

By means of the diameter structures, the species Campomanesia xanthocarpa, Piptadenia gonoacantha and Zeyheria tuberculosa showed positive asymmetry approximately similar to the negative exponential pattern of native forests. This evidence indicates a natural regeneration in continuous flow and stability.

Log-normal, Gamma, and Weibull functions were statistically adequate for the three species, resulting in adherence between observed and estimated values. Based on Akaike and Bayesian information criteria, Log-normal function was appropriate for C. xanthocarpa and Z. tuberculosa, while Gamma was indicated for P. gonoacantha. Therefore, Gamma function was recommended for the three species, considering the graphical fit analyses.

6. REFERENCES

  • Andrzejewski C, Longhi SJ, Callegaro RM, Santos EL. Dynamics of arboreal species in ripary decidual seasonal forest in the northwest of Rio Grande do Sul. Biofix Scientific Journal. 2020; 5: 231-238. doi:10.5380/biofix.v5i2.71871
    » https://doi.org/10.5380/biofix.v5i2.71871
  • APG IV - The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 2016; 181(1): 1-20. doi: /10.1111/boj.12385.
    » https://doi.org/10.1111/boj.12385
  • Bianchini E, Popolo RS, Dias MC, Pimenta JA. Diversity and structure of a tree species community in flooded area in the municipality of Londrina, Southern Brazil. Acta Botanica Brasilica. 2003; 17(3): 405-419. doi:10.1590/S0102-33062003000300008
    » https://doi.org/10.1590/S0102-33062003000300008
  • Biavatti MV, Farias C, Curtius F, Brasil LM, Hort S, Schuster L, et al. Preliminary studies on Campomanesia xanthocarpa (Berg) and Cuphea carthagenensis (Jacq.) J. F. Macbr. Aqueous extract: weight control and biochemical parameters. Journal of Ethnopharmacology. 2004; 93: 385-389. doi:10.1016/j.jep.2004.04.015
    » https://doi.org/10.1016/j.jep.2004.04.015
  • Brando PM, Durigan G. Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecology. 2005; 175: 205-215. doi:10.1007/s11258-005-0014-z
    » https://doi.org/10.1007/s11258-005-0014-z
  • Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica, Colombo: Embrapa Florestas; 2003. ISBN 8573831677.
  • Cole TCH, Hilger HH, Stevens P. Angiosperm phylogeny poster (APP) – Flowering plant systematics. PeerJ Preprints. 2019; 7: e2320v6. doi:10.7287/peerj.preprints.2320v6
    » https://doi.org/10.7287/peerj.preprints.2320v6
  • Crepaldi MOS, Peixoto AL. Floristic and phytosociology in a fragment handled by quilombolas in Santa Leopoldina, Espírito Santo: tools for restoration in the Central Corridor of the Atlantic Forest. Boletim do Museu de Biologia Mello Leitão. 2013; 31: 5-24.
  • Dalla Lana M, Brandão, CFLS, Pellico Netto S, Marangon LC, Retslaff FAS. Diametric distribution of E Scheweilera ovata in a Dense Ombrophilus Forest fragment - Igarassu, Pernambuco, Brazil - Igarassu, PE. Floresta. 2013; 43(1): 59-68. doi:10.5380/rf.v43i1.25252
    » https://doi.org/10.5380/rf.v43i1.25252
  • Dardengo JFE, Rossi APB, Silva CJ, Silva M. Spatial structure of Theobroma Subincanm Mart. and Theobromaspeciosum Willd. ex Sprend. the Parque Nacional do Juruena, Mato Grosso State, Brazil. Revista Árvore. 2007; 41(1): e410101. doi:10.1590/1806-90882017000100001
    » https://doi.org/10.1590/1806-90882017000100001
  • Durigan G, Engel VL, Torezan, Melo ACG, Marques MCM, Martins SV, et al. Legal rules for ecological restoration: na additional barrier to hinder the success of initiatives? Revista Árvore. 2010; 34(3): 471-485. doi:10.1590/S0100-67622010000300011
    » https://doi.org/10.1590/S0100-67622010000300011
  • Durigan G. Plano de manejo da Estação Ecológica de Assis. São Paulo: Instituto Florestal; 2010. [cited 2022 March 30]. Available from: https://smastr16.blob.core.windows.net/iflorestal/2013/03/Plano_de_Manejo_EEc_Assis.pdf
    » https://smastr16.blob.core.windows.net/iflorestal/2013/03/Plano_de_Manejo_EEc_Assis.pdf
  • Durigan G, Leitão Filho HF. Florística e fitossociologia de matas ciliares do oeste paulista. Revista Instituto Florestal. 1995; 7(2): 197-239.
  • Durigan G, Ratter JA. Successional changes in cerradão and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962-2000. Edinburgh Journal of Botany. 2006; 63(1): 119-130. doi:10.1017/S0960428606000357
    » https://doi.org/10.1017/S0960428606000357
  • Ebling ÂA, Péllico Netto S. Modeling the occurrence of cohorts in the diametric structure of Araucaria Angustifolia (Bertol.) Kuntze Cerne. 2015; 21(2): 251-257. doi:10.1590/01047760201521111667
    » https://doi.org/10.1590/01047760201521111667
  • Guedes JS, Krupek RA. Ecological characteristics and phytosanitary of tree species in a Rain Forest fragment of southeast region of São Paulo State. Revista Ambiência. 2017; 13(2): 311-324. doi: 10.5935/ambiencia.2017.02.04
    » https://doi.org/10.5935/ambiencia.2017.02.04
  • Gusson AE, Lopes SDF, Dias Neto OC, Vale VSD, Oliveira APD, Schiavini, I. Soil chemistry and structure in a fragment of Seasonal Semidecidous Forest in Ipiaçu, Minas Gerais, Brazil. 2009; 60(2): 403-414. doi:10.1590/2175-7860200960212
    » https://doi.org/10.1590/2175-7860200960212
  • Kampa MB, Homczinski I, Roque RH, Figueiredo Filho A, Peres FSB, Tambarussi EV. Genetic variability in nusery-grown progenies of Campomanesia xanthocarpa Mart. ex O. Berg. Scientia Forestalis. 2020; 48(125): e2935. doi: 10.18671/scifor.v48n125.10
    » https://doi.org/10.18671/scifor.v48n125.10
  • Klauberg C, Paludo GF, Bortoluzzi RLC, Mantovani A. Floristics and structure of a Mixed Rain Forest remnant on the Catarinense Plateau. Biotemas. 2010; 23(1): 35-47. doi:10.5007/2175-7925.2010v23n1p35.
    » https://doi.org/10.5007/2175-7925.2010v23n1p35.
  • Leite EC, Rodrigues RR. Phytosociology and successional characterization of a fragment of Tropical Seasonal Forest in Southeastern Brazil. Revista Árvore. 2008; 32(3): 583-595. doi:10.1590/S0100-67622008000300019
    » https://doi.org/10.1590/S0100-67622008000300019
  • Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. 5. ed. Nova Odessa: Instituto Plantarum; 2008.
  • Machado DAS, Augustynczik ALD, Nascimento RGM, Figura MA, Silva LCRD, Miguel EP, et al. Diameter distribution of Araucaria angustifolia (bert.) O. Ktze. in a fragment of Mixed Ombrophylous Forest. Scientia Agraria. 2009; 10(2):103-110.
  • Machado ELM, Gonzaga APD, Carvalho WAC, Souza JS, Higuchi P, Santos RM, et al. Temporal fluctuations in the diametric distribution patterns of the trees and shrub community and 15 populations in a forest fragment. Revista Árvore. 2010; 34(4): 723-732. doi:10.1590/S0100-67622010000400017
    » https://doi.org/10.1590/S0100-67622010000400017
  • Marangon LC, Feliciano ALP, Brandão CFLS, Alves Junior FT. Relações florísticas, estrutura diamétrica e hipsométrica de um fragmento de Floresta Estacional Semidecidual em Viçosa (MG). Floresta. 2008; 38(4): 699-709.
  • Marangon LC, Soares JJ, Feliciano ALP, Brandão CFLES. Phytosociological structure and sucession classification of the arboreous component in fragment of seasonal semideciduous forest in Viçosa, Minas Gerais. Cerne. 2007; 13(2): 208-221.
  • Muller MLD, Dutang C. fitdistrplus: an R package for fitting distributions. Journal of Statistical Software. 2015; 64(4): 1-34. doi:10.18637/jss.v064.i04.
    » https://doi.org/10.18637/jss.v064.i04.
  • Orellana E, Figueiredo Filho A, Péllico Netto S, Dias AN. Modeling of the diameter distribution for forest species in a fragment of mixed ombrophyllous forest. Revista Árvore. 2014; 38(2): 297-308. doi:10.1590/S0100-67622014000200010
    » https://doi.org/10.1590/S0100-67622014000200010
  • R Core Team. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing; 2021.
  • Ramos VS, Durigan G, Franco GADC, Siqueira MF, Rodrigues R. R. Árvores da Floresta Estacional Semidecidual: guia de identificação de espécies. 2. ed. São Paulo: Editora da Universidade de São Paulo; 2015.
  • Sá D, Lopes S, Prado Júnior JAD, Schiavini I, Vale V, Oliveira AP, et al. Structure and ecological groups of a fragment seasonal semideciduous forest in Triângulo Mineiro, Brazil. Caminhos Geografia. 2012; 13: 89-101.
  • SIMA - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo. Inventário florestal do Estado de São Paulo: Mapeamento da cobertura vegetal nativa. São Paulo: Instituto Florestal; 2020. [cited 2022 March 30]. Available from: https://smastr16.blob.core.windows.net/home/2020/07/inventarioflorestal2020.pdf
    » https://smastr16.blob.core.windows.net/home/2020/07/inventarioflorestal2020.pdf
  • Scolforo JRS. Biometria florestal: modelos de crescimento e produção florestal. Lavras: UFLA/FAEPE; 2006.
  • Sturges H. The choice of a class interval. Journal of the American Statistical Association. 1926; 21: 65-66. doi:10.1080/01621459.1926.10502161
    » https://doi.org/10.1080/01621459.1926.10502161
  • Trautenmüller JW, Péllico Netto S, Balbinot R, Dalla Corte AP, Vendruscolo R. Modelagem da estrutura diamétrica em ecótono de floresta ombrófila mista e estacional decidual submetida a manejo florestal sustentado. BIOFIX Scientific Journal. 2019; 4(1): 26-34. doi:5380/biofix.v4i1.62627
    » https://doi.org/5380/biofix.v4i1.62627

Publication Dates

  • Publication in this collection
    23 Jan 2023
  • Date of issue
    2023

History

  • Received
    20 Apr 2022
  • Accepted
    18 Oct 2022
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br