Acessibilidade / Reportar erro

WOOD AND CHARCOAL QUALITY IN THE SELECTION OF Eucalyptus spp. CLONES AND Corymbia torelliana X Corymbia citriodora FOR STEEL INDUSTRY

QUALIDADE DA MADEIRA E DO CARVÃO VEGETAL NA SELEÇÃO DE CLONES DE Eucalyptus spp. E Corymbia torelliana X Corymbia citriodora PARA SIDERURGIA

ABSTRACT

Wood from planted forests is the main input in the charcoal production chain. However, the heterogeneity of charcoal, in terms of its physical, chemical and mechanical properties, and the low yield in production processes is among the main problems faced by industries. To select the best clones for the production of charcoal for steelmaking, the objective of this work was to evaluate the properties of wood, in addition to the yield and quality of charcoal from different genotypes of Eucalyptus and Corymbia. Five clones of Eucalyptus spp., 8 years old and one of Corymbia torelliana x Corymbia citriodora, 4 years old were studied. In the wood were determined the basic density, structural chemical composition, thermogravimetric analysis (TG/DTG), crystallinity index and higher heating value. Carbonizations were carried out in a muffle oven, with a total time of 270 minutes, starting at 150°C and ending at 450°C. The gravimetric yield, apparent density, higher heating value and proximate analysis of charcoal were determined. The wood basic density varied between 477 and 652 kg/m3, with the highest value observed for the Eucalyptus cloeziana clone. This clone also had the highest total lignin content (32.6%), the highest charcoal yield (36.3%) and charcoal with the highest apparent density (466 kg/m3). The two clones of Eucalyptus urophylla had the highest heating value for charcoal, whose mean was 7545 kcal/kg. The clone of Corymbia torelliana x Corymbia citriodora, having an apparent density greater than 500 kg/m3 at 4 years of age, stood out in terms of productivity. All evaluated clones have potential for charcoal production, however, the Eucalyptus cloeziana clone stood out positively, being the most suitable for charcoal production.

Keywords:
Lignin; Density; Higher heating value

RESUMO

A madeira oriunda de florestas plantadas é o insumo principal na cadeia produtiva do carvão vegetal. No entanto, a heterogeneidade do carvão vegetal, em termos de suas propriedades físicas, químicas e mecânicas e o baixo rendimento nos processos de produção, está entre os principais problemas enfrentados pelas indústrias. Visando selecionar os melhores clones para a produção de carvão vegetal para uso siderúrgico, o objetivo desse trabalho foi avaliar as propriedades da madeira, além do rendimento e qualidade do carvão vegetal provenientes de diferentes genótipos de Eucalyptus e Corymbia. Foram estudados cinco clones de Eucalyptus spp., com idade de 8 anos e um de Corymbia torelliana x Corymbia citriodora, com idade de 4 anos. Na madeira, determinou-se a densidade básica, composição química estrutural, análise termogravimética (TG/DTG), índice de cristalinidade e poder calorífico superior. Foram realizadas carbonizações em forno mufla, com tempo total de 270 minutos, iniciando em 150°C e finalizando em 450°C. Determinou-se o rendimento gravimétrico, a densidade aparente, o poder calorífico superior e a composição química imediata do carvão vegetal. A densidade básica da madeira variou entre 477 e 652 kg/m3, sendo que o maior valor foi observado para o clone de Eucalyptus cloeziana. Este clone também apresentou o maior teor de lignina total (32,6%), maior rendimento em carvão vegetal (36,3%) e carvão vegetal com maior densidade aparente (466 kg/m3). Os dois clones de Eucalyptus urophylla apresentaram maior poder calorífico superior para o carvão vegetal, cuja média foi 7545 kcal/kg. O clone de Corymbia torelliana x Corymbia citriodora, por ter densidade aparente superior a 500 kg/m3, aos 4 anos de idade, foi o destaque em termos de produtividade. Todos os clones avaliados possuem potencial para a produção de carvão vegetal, porém o clone Eucalyptus cloeziana se destacou positivamente, sendo o mais indicado para a produção de carvão vegetal.

Palavras-Chave:
Lignina; Densidade; Poder calorífico superior

1. INTRODUCTION

Of the total energy consumed, considering primary uses, the use of non-renewable fuels represents 85%. The world demand for energy is constantly expanding and could increase 46% by 2050 (EIA, 2021Energy Information Administration - EIA. IEO2021 Highlights. 2021 [citado em 27 de abril de 2022]. Available in: https://www.eia.gov/outlooks/ieo/pdfIEO2021_ReleasePresentation.pdf
https://www.eia.gov/outlooks/ieo/pdfIEO2...
). In countries with newly industrialized economies and in transition such as the BRICs (Brazil, Russia, India and China), the opening of trade leads to an increase in demand for energy. However, biomass energy is the best choice for these countries, as this energy source is more available in these areas, in addition to mitigating environmental pollution (Danish and Wang, 2019Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of the total environment. 2019; 670:1075-1083.).

Energy from trees planted in Brazil reached 90.91 million GJ in 2021, which corresponds to an increase of 27.5% compared to 2017 (IBÁ, 2022Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2022. [cited in April 17, 2023]. Available in https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf
https://www.iba.org/datafiles/publicacoe...
). In addition, carbon sequestration during tree growth favors the reduction of CO2 emissions into the atmosphere, thus mitigating global greenhouse gas emissions (Zhang et al., 2012Zhang, H., Guan, D., Song, M. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecology and Management. 2012; 277: 90-97.; Shahbaz et al., 2017Shahbaz M, Solarin SA, Hammoudeh S, Shahzad SJH. Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: the role of biomass energy consumption in the United States. Energy Economics. 2017; 68:548-565.). In this context, forest biomass stands out as a primary source of renewable energy, in the form of wood, charcoal, waste from the forest-based industry, among other materials of plant origin (Brand, 2010Brand MA. Energia da Biomassa Florestal. Rio de Janeiro: Interciência; 2010.).

Among the various species for planting, aiming at wood production, those of the genus Eucalyptus and Corymbia stand out due to their fast growth, resistance to adverse conditions and the possibility of denser plantings (Lopes et al., 2017Lopes ED, Laia ML de, Santos AS, Soares GM, Leite RWP, Martins NS. Influência do espaçamento de plantio na produção energética de clones de Corymbia e Eucalyptus. Floresta. 2017;47(1):95-104.). Of the areas destined to cultivate forests for commercial purposes in Brazil, Eucalyptus plantations correspond to 76% of the total coverage, equivalent to 7.53 million hectares (IBA, 2022Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2022. [cited in April 17, 2023]. Available in https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf
https://www.iba.org/datafiles/publicacoe...
). In 2018, 12% of the total area of planted trees was destined to the production of charcoal for the steel industry (IBÁ, 2019Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2019. [cited in June 27, 2023]. Available in https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf
https://iba.org/datafiles/publicacoes/re...
).

Brazil is the largest producer of charcoal for industrial purposes, accounting for 12% of world production (IBÁ, 2022Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2022. [cited in April 17, 2023]. Available in https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf
https://www.iba.org/datafiles/publicacoe...
). The total amount of pig iron produced in Brazil in 2021 was 33.8 million tons, with 77% having coal as raw material and 23% charcoal. Wood from planted forests is the main input in the charcoal production chain. The main producing state was Minas Gerais, responsible for 40% of the total production (SINDIFER, 2022Sindicato da Indústria do Ferro no Estado de Minas Gerais - SINDIFER. Produção de ferro gusa em Minas Gerais e no Brasil: Anuário estatístico - Ano base 2021. 2022 [cited in April 17, 2023]. Available in http://sindifer.com.br/sndfr/anuario-estatistico/
http://sindifer.com.br/sndfr/anuario-est...
).

The heterogeneity of charcoal, in terms of its physical, chemical and mechanical properties and the low yield in production processes, is among the main problems faced by industries (Vieira et al., 2013Vieira RS, Lima JT, Monteiro TC, Selvatti TS, Baraúna EEP, Napoli A. Influência da temperatura no rendimento dos produtos da carbonização de Eucalyptus microcorys. Cerne. 2013;19(1):59-64.; Pereira et al., 2021Pereira KD, Carneiro APS, Santos GR, Carneiro ACO, Leite HG, Borges FP. Study of the influence of wood properties on the charcoal production: Applying the random forest algorithm. Revista Árvore. 2021; 45.). In addition to clonal variability, the interaction between clones and planting site can influence the properties of wood and charcoal (Neves et al., 2011Neves TA, Protásio TP, Couto AM, Trugilho PF, Silva VO, Vieira CMM. Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal. Pesquisa Florestal Brasileira. 2011;31(68):319-330.). In this context, increasing the charcoal yield and its quality is essential to increase the competitiveness of this input in the steel industry. In general, there are many Eucalyptus and, more recently, Corymbia genotypes that have been developed or are in the development phase for charcoal production. However, only growth variables, commonly used as genotype selection criteria, are not enough to produce charcoal with satisfactory yield and quality. Therefore, physical and chemical properties of wood and charcoal, in addition to the gravimetric yield estimated in laboratory furnaces, need to be considered in the selection criteria, in order to obtain answers regarding the yields and quality expected by the steel sector.

Therefore, the objective of this work was to determine the quality indices of wood (basic density, crystallinity index, structural chemical composition, higher heating value) and charcoal (gravimetric yield, apparent density, proximate analysis, higher heating value) of Eucalyptus and Corymbia clones and their correlations and indicate the best clones to serve the charcoal industry.

2. MATERIALS AND METHODS

2.1. Materials

Woods of six genotypes were evaluated (Table 1), originating from a clonal test, located in the municipality of Paraopeba, Minas Gerais, cultivated in spacing of 3x2 meters. Five trees were selected for each of the six clones, totaling 30 trees (experimental units).

Table 1
Clones evaluated and their respective cut ages.
Tabela 1
Clones avaliados e suas respectivas idades de corte.

From each tree, six discs of 5 cm thickness were removed, corresponding to breast height and 0, 25, 50, 75 and 100% of the commercial height of the tree, with a diameter of 6 cm. From the disks, two opposing wedges were obtained, passing through the pith, used to determine the basic density of the wood. The remainder of each disc was sectioned and a composite sample was formed, being destined for carbonization and chemical and thermogravimetric analyses.

2.2. Wood properties

The basic density of the wood was determined by the method of immersion in water, in accordance with the ABNT NBR 11941 (ABNT, 2003Associação Brasileira de Normas Técnicas - ABNT. NBR 11941: Madeira: determinação da densidade básica. Rio de Janeiro, RJ: 2003.) standard. The mean basic density values of each tree were calculated by weighting the densities of the wedges taken along the trunk, using the volume of the logs between two consecutive disks as a weighting factor, as described by Vital (1984)Vital BR. Métodos de determinação da densidade da madeira. Boletim Técnico SIF. Viçosa, MG: 1984..

For the chemical characterization, higher heating value and thermogravimetric analysis, the wood samples were transformed into sawdust, using a Wiley-type mill, in accordance with the TAPPI 257 standard (TAPPI, 2021TAPPI - Technical Association of the Pulp and Paper Industry. T 257 sp-21: sampling and preparing wood for analysis. In: TAPPI teste methods. Atlanta, USA, 2021.). The fraction classified between 40 and 60 mesh was used.

The higher heating value of wood was determined according to the methodology described by DIN EN 14918 (DIN, 2010Deutsches Institut Fur Normung - DIN EN 14918. Solid biofuels - Determination of calorifc value. Berlin, Germany: 2010.) standard, using an adiabatic bomb calorimeter model IKA200, in dynamic mode.

The determination of moisture content in oven-dry wood was carried out according to the TAPPI 264 standard (TAPPI, 2022TAPPI - Technical Association of the Pulp and Paper Industry. T 264 cm-22: preparation of wood for chemical analysis. In: TAPPI test methods. Atlanta, USA, 2022.). The levels of wood extractives were determined in duplicates, according to TAPPI standard 204 cm-17 (TAPPI, 2017TAPPI - Technical Association of the Pulp and Paper Industry. T 204 cm-17: solvent extractives of wood and pulp. In: TAPPI test methods. Atlanta, USA, 2017.), using the total extractives determination method, substituting ethanol/benzene for ethanol/toluene. The insoluble lignin contents were determined in duplicate by the Klason method, modified according to the procedure proposed by Gomide and Demuner (1986)Gomide JL, Demuner BJ. Determinação do teor de lignina em material lenhoso: método Klason modificado. O Papel. 1986;47(8):36 -38.. The soluble lignin was determined by spectrometry, according to Goldschimid (1971)Goldschimid O. Ultraviolet spectra. In: Sarkanen K v., Ludwing CH, editores. Lignins: occurrence, formation, structure and reactions. New York, USA: Wiley Interscience; 1971. p. 241-266., from the dilution of the filtrate resulting from the procedure for obtaining the insoluble lignin. The total lignin content was obtained by adding the soluble and insoluble lignin values. The percentage of holocellulose was calculated by difference, subtracting the sum of total lignin, extractives and ash from 100. The percentage of ash in the wood was determined according to the ASTM D1102-84 (ASTM, 2021American Society for Testing and Materials - ASTM D1102 - 84. Standard Test Method for Ash in Wood. West Conshohocken, Estados Unidos: 2021.) standard, using a porcelain crucible.

To determine the crystallinity index, composite samples classified between sieves of 200 and 270 mesh were used. About 0.1g of sample was fixed on a quartz slide, using enough PVA glue to form a thin compact layer on the slide. The technique used to calculate the crystallinity index was X-ray diffraction. This technique uses the scattering of X radiation by organized structures (crystals), which allows morphological studies to be carried out on materials, determining their structure and crystalline fraction (Baumhardt Neto, 2003Baumhardt Neto R. Raios X. In: Canevarolo júnior SV, editor. Técnicas de caracterização de polímeros. São Paulo, SP: Artliber; 2003. p. 41-60.). X-ray diffraction analyzes were carried out at room temperature in a D8-Discover diffraction system (Bruker) equipped with a Cu tube (L=1.5418 angstroms, 40kV and 40 mA) and a Goebel mirror. A θ - 2θ scan from 10 to 40 degrees was used, with a step of 0.05 degrees per second. Using the OriginLab 2019 software, the cellulose crystallinity index was calculated using the method by Segal et al. (1959)Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959;29(10):786-794..

Thermogravimetric analysis (TG) was performed to evaluate the mass loss as a function of temperature and the curve of the first derivative of mass loss (DTG). For the analysis, the DTG-60H device, Shimadzu, was used. The analyzes were carried out under a nitrogen gas atmosphere, at a constant flow of 50 ml.min-1, using approximately 2 mg of sawdust selected in overlapping sieves of 200 and 270 mesh, the fraction used was that retained in the latter, in open alumina capsule. The thermogravimetric curves were obtained from 50°C up to a maximum temperature of 600°C, with a heating rate of 10°C.min-1. From the TG curves, mass loss calculations were made in the following temperature ranges: room temperature up to 100°C, 100-200°C, 200-250°C, 250-300°C, 300-350°C, 350-400°C and 400-450°C. The residual mass at a temperature of 450°C was also calculated, taking into account the dry mass, at a temperature of 100 °C.

2.3. Properties of charcoal

For wood carbonization, approximately 400 g of wood, composed of all heights, with dimensions of 1x1x5 cm, oven-dry, were inserted into a cylindrical metallic reactor. The reactor was placed inside a muffle oven, model GP2000G. The process was conducted with respective initial and final temperatures of 150 and 450°C, with an increase of 50°C every 30 minutes, remaining for 60 minutes at temperatures of 400 and 450°C, in a total time of 4.5h. After each carbonization, the gravimetric yields of charcoal were determined, according to (Equation 1).

Eq.1 Gravimetric yield = charcoal mass wood dry mass

The apparent relative density of the charcoal was determined by the hydrostatic method, through immersion in mercury, as described by Vital (1984)Vital BR. Métodos de determinação da densidade da madeira. Boletim Técnico SIF. Viçosa, MG: 1984.. Six sample density determinations were carried out by carbonization and the apparent density was obtained by the arithmetic mean. The higher heating value of charcoal was determined according to the methodology described by DIN EN 14918 (DIN, 2010Deutsches Institut Fur Normung - DIN EN 14918. Solid biofuels - Determination of calorifc value. Berlin, Germany: 2010.) standard, using an adiabatic bomb calorimeter model IKA200, in dynamic mode.

The proximate analysis of charcoal, which corresponds to the contents of volatile matter, ash and fixed carbon, was determined according to ASTM D1762 - 84 (ASTM, 2021American Society for Testing and Materials - ASTM D1762 - 84. Standard Test Method for Chemical Analysis of Wood Charcoal. West Conshohocken, Estados Unidos: 2021) standard, replacing the platinum crucible with a porcelain crucible and the temperature for determination of ash content from 750°C to 600°C.

2.4. Statistical analysis

The experiment consisted of 6 treatments (clones) and 5 repetitions (trees). Data were submitted to the Lilliefors test, to test normality, and the Cochran test, to test the homogeneity of variances. Then the data were submitted to analysis of variance (ANOVA), and when differences were established between them, the Tukey test was applied at a 95% significance level. To determine the existing correlations between the properties of wood and charcoal, Pearsons correlation coefficient at 5% significance was used. Statistical analyzes were performed using the sofware Statsoft Statistica 7.0 (Statsoft, 2004Statsoft I. Statistica data analysis system, version 7.0. New York, USA: Tulsa: Statsoft Inc; 2004.).

3. RESULTS

In (Table 2) are presented the mean values of basic density, structural chemical composition, crystallinity index and higher heating value of the different clones.

Table 2
Physical, chemical and energetic properties of wood from the evaluated clones.
Tabela 2
Propriedades físicas, químicas e energéticas da madeira dos clones avaliados.

The highest basic density value, with a significant difference, was observed for the clone Eucalyptus cloeziana (652 kg/m3) while the lowest value, with a significant difference, was observed for the wood of the clone E. urophylla 1 (477 kg/m3). Eucalyptus spp. 1, Eucalyptus spp. 2 and C. torelliana x C. citriodora presented basic density of 574, 582 and 575 kg/m3, respectively, with no significant difference between them.

The clone E. cloeziana had the highest value of total extractives (9.4%), but it did not differ significantly from the clone E. urophylla 2 (8.1%). The lowest values were observed for the clones E. spp. 1, E. spp. 2 and C. torelliana x C. citriodora, ranging from 5.3 to 6.6%.

Regarding the lignin content, only the Eucalyptus cloeziana clone differed significantly from the others, obtaining 32.6% of total lignin, while the others had contents in the range between 26.6 and 27.9%.

The holocellulose content was higher in the E. spp. 1, which did not differ significantly from E. spp. 2, E. urophylla 2 and C. torelliana x C. citriodora, varying between 64.6 and 67.9%. In turn, the Eucalyptus cloeziana clone obtained 57.8% of holocellulose, which is the lowest value observed. The ash content varied little between the genetic materials, with only the clone C. torelliana x C. citriodora differing significantly from the others, presenting a value of 0.91%, while the others obtained values ranging between 0.13 and 0.22 %.

The Eucalyptus cloeziana clone had the highest crystallinity index, 74.42%, and the Corymbia torelliana x Corymbia citriodora clone had the lowest crystallinity index, 69.04%. The other clones obtained intermediate values.

By analysis of variance, there was no effect of the clone on the calorific value of the wood. The highest value was 4703 kcal/kg, obtained for the clone E. urophylla 1, while the lowest value was 4643 kcal/kg, obtained for the C. torelliana x C. citriodora clone.

The thermogravimetric curves (TG/DTG) of the studied clones are shown in (Figure 1), with the temperature varying from 50 to 450ºC.

Figure 1
Mass loss curves as a function of temperature (TG) and its derivatives (DTG) of the woods of the evaluated clones, with the designation of the ranges with the greatest mass loss.
Figura 1
Curvas de perda de massa em função da temperatura (TG) e suas derivadas (DTG) das madeiras dos clones avaliados, com designação das faixas de maior perda de massa.

The percentage of mass loss in each temperature range and the residual mass are shown in (Table 3).

Table 3
Mass loss by temperature range in thermogravimetric analysis.
Tabela 3
Perda de massa por faixa de temperatura na análise termogravimétrica.

The mean values of the gravimetric yield and charcoal properties of the evaluated clones are presented in (Table 4).

Table 4
Physical and chemical properties of charcoal from the evaluated clones.
Tabela 4
Propriedades físicas e químicas do carvão vegetal dos clones avaliados.

The Eucalyptus cloeziana clone had the highest charcoal yield (36.3%). The lignin content and the extractive content correlated positively with charcoal yield, both obtaining correlations of 0.8. Holocellulose content and charcoal yield were negatively correlated (-0.9).

The charcoal produced with the wood of E. urophylla 1 had the lowest apparent density (316 kg/m3), while the charcoal produced with the wood of the clone Eucalyptus cloeziana had the highest apparent density (466 kg/m3). The clones E. urophylla 1 and E. urophylla 2 did not differ significantly from each other in terms of higher heating value, with values of 7564 and 7526 kcal/kg, respectively. The other clones had a lower value of higher heating value, ranging between 7175 and 7291 kcal/kg.

No significant differences were observed for volatile matter and fixed carbon contents. Charcoal produced from wood of C. torelliana x C. citriodora clone had the highest ash content (2.32%).

4. DISCUSSIONS

4.1. Physical and chemical properties of wood

The wood of the genus Corymbia stands out for its density greater than 550 kg/m3, already at 45 months of age (Loureiro et al., 2019Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630.; Medeiros et al., 2016Medeiros BLMA, Guimarães Junior JB, Ribeiro MX, Lisboa FJN, Guimarães IL, Protásio TP. Avaliação das Propriedades Físicas e Químicas da Madeira de Corymbia citriodora e Eucalyptus urophylla x Eucalyptus grandis cultivadas no Piauí. Nativa. 2016;4(6):403-407.). In fact, for wood clones of C. torelliana x C. citriodora, a density of 575 kg/m3 was observed. Wood density is directly influenced by anatomical properties. Fibers with a larger wall fraction, pores with smaller diameters and higher frequency contribute to the increase in woody matter, increasing the density (Pereira et al., 2016Pereira BLC, Carvalho AMML, Oliveira AC, Santos LC, Carneiro ACO, Magalhães MA de. Efeito da carbonização da madeira na estrutura anatômica e densidade do carvão vegetal de Eucalyptus. Ciência Florestal. 2016;26(2):545-557.). The cutting age for most eucalypts plantations varies between 6 and 8 years (Gonçalves et al., 2017Gonçalves JLM, Alvares CA, Rocha JHT, Brandani CB e Hakamada R. Eucalypt plantation management in regions with water stress. Southern Forests: a Journal of Forest Science. 2017; 79(3): 169-183.). The Eucalyptus clones evaluated in this study were cut at 8 years old and presented similar or lower density to the C. torelliana x C. citriodora clone, harvested at 4 years old.

For the production of charcoal, it is desirable that the basic density of the wood is greater than 500 kg/m3, as denser woods generate denser charcoal (Santos et al., 2011Santos RC dos, Carneiro ACO, Castro AFM, Castro RVO, Bianche JJ, Souza MM de, Cardoso MT. Correlações entre os parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Scientia Forestalis/Forest Sciences. 2011;39(90):221-230.). Within this context, among the 6 clones evaluated, only the clone of Eucalyptus urophylla 1 does not have a satisfactory density for carbonization, since its density was 477 kg/m3. In turn, the 8-year-old Eucalyptus cloeziana clone stood out with a density of 640 kg/m3, a value equal to that obtained by Magalhães et al. (2017)Magalhães MA de, Carneiro ACO, Vital BR, Silva CMS da, Souza MM de, Fialho LF. Estimates of Mass and Energy of Different Genetic Material Eucalyptus. Revista Árvore. 2017;41(3):1-8. who described a mean value of 640 kg/m3 for Eucalyptus cloeziana, at 7 years of age. The density of the C. torelliana x C. citriodora clone, with a value of 575 kg/m3, is comparable to the density values obtained in the study by Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630., whose mean values were equal to 549 and 579 kg/m3 for wood from clones of C. citriodora x C. torelliana and C. torelliana x C. citriodora, respectively, both aged 45 months. Pereira et al. (2016)Pereira BLC, Carvalho AMML, Oliveira AC, Santos LC, Carneiro ACO, Magalhães MA de. Efeito da carbonização da madeira na estrutura anatômica e densidade do carvão vegetal de Eucalyptus. Ciência Florestal. 2016;26(2):545-557. found, for different clones of E. urophylla, mean density values ranging between 545 and 585 kg/m3, higher values than the two clones of Eucalyptus urophylla in the present study that presented density of 520 and 477 kg/m3.

Evaluating Eucalyptus urophylla clones at 7 years of age, Almeida et al. (2015)Almeida KNS, Souza KB, Mendes RF, Guimarães Jr. JB, Mendes LM. Qualidade de painéis aglomerados produzidos com Eucalyptus urophylla e resíduos da desrama de Acacia mangium Willd. Scientia Forestalis. 2015; 43(107):713-720. found extractive contents ranging from 8.52%. Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630., evaluating hybrid clones of C. citriodora and C. torelliana, found a mean content of extractives of 8.79%, which is higher than that found in the present study for the hybrid of these species.

Lignin has high resistance to thermal degradation due to having condensed structures in its composition, since C-C bonds are less reactive than C-O bonds (ether) (Heitner et al., 2010Heitner C, Dimmel DR, Schmidt JA. Lignins and Lignans: Advances in Chemistry. CRC Press; 2010.). In addition, the intermediate products formed in the pyrolysis process can condense, increasing the molar mass of the reaction product (Brebu and Vasille, 2010Brebu M, Vasile C. Thermal degradation of lignin-a review. Cellulose Chemistry & Technology. 2010; 44(9):353). These characteristics positively influence the yield and quality of charcoal. The clone of Eucalyptus cloeziana, due to its higher lignin content, has greater resistance to thermal degradation, being the most suitable for the production of charcoal.

Almeida et al. (2015)Almeida KNS, Souza KB, Mendes RF, Guimarães Jr. JB, Mendes LM. Qualidade de painéis aglomerados produzidos com Eucalyptus urophylla e resíduos da desrama de Acacia mangium Willd. Scientia Forestalis. 2015; 43(107):713-720. studying Eucalyptus urophylla wood at 7 years of age, found mean total lignin contents of 26%, a value similar to that found for clones of Eucalyptus urophylla 1 and 2 in the present study, which presented 27.5 and 27.8 % of lignin, respectively. Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630. found 26.3% of total lignin for hybrid clones of C. citriodora and C. torelliana, a value similar to that found in the present work (27.9%) for the clone C. torelliana x C. citriodora.

Pereira et al. (2013a)Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592., evaluating clones of E. urophylla at 7.5 years of age, found a mean value of 70.1% for the holocellulose content, a higher value than clones of Eucalyptus urophylla 1 and 2 in the present study, which had a content of holocellulose of 65.2 and 63.9%, respectively. Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630. found 64.2% for the mean holocellulose content in hybrid clones of C. citriodora and C. torelliana, a value similar to that found in the present work (64.6%) for the clone C. torelliana x C. citriodora. During the carbonization process, much of the initial mass is lost as a result of the degradation of holocellulose, the less stable components of wood (Vital et al., 2013Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.). It is desirable that wood intended for charcoal production have a lower holocellulose content. The Eucalyptus cloeziana clone had the lowest holocellulose content (57.8%), so the wood from this clone tends to be more recalcitrant to mass loss in the carbonization process.

Pereira et al. (2013a)Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592., evaluating clones of Eucalyptus spp. at 7.5 years old, found a mean value of 0.14% for the ash content. Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630. found 0.67% ash when evaluating hybrid clones of C. citriodora and C. torelliana. High ash content in wood is inconvenient, as it generates charcoal with a high inorganic content, which can cause deterioration in the blast furnace and compromise the quality of steel and metal alloys (Vital et al., 2013Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.).

The observed crystallinity indices were similar to those found by Pereira et al. (2013a)Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592., who reported rates ranging from 67.0 to 70.6%. The authors found a correlation of 0.5 between crystallinity index and gravimetric yield in charcoal. Intermolecular hydrogen bonds, present in the crystalline region of cellulose, can contribute to the thermal stability of the wood and, consequently, to the charcoal yield (Pereira et al., 2013aPereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592.).

The values found for the Higher Heating Value (HHV) are similar to those found by Carneiro et al. (2014)Carneiro ACO, Castro AFNM, Castro RVO, Santos RC, Ferreira LP, Damásio RAP, Vital BR. Potencial energético da madeira de Eucalyptus sp. em função da idade e de diferentes materiais genéticos. Revista Árvore. 2014; 38: 375-381., when evaluating Eucalyptus grandis and Eucalyptus urophylla wood (4600 kcal/kg), at 7 years of age. Loureiro et al. (2019)Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630. found a mean HHV of 4611 kcal/Kg for clones of Corymbia citriodora x Corymbia torelliana, at 45 months of age.

4.2. Thermal properties of wood

A similarity was observed between the thermal degradation profiles of the wood of the different clones, with small variations occurring in the temperatures corresponding to the maximum degradation peaks, observed between 250 and 400°C, related to the degradation of hemicelluloses and cellulose (Rambo et al., 2015Rambo MKD, Rambo MCD, Almeida KJCR, Alexandre GP. Estudo de análise termogravimétrica de diferentes biomassas lignocelulósicas utilizando a análise por componentes principais. Ciência e Natura. 2015; 37(3):862-868.). The TG/DTG curves in (Figure 1) show three ranges of thermal degradation. It was observed that in the range of 100 to 200°C there was no mass loss for the different studied clones. This range is known as the wood thermal stability zone (Fialho et al., 2019Fialho LF, Carneiro ACO, Figueiró CG, Carneiro APS, Surdi PG, Vital BR, Magalhães MA, Peres LC. Application of thermogravimetric analysis as a pre-selection tool for Eucalyptus spp. Revista Brasileira de Ciências Agrárias. 2019;14(3):1-9.).

Yang et al. (2007)Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12-13):1781-1788. studying the thermal degradation of wood constituents, observed hemicellulose weight loss occurring mainly at 220 - 315°C and cellulose at 315 - 400°C, similar to what was found in this study. The greatest mass loss, and mean of 65% in the present study, is mostly related to holocellulose degradation and was observed between 250 and 400°C, with a more intense and accentuated peak close to 350°C. In fact, the mean value observed in the present study for the holocellulose content was 65.6%. Fialho et al. (2019)Fialho LF, Carneiro ACO, Figueiró CG, Carneiro APS, Surdi PG, Vital BR, Magalhães MA, Peres LC. Application of thermogravimetric analysis as a pre-selection tool for Eucalyptus spp. Revista Brasileira de Ciências Agrárias. 2019;14(3):1-9., in turn, found more intense degradation between 300 and 450°C. The less accentuated peak corresponds to the higher degradation rate of hemicelluloses, whose mean degradation range was from 222 to 297°C and is related to an average mass loss of 18% between 200 and 300°C. The most intense peak corresponds to the range of maximum cellulose degradation, varying the degradation temperature from 317 to 401°C (Pereira et al., 2013bPereira BLC, Carneiro A de CO, Carvalho AMML, Trugilho PF, de Melo ICNA, Oliveira AC. Estudo da degradação térmica da madeira de Eucalyptus através de termogravimetria e calorimetria. Revista Árvore. 2013b;37(3):567-576.). In fact, a mean mass loss of 47% was observed between 300 and 400°C.

In turn, no peak degradation of lignin was observed, as this component degrades over a wide temperature range, with only a small fraction degrading at temperatures below 450°C (Vital et al., 2013Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.). This structural component is the main constituent of charcoal. In the range from 250 to 400°C, it is observed that the Eucalyptus cloeziana clone had the lowest mass loss among the evaluated clones. This is due to the lower holocellulose content and higher lignin content present in its wood, as observed in (Table 2).

The highest residual mass values above 450°C were observed for E. urophylla 2 and E. cloeziana clones. Therefore, such clones have the necessary structure to withstand mass loss in industrial carbonization processes, whose final temperatures reported in the literature are between 350°C and 400°C (Donato et al., 2020Donato DB, Carneiro ACO, Carvalho AMLM, Vital BR, Milagres EG, Canal WD. Influência do diâmetro da madeira de eucalipto na produtividade e propriedades do carvão vegetal. Revista Ciência da Madeira (Brazilian Journal of Wood Science). 2020; 11(2):63-73.; Figueiró et al., 2019Figueiró CG, Carneiro ACO, Santos GR, Carneiro APS, Fialho LF, Magalhães MA, Silva CMS, Castro VR. Caracterização do carvão vegetal produzido em fornos retangulares industriais. Revista Brasileira de Ciências Agrárias. 2019; 14(3):1-8; Ramos et al., 2023Ramos DC, Carneiro ACO, Siqueira HF, Oliveira AC, Pereira BLC. Qualidade da madeira e do carvão vegetal de quatro clones de Eucalyptus com idades entre 108 e 120 meses. Ciência Florestal. 2023; 33(1):1-27.), providing higher charcoal yields. However, the residual mass observed for the wood of the other clones was greater than that found for the wood of the clones evaluated in the literature (Pereira et al., 2013bPereira BLC, Carneiro A de CO, Carvalho AMML, Trugilho PF, de Melo ICNA, Oliveira AC. Estudo da degradação térmica da madeira de Eucalyptus através de termogravimetria e calorimetria. Revista Árvore. 2013b;37(3):567-576.; Santos et al., 2012Santos RC, Carneiro ACO, Trugilho PF, Lourival MM, Carvalho AMML. Análise termogravimétrica em clones de eucalipto como subsídio para a produção de carvão vegetal. Cerne. 2012;18(1):143-151.) whose charcoal produced had a satisfactory gravimetric yield. Therefore, such clones show great potential for charcoal production.

4.3. Gravimetric yield and charcoal quality

The clone of Eucalyptus cloeziana, which had the lowest content of holocellulose (58.0%) and the highest content of extractives (9.4%) and total lignin (32.6%), also had the highest gravimetric yield in charcoal (36.3%). The highest yield is associated with the highest lignin content, which due to the aromatic compounds in its composition that are resistant to mass loss in the pyrolysis process, contribute more to the charcoal yield (Vital et al., 2013Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.).

The clones that had the highest residual mass value in the thermogravimetric analysis were also the clones that had the lowest percentages of holocellulose, which are the least thermally stable wood components (Vital et al., 2013Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.). The Eucalyptus cloeziana clone showed higher residual mass in thermogravimetric analysis and provided higher gravimetric yield in charcoal. In turn, the clone C. torelliana x C. citriodora was the clone that obtained the lowest residual mass and lowest gravimetric yield in charcoal. This correlation highlights the potential of the TGA technique in predicting the thermal resistance of genotypes for charcoal production.

Evaluating the apparent density of charcoal from different Eucalyptus species, Castro et al. (2013)Castro AFNM, Castro RVO, Carneiro ACO, de Lima JE, dos Santos RC, Pereira BLC, Alves ICN. Análise multivariada para seleção de clones de eucalipto destinados à produção de carvão vegetal. Pesquisa Agropecuária Brasileira. 2013;48(6):627-635. found densities ranging from 260 to 420 kg/m3, with a mean value of 340 kg/m3. In turn, the apparent density of charcoal in the present work ranged from 316 to 466 kg/m3, with a mean value of 378 kg/m3. The density of the charcoal is dependent on the density of the wood, since a greater mass per unit of volume is required to resist degradation reactions in the carbonization process, generating a greater mass of charcoal per volumetric unit (Santos et al., 2011Santos RC dos, Carneiro ACO, Castro AFM, Castro RVO, Bianche JJ, Souza MM de, Cardoso MT. Correlações entre os parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Scientia Forestalis/Forest Sciences. 2011;39(90):221-230.). Evaluating the quality of charcoal from different genetic materials, Trugilho et al. (2015)Trugilho PF, Melo, ICNA de., Protásio TP, Araújo ACC, Hein PRG. Efeito da idade e material genético no rendimento e qualidade do carvão vegetal de eucalipto. Ciência da Madeira (Brazilian Journal of Wood Science). 2015; 6(3):202-216. found a mean apparent density of 440 kg/m3 for charcoal from E. cloeziana, when carbonizing wood at 7 years of age, similar to the density found in the present study for charcoal from the clone of E. cloeziana (466 kg/m3).

Trugilho et al. (2015)Trugilho PF, Melo, ICNA de., Protásio TP, Araújo ACC, Hein PRG. Efeito da idade e material genético no rendimento e qualidade do carvão vegetal de eucalipto. Ciência da Madeira (Brazilian Journal of Wood Science). 2015; 6(3):202-216. found a higher heating value of 7450 kcal/kg when evaluating Eucalyptus urophylla charcoal, a value similar to that found in the present study for Eucalyptus urophylla clones. When evaluating the 7 year old Eucalyptus cloeziana charcoal, the authors found 7300 kcal/kg for the higher heating value, a higher value than that found in the present study for this clone (7175 kcal/kg). This difference may be associated with the higher fixed carbon content of the clones evaluated in the study by Trugilho et al. (2015)Trugilho PF, Melo, ICNA de., Protásio TP, Araújo ACC, Hein PRG. Efeito da idade e material genético no rendimento e qualidade do carvão vegetal de eucalipto. Ciência da Madeira (Brazilian Journal of Wood Science). 2015; 6(3):202-216. (approximately 80%) in relation to that found in the present study, that varied from 72 to 74%. The higher heating value is related to the fixed carbon content (Neves et al., 2011Neves TA, Protásio TP, Couto AM, Trugilho PF, Silva VO, Vieira CMM. Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal. Pesquisa Florestal Brasileira. 2011;31(68):319-330.).

Volatile matter may mean less efficiency of charcoal as an iron ore reducer (Fialho et al., 2019Fialho LF, Carneiro ACO, Figueiró CG, Carneiro APS, Surdi PG, Vital BR, Magalhães MA, Peres LC. Application of thermogravimetric analysis as a pre-selection tool for Eucalyptus spp. Revista Brasileira de Ciências Agrárias. 2019;14(3):1-9.). No significant difference was observed between the clones for this property, whose mean was 25.5%. Fixed carbon is the best parameter related to the volumetric use of the blast furnace and the reducing efficiency of charcoal (Carneiro et al., 2013Carneiro ACO, Vital BR, Pereira BLC. Pirólise lenta da madeira para a produção de carvão vegetal. In: Santos F, Colodette JL, Queiroz JH, editors. Bioenergia e biorrefinaria: Cana-de-açúcar e espécies florestais. 1st ed. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 429-457.). The mean fixed carbon content for the evaluated clones was 73.8%, with no significant difference between the results. Due to its higher lignin content, it was to be expected that the Eucalyptus cloeziana clone would generate charcoal with a higher fixed carbon content. However, this relationship, found in the work of Pereira et al., (2013a)Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592., was not observed in this study.

The high ash content can reduce the calorific value of charcoal, in addition to increasing blast furnace wear (Fialho et al., 2019Fialho LF, Carneiro ACO, Figueiró CG, Carneiro APS, Surdi PG, Vital BR, Magalhães MA, Peres LC. Application of thermogravimetric analysis as a pre-selection tool for Eucalyptus spp. Revista Brasileira de Ciências Agrárias. 2019;14(3):1-9.). Clone C. torelliana x C. citriodora showed higher ash content (2.32%). In turn, the clones Eucalyptus spp 1, Eucalyptus spp 2 and Eucalyptus cloeziana showed lower ash contents, not differing significantly from each other, with a mean value of 0.37%. Higher ash contents in charcoal are related to higher ash contents in wood, since in the pyrolysis process there is no degradation of inorganic constituents (Pereira et al., 2013aPereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592.).

Neves et al. (2011)Neves TA, Protásio TP, Couto AM, Trugilho PF, Silva VO, Vieira CMM. Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal. Pesquisa Florestal Brasileira. 2011;31(68):319-330. found mean values of 19.0; 0.7 and 80.0% for the percentages of volatile matter, ash and fixed carbon, respectively, when evaluating charcoal from different Eucalyptus clones. Ramos et al. (2019)Ramos DC, Carneiro ACO, Tangstad M, Saadieh R, Pereira BLC. Quality of wood and charcoal from Eucalyptus clones for metallurgical use. Floresta e Ambiente. 2019;26(2):8. evaluating charcoal from clones of E. urophylla x E. grandis, found mean contents of 28.6% of volatile matter; 0.6% ash and 70.9% fixed carbon. The variations observed between the works cited and this study may be associated with the difference in the chemical and anatomical composition of the source materials, in addition to the differences in the carbonization parameters.

5. CONCLUSIONS

All clones showed potential for charcoal production. However, the Eucalyptus cloeziana clone was the most suitable for charcoal production. This clone showed the highest gravimetric yield in charcoal and the highest apparent density of the charcoal produced.

The clone of Corymbia torelliana x Corymbia citriodora, for having a density of 575 kg/m3, at 4 years old, stands out among the others, with the potential to produce a greater amount of charcoal per unit volume, since the other clones were cut at 8 years old, with similar or lower density.

The gravimetric yield in charcoal was favored by the lignin content and extractives. In turn, the holocellulose content contributed negatively to the gravimetric yield.

6. ACKNOWLEDGEMENTS

To the Laboratory of Wood Panels and Energy (LAPEM) of the Federal University of Viçosa for the technical support and to CNPq and Fapemig for the financial support.

7. REFERENCES

  • Almeida KNS, Souza KB, Mendes RF, Guimarães Jr. JB, Mendes LM. Qualidade de painéis aglomerados produzidos com Eucalyptus urophylla e resíduos da desrama de Acacia mangium Willd. Scientia Forestalis. 2015; 43(107):713-720.
  • American Society for Testing and Materials - ASTM D1102 - 84. Standard Test Method for Ash in Wood. West Conshohocken, Estados Unidos: 2021.
  • American Society for Testing and Materials - ASTM D1762 - 84. Standard Test Method for Chemical Analysis of Wood Charcoal. West Conshohocken, Estados Unidos: 2021
  • Associação Brasileira de Normas Técnicas - ABNT. NBR 11941: Madeira: determinação da densidade básica. Rio de Janeiro, RJ: 2003.
  • Baumhardt Neto R. Raios X. In: Canevarolo júnior SV, editor. Técnicas de caracterização de polímeros. São Paulo, SP: Artliber; 2003. p. 41-60.
  • Brand MA. Energia da Biomassa Florestal. Rio de Janeiro: Interciência; 2010.
  • Brebu M, Vasile C. Thermal degradation of lignin-a review. Cellulose Chemistry & Technology. 2010; 44(9):353
  • Carneiro ACO, Castro AFNM, Castro RVO, Santos RC, Ferreira LP, Damásio RAP, Vital BR. Potencial energético da madeira de Eucalyptus sp. em função da idade e de diferentes materiais genéticos. Revista Árvore. 2014; 38: 375-381.
  • Carneiro ACO, Vital BR, Pereira BLC. Pirólise lenta da madeira para a produção de carvão vegetal. In: Santos F, Colodette JL, Queiroz JH, editors. Bioenergia e biorrefinaria: Cana-de-açúcar e espécies florestais. 1st ed. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 429-457.
  • Castro AFNM, Castro RVO, Carneiro ACO, de Lima JE, dos Santos RC, Pereira BLC, Alves ICN. Análise multivariada para seleção de clones de eucalipto destinados à produção de carvão vegetal. Pesquisa Agropecuária Brasileira. 2013;48(6):627-635.
  • Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of the total environment. 2019; 670:1075-1083.
  • Deutsches Institut Fur Normung - DIN EN 14918. Solid biofuels - Determination of calorifc value. Berlin, Germany: 2010.
  • Heitner C, Dimmel DR, Schmidt JA. Lignins and Lignans: Advances in Chemistry. CRC Press; 2010.
  • Donato DB, Carneiro ACO, Carvalho AMLM, Vital BR, Milagres EG, Canal WD. Influência do diâmetro da madeira de eucalipto na produtividade e propriedades do carvão vegetal. Revista Ciência da Madeira (Brazilian Journal of Wood Science). 2020; 11(2):63-73.
  • Energy Information Administration - EIA. IEO2021 Highlights. 2021 [citado em 27 de abril de 2022]. Available in: https://www.eia.gov/outlooks/ieo/pdfIEO2021_ReleasePresentation.pdf
    » https://www.eia.gov/outlooks/ieo/pdfIEO2021_ReleasePresentation.pdf
  • Fialho LF, Carneiro ACO, Figueiró CG, Carneiro APS, Surdi PG, Vital BR, Magalhães MA, Peres LC. Application of thermogravimetric analysis as a pre-selection tool for Eucalyptus spp. Revista Brasileira de Ciências Agrárias. 2019;14(3):1-9.
  • Figueiró CG, Carneiro ACO, Santos GR, Carneiro APS, Fialho LF, Magalhães MA, Silva CMS, Castro VR. Caracterização do carvão vegetal produzido em fornos retangulares industriais. Revista Brasileira de Ciências Agrárias. 2019; 14(3):1-8
  • Goldschimid O. Ultraviolet spectra. In: Sarkanen K v., Ludwing CH, editores. Lignins: occurrence, formation, structure and reactions. New York, USA: Wiley Interscience; 1971. p. 241-266.
  • Gomide JL, Demuner BJ. Determinação do teor de lignina em material lenhoso: método Klason modificado. O Papel. 1986;47(8):36 -38.
  • Gonçalves JLM, Alvares CA, Rocha JHT, Brandani CB e Hakamada R. Eucalypt plantation management in regions with water stress. Southern Forests: a Journal of Forest Science. 2017; 79(3): 169-183.
  • Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2019. [cited in June 27, 2023]. Available in https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf
    » https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf
  • Indústria Brasileira de Árvores - IBÁ. Estatística da indústria brasileira de árvores. 2022. [cited in April 17, 2023]. Available in https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf
    » https://www.iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2022-compactado.pdf
  • Lopes ED, Laia ML de, Santos AS, Soares GM, Leite RWP, Martins NS. Influência do espaçamento de plantio na produção energética de clones de Corymbia e Eucalyptus Floresta. 2017;47(1):95-104.
  • Loureiro BA, Vieira TAS, Costa LJ, Silva AB, Assis MR, Trugilho PF. Selection of superior clones of Corymbia hybrids based on wood and charcoal properties. Maderas: Ciencia y Tecnologia. 2019;21(4):619-630.
  • Magalhães MA de, Carneiro ACO, Vital BR, Silva CMS da, Souza MM de, Fialho LF. Estimates of Mass and Energy of Different Genetic Material Eucalyptus Revista Árvore. 2017;41(3):1-8.
  • Medeiros BLMA, Guimarães Junior JB, Ribeiro MX, Lisboa FJN, Guimarães IL, Protásio TP. Avaliação das Propriedades Físicas e Químicas da Madeira de Corymbia citriodora e Eucalyptus urophylla x Eucalyptus grandis cultivadas no Piauí. Nativa. 2016;4(6):403-407.
  • Neves TA, Protásio TP, Couto AM, Trugilho PF, Silva VO, Vieira CMM. Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal. Pesquisa Florestal Brasileira. 2011;31(68):319-330.
  • Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources. 2013a;8(3):4574-4592.
  • Pereira BLC, Carneiro A de CO, Carvalho AMML, Trugilho PF, de Melo ICNA, Oliveira AC. Estudo da degradação térmica da madeira de Eucalyptus através de termogravimetria e calorimetria. Revista Árvore. 2013b;37(3):567-576.
  • Pereira BLC, Carvalho AMML, Oliveira AC, Santos LC, Carneiro ACO, Magalhães MA de. Efeito da carbonização da madeira na estrutura anatômica e densidade do carvão vegetal de Eucalyptus Ciência Florestal. 2016;26(2):545-557.
  • Pereira KD, Carneiro APS, Santos GR, Carneiro ACO, Leite HG, Borges FP. Study of the influence of wood properties on the charcoal production: Applying the random forest algorithm. Revista Árvore. 2021; 45.
  • Rambo MKD, Rambo MCD, Almeida KJCR, Alexandre GP. Estudo de análise termogravimétrica de diferentes biomassas lignocelulósicas utilizando a análise por componentes principais. Ciência e Natura. 2015; 37(3):862-868.
  • Ramos DC, Carneiro ACO, Tangstad M, Saadieh R, Pereira BLC. Quality of wood and charcoal from Eucalyptus clones for metallurgical use. Floresta e Ambiente. 2019;26(2):8.
  • Ramos DC, Carneiro ACO, Siqueira HF, Oliveira AC, Pereira BLC. Qualidade da madeira e do carvão vegetal de quatro clones de Eucalyptus com idades entre 108 e 120 meses. Ciência Florestal. 2023; 33(1):1-27.
  • Santos RC dos, Carneiro ACO, Castro AFM, Castro RVO, Bianche JJ, Souza MM de, Cardoso MT. Correlações entre os parâmetros de qualidade da madeira e do carvão vegetal de clones de eucalipto. Scientia Forestalis/Forest Sciences. 2011;39(90):221-230.
  • Santos RC, Carneiro ACO, Trugilho PF, Lourival MM, Carvalho AMML. Análise termogravimétrica em clones de eucalipto como subsídio para a produção de carvão vegetal. Cerne. 2012;18(1):143-151.
  • Segal L, Creely JJ, Martin AE, Conrad CM. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. 1959;29(10):786-794.
  • Shahbaz M, Solarin SA, Hammoudeh S, Shahzad SJH. Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: the role of biomass energy consumption in the United States. Energy Economics. 2017; 68:548-565.
  • Sindicato da Indústria do Ferro no Estado de Minas Gerais - SINDIFER. Produção de ferro gusa em Minas Gerais e no Brasil: Anuário estatístico - Ano base 2021. 2022 [cited in April 17, 2023]. Available in http://sindifer.com.br/sndfr/anuario-estatistico/
    » http://sindifer.com.br/sndfr/anuario-estatistico/
  • Statsoft I. Statistica data analysis system, version 7.0. New York, USA: Tulsa: Statsoft Inc; 2004.
  • TAPPI - Technical Association of the Pulp and Paper Industry. T 204 cm-17: solvent extractives of wood and pulp. In: TAPPI test methods. Atlanta, USA, 2017.
  • TAPPI - Technical Association of the Pulp and Paper Industry. T 264 cm-22: preparation of wood for chemical analysis. In: TAPPI test methods. Atlanta, USA, 2022.
  • TAPPI - Technical Association of the Pulp and Paper Industry. T 257 sp-21: sampling and preparing wood for analysis. In: TAPPI teste methods. Atlanta, USA, 2021.
  • Trugilho PF, Melo, ICNA de., Protásio TP, Araújo ACC, Hein PRG. Efeito da idade e material genético no rendimento e qualidade do carvão vegetal de eucalipto. Ciência da Madeira (Brazilian Journal of Wood Science). 2015; 6(3):202-216.
  • Vieira RS, Lima JT, Monteiro TC, Selvatti TS, Baraúna EEP, Napoli A. Influência da temperatura no rendimento dos produtos da carbonização de Eucalyptus microcorys Cerne. 2013;19(1):59-64.
  • Vital BR. Métodos de determinação da densidade da madeira. Boletim Técnico SIF. Viçosa, MG: 1984.
  • Vital BR, Carneiro ACO, Pereira BLC. Qualidade da Madeira Para fins Energéticos. In: Santos F, Colodette JL, Queiroz JH, editores. Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais. Viçosa, MG: Super Gráfica e editora Ltda; 2013. p. 321-354.
  • Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12-13):1781-1788.
  • Zhang, H., Guan, D., Song, M. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecology and Management. 2012; 277: 90-97.

Publication Dates

  • Publication in this collection
    20 Oct 2023
  • Date of issue
    2023

History

  • Received
    25 Apr 2023
  • Accepted
    25 July 2023
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br