Acessibilidade / Reportar erro

AUTOECOLOGY, DIVERSITY, AND INTERNAL GENETIC STRUCTURE OF Ocotea porosa (NEES & MART.) BARROSO: SUBSIDIES FOR SEED COLLECTION

AUTOECOLOGIA, DIVERSIDADE E ESTRUTURA GENÉTICA INTERNA DE Ocotea porosa (NEES & MART.) BARROSO: SUBSÍDIOS PARA A COLETA DE SEMENTES

ABSTRACT

Ecological restoration mitigates the negative effects of fragmentation and habitat loss. This practice allows the conservation of key species, such as Ocotea porosa, a tree native to the Araucaria Forest and extremely endangered. A key point in restoration projects is the source of seeds, as well as guidelines for collection. When carried out under technical criteria, the collection allows the maintenance of genetic diversity and adaptive potential in restoration plantations. Given the importance of seed source, genetic diversity, and adaptive potential, this study aimed to define areas and criteria for collecting seeds by characterizing the demography, genetics, and reproductive phenology of an O. porosa population. A plot of 16 hectares was installed in the municipality of Passos Maia, Santa Catarina, Brazil, and a demographic survey of trees with diameter at breast height (DBH) > 15 cm was carried out. Indices of diversity and internal genetic structure (IGS) were estimated using allozyme markers. The reproductive phenology of 67 individuals was evaluated during 8 months. The studied population showed a high density of individuals (10.7 ind. ha-1) with normal diametric distribution. The phenological pattern of the species is regular, seasonal, and annual. The evaluated population showed high genetic diversity, high fixation index, and significant IGS up to 80 meters away. Based on these results, the evaluated fragment can be used as a seed collection area. It has high genetic diversity, density, and area size sufficient to contain several demes. In addition, it is highly recommended that the matrices be at least 80 meters apart to avoid the effects of significant IGS.

Keywords:
Araucaria Forest; Ecological restoration; Spatial genetic structure

RESUMO

A restauração ecológica é uma forma de mitigar os efeitos negativos da fragmentação e perda de habitat. Essa prática permite a conservação de espécies-chave, como Ocotea porosa, uma árvore nativa da Floresta com Araucária e extremamente ameaçada de extinção. Um ponto fundamental em projetos de restauração é a fonte de sementes bem como as diretrizes para a coleta. Quando realizada sob critérios técnicos, a coleta permite a manutenção da diversidade genética e potencial adaptativo nos plantios de restauração. Diante do exposto, o objetivo do presente estudo foi caracterizar aspectos da demografia, genética e fenologia reprodutiva de uma população de O. porosa, visando gerar informações para definição de áreas e critérios para a coleta de sementes. Foi instalada uma parcela de 16 hectares no munícipio de Passos Maia, Santa Catarina e realizado levantamento demográfico de árvores com Diâmetro à Altura do Peito (DAP) > 15 cm. Foram estimados índices de diversidade e de estrutura genética interna (EGI), utilizando-se marcadores isoenzimáticos. A fenologia reprodutiva de 67 indivíduos foi avaliada durante 8 meses. O fragmento estudado apresentou uma alta densidade de indivíduos (10,7 ind. ha-1), com uma distribuição diamétrica similar a normal. O padrão fenológico da espécie é sazonal regular e anual. A população avaliada apresentou uma alta diversidade genética, elevado índice de fixação, além de uma EGI significativa até 80 metros de distância. Conclui-se que o fragmento avaliado pode ser utilizado como área de coleta de sementes. O mesmo possui alta diversidade genética, densidade e tamanho de área suficiente para conter várias demes. Além disso, é altamente recomendado que as matrizes tenham no mínimo 80 metros de distância entre si, evitando os efeitos da EGI significativa.

Palavras-Chave:
Floresta de Araucária; Restauração ecológica; Estrutura genética espacial

1. INTRODUCTION

The Atlantic Forest biome is a global hotspot of biological diversity that has become increasingly vulnerable as a result of significant losses through selective logging, fragmentation, and deforestation (SOS Mata Atlântica 2020SOS Mata Atlântica. Mata Atlântica. São Paulo; 2020 [cited 2022 dec. 20]. Available from: https://www.sosma.org.br/causas/mata-atlantica/
https://www.sosma.org.br/causas/mata-atl...
). To mitigate the effects of habitat loss and fragmentation in this biome, restoration initiatives have intensified across various forest types found in the Atlantic Forest. For instance, the Brazilian Pact for Atlantic Forest Restoration, launched in 2009, aims to promote the restoration of 15 million hectares of forest by the year 2050 (Melo et al. 2013Melo FPL, Pinto SRR, Brancalion PHS, Castro PS, Rodrigues RR, Aronson J, et al. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environ Sci Policy. 2013;33:395-404. doi: 10.1016/j.envsci.2013.07.013
https://doi.org/10.1016/j.envsci.2013.07...
), having already recovered approximately 0.67 and 0.74 million hectares of forest between 2011 and 2015 (Crouzeilles et al. 2019Crouzeilles R, Santiami E, Rosa M, Pugliese L, Brancalion PHS, Rodrigues RR, et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect Ecol Conserv. 2019;17(2):80-3. doi: 10.1016/j.pecon.2019.04.003
https://doi.org/10.1016/j.pecon.2019.04....
).

Regardless of the scale of restoration, access to a high-quality seed source is essential to increasing the likelihood of successful plantings (Sebbenn 2002Sebbenn AM. Número de árvores matrizes e conceitos genéticos na coleta de sementes para reflorestamentos com espécies nativas. Rev do Inst Florest. 2002;14(2):115-32.). However, even though seeds form the foundation of many restoration programs (Gann et al. 2019Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, et al. International principles and standards for the practice of ecological restoration. Restor Ecol. 2019;27(S1). doi: 10.1111/rec.13035
https://doi.org/10.1111/rec.13035...
), they are often a limited resource (Pedrini and Dixon 2020Pedrini S, Dixon KW. International principles and standards for native seeds in ecological restoration. Restor Ecol. 2020;28:286-303. doi: 10.1111/rec.13155
https://doi.org/10.1111/rec.13155...
). Therefore, seed collection must be carried out based on technical criteria to ensure the maintenance of genetic diversity and the evolutionary potential of restored populations (Breed et al. 2018Breed MF, Harrison PA, Bischoff A, Durruty P, Gellie NJC, Gonzales EK, et al. Priority Actions to Improve Provenance Decision-Making. Bioscience. 2018;68(7):510-6. doi: 10.1093/biosci/biy050
https://doi.org/10.1093/biosci/biy050...
). To achieve this, it is crucial to develop recommendations that determine the minimum number of source trees (Montagna et al. 2018cMontagna T, Silva JZ, Pikart TG, Reis MS. Reproductive ecology of Ocotea catharinensis , an endangered tree species. Ren ZX, organizador. Plant Biol. 2018c;20(5):926-35. doi: 10.1111/plb.12847
https://doi.org/10.1111/plb.12847...
), the minimum distance between source trees (Tarazi et al. 2010Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
https://doi.org/10.1007/s10592-009-9939-...
), the ideal collection season (Luna-Nieves et al. 2017Luna-Nieves AL, Meave JA, Morellato LPC, Ibarra-Manríquez G. Reproductive phenology of useful Seasonally Dry Tropical Forest trees: Guiding patterns for seed collection and plant propagation in nurseries. For Ecol Manage. 2017;393:52-62. doi: 10.1016/j.foreco.2017.03.014
https://doi.org/10.1016/j.foreco.2017.03...
), and density of source trees (Montagna et al. 2018bMontagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16.). Implementing these guidelines will permit the capture of samples representing the genetic variability of one or more populations, thereby reducing the potential risks of introducing non-adapted genotypes and avoiding exogamy/endogamy depression (Stingemore and Krauss 2013Stingemore JA, Krauss SL. Genetic Delineation of Local Provenance in Persoonia longifolia: Implications for Seed Sourcing for Ecological Restoration. Restor Ecol. 2013;21(1):49-57. doi: 10.1111/j.1526-100X.2011.00861.x
https://doi.org/10.1111/j.1526-100X.2011...
).

The signature tree species of Santa Catarina, Ocotea porosa (Nees & Mart.) Barroso, more commonly known as “imbuia”, is a forest species belonging to the Lauraceae family. It is capable of reaching heights up to 20 meters and a diameter at breast height (DBH) of 50 to 150 cm (Meyer et al. 2013Meyer L, Sevegnani L, Gasper A., Schorn L., Vibrans A., Lingner D., et al. Fitossociologia do Componente arbóreo/arbustivo da Floresta Ombrófila Mista em Santa Catarina. In: Inventário Florístico Florestal de Santa Catarina, vol III, Floresta Ombrófila Mista. 1º ed Blumenau: Edifurb; 2013. p. 25-31.). Valued in the timber industry, it has suffered intense exploitation for decades (Reis et al. 2007Reis A, Tres DR, Scariot EC. Restauração na Floresta Ombrófila Mista através da sucessão natural. Pesqui Florest Bras. 2007;(55):67-73.), leading to a significant reduction in its population. This has resulted in the inclusion of the species in state (Santa Catarina 2014Santa Catarina. Resolução CONSEMA Nº 51, de 05 de dez. de 2014. Conselho Estadual de Meio Ambiente - CONSEMA. Florianópolis, Brasil. Secretaria de Estado do Desenvolvimento Econômico Sustentável. Available from: https://www.sde.sc.gov.br/index.php/biblioteca/consema/legislacao/resolucoes/2014/2354-resolucao-consema-n-51-2014/file.
https://www.sde.sc.gov.br/index.php/bibl...
), national (Brazil 2014), and international (Varty and Guadagnin 1998Varty N, Guadagnin DL. Ocotea porosa. IUCN Red List Threat Species. 1998;e.T32978A9.) lists of threatened species.

Considering the demand for seeds of species used in restoration, this study evaluated demography, phenology, internal genetic structure, and genetic diversity in a population of O. porosa. We raised three questions. First, does the studied population exhibit sufficient demographic density and genetic diversity for seed collection? Second, what is the minimum distance for seed collection? Third, what is the recommended period for seed collection? The answers to these questions will allow us to establish the necessary technical criteria and guidelines for seed collection, as well as the delineation of seed collection zones for O. porosa. Moreover, it is anticipated that the data garnered from this study will yield significant implications for the conservation of this species.

2. MATERIALS AND METHODS

2.1. STUDY AREA

The evaluated population is situated in the municipality of Passos Maia, located in the western mesoregion of Santa Catarina, Brazil (Figure 1). The forest fragment covers 227 hectares and is located on private property, with 2,466 hectares acquired by the current owner in 1953. The region is within the Atlantic Forest biome and features vegetation characteristic of the phytogeographic domain of Mixed Ombrophilous Forest (Araucaria Forest).

Figure 1
Study site located in Passos Maia, Santa Catarina, Brazil.
Figura 1
Local do estudo, situado em Passos Maia, Santa Catarina, Brasil.

2.2. SAMPLING

A demographic survey was conducted on a square plot measuring 400 x 400 meters, totaling 16 hectares (Figure 1). All individuals classified as adults (circumference at breast height > 41.7 cm, the smallest observed in a reproductive individual) were evaluated. Measured plants were tagged with an aluminum plate bearing a numerical identification and mapped with geographic coordinates. For demographic data analysis, the average density of adult individuals per hectare and dominance (basal area) were obtained, along with a graph depicting size distribution.

2.3. GENETIC DATA COLLECTION AND ANALYSIS

The collection of leaf material for genetic diversity characterization was performed on all 171 adult individuals measured in the 16-hectare plot. Individuals were genotyped at the Laboratory of Developmental Physiology and Plant Genetics, Universidade Federal de Santa Catarina. Genetic characterization of the populations was carried out using isoenzymatic markers on starch gel (penetrose 30-13%), following the recommendations of Alfenas (1998)Alfenas AC. Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microrganismos. 1º ed. Viçosa: Editora Universidade Federal de Viçosa; 1998.. The buffer-electrode system used was Tris-Citrate pH 7.5 with the following isoenzymatic systems: malate Dehydrogenase (MDH, EC 1.1.1.37), superoxide Dismutase (SOD, EC 1.15.1.1), peroxidase (PRX, EC 1.11.1.7), shikimate dehydrogenase (SKDH, EC 1.1.1.25), phosphoglucomutase (PGM, EC 5.4.2.2), diaphorase (DIA, EC 1.8.1.4), glutamate oxaloacetate transaminase (GOT, EC 2.6.1.1), esterase (EST, EC 3.1.1.1), glutamate dehydrogenase (GTDH, EC 1.4.1.2), and acid phosphatase (ACP, EC 3.1.3.2).

Furthermore, intrapopulational genetic diversity of the sampled adult individuals was characterized using the following indices: average number of alleles per locus (Â), average number of effective alleles per locus (Âe=1/1-H^E), number of alleles per polymorphic locus (Âp), observed heterozygosity (H^O), expected heterozygosity (H^E) according to the proportions proposed by the Hardy-Weinberg Equilibrium (Nei 1978Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583 - 590. doi: 10.1093/genetics/89.3.583
https://doi.org/10.1093/genetics/89.3.58...
), and fixation index (f^). All indices were estimated using the software FSTAT (Goudet 2002Goudet J. Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. Heredity (Edinb). 2002;86:485-6.) and GDA (Lewis and Zaykin 2001Lewis P., Zaykin D. GDA (Genetic Data Analysis): computer program for the analysis of allelic data [Internet]. Connecticut; 2001. Available from: http://phylogeny.uconn.edu/software/
http://phylogeny.uconn.edu/software/...
). The statistical significance (p < 0.05) of the f^ values was determined through 1000 allele permutations among individuals.

Characterizing the spatial distribution of adult genotypes was conducted using the estimation of the coefficient of coancestry between pairs of trees (θxy), as described by Loiselle et al. (1995)Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot. 1995;82(11):1420. doi: 10.1002/j.1537-2197.1995.tb12679.x
https://doi.org/10.1002/j.1537-2197.1995...
and obtained using the SPAGEDI 1.4 program (Vekemans and Hardy 2004Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13(4):921-35. doi: 10.1046/j.1365-294X.2004.02076.x
https://doi.org/10.1046/j.1365-294X.2004...
). Confidence intervals (95%) for each parameter were obtained through 10000 bootstrappings. The neighborhood size (Nb) was estimated as Nb= -(1-θ1)/b, where θ1 represents coancestry estimated for the first distance class, and b is the slope of the regression curve of θ with respect to the logarithm of distance (up to 520 m) (Vekemans and Hardy 2004Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13(4):921-35. doi: 10.1046/j.1365-294X.2004.02076.x
https://doi.org/10.1046/j.1365-294X.2004...
). Based on Nb and individual density, the deme area (or neighborhood area) in hectares was estimated as deme = Nb/density.

The coancestry group was calculated as θ=0,5n(1+f^)+i=jni=0nθxyn2 (Lindgren and Mullin, 1998Lindgren D, Mullin TJ. Relatedness and status number in seed orchard crops. Can J For Res 1998;28:276-83. doi.org/10.1139/x97-217.
https://doi.org/doi.org/10.1139/x97-217...
), where n is the number of sampled individuals, f^ is the inbreeding coefficient for the parental population, and θxy is the coancestry coefficient between individuals. Subsequently, the effective size (N^e) was estimated as N^e= 0,5/Θ (Cockerham, 1969Cockerham CC. Variance of gene frequencies. Evolution (N Y) 1969;23:72-84.). Based on effective size, the minimum viable area (MVA) for the genetic conservation of an O. porosa population was estimated according to Lynch (1996)Lynch M. A Quantitative-Genetic Perspective on Conservation Issues. In: Hamrick JL, Avise JC, organizadores. Conservation Genetics. Boston, MA: Springer US; 1996. p. 471-501. doi: 10.1007/978-1-4757-2504-9_15
https://doi.org/10.1007/978-1-4757-2504-...
, taking N^e = 1000 as a reference point indicating sufficient mitigation of the effects of deleterious mutations. Thus, the minimum viable area is given by Ne(ref)/(N^e/n)d), where n is the sample size, and d is the density of reproductive individuals in the population.

2.4. REPRODUCTIVE PHENOLOGY

Reproductive phenology was assessed monthly in 67 individuals between September 2021 and April 2022, using binoculars. The synchrony among population individuals was assessed using the presence/absence method, which indicates the percentage of individuals in each phenophase. Phenological events were classified as asynchronous (<20% of the population individuals in the phenophase), slightly synchronous (20-60% in the phenophase), and highly synchronous (>60% in the phenophase) (Bencke and Morellato 2002Bencke CSC, Morellato LPC. Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev Bras Botânica. 2002;25(3):269-75. doi: 10.1111/j.1744-7429.2000.tb00620.x
https://doi.org/10.1111/j.1744-7429.2000...
).

The evaluation of reproductive phenophase intensity followed the criteria of Fournier and Charpantier (1978)Fournier LA, Charpantier C. El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Turrialba. 1978;7(25-26):13-20.. The intensity of each phenophase was estimated using a semi-quantitative interval scale of five categories (0 to 4): 0 corresponds to 0%; (1) presence of the event in a range of 1 to 25%; (2) presence of the event in a range of 26 to 50%; (3) presence of the event in a range of 51 to 75%; and (4) presence of the event in a range of 76 to 100%. Subsequently, the percentage of intensity was calculated according to Fournier (1974)Fournier LA. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba. 1974;24(4):422-3..

Relationships between the synchrony of assessed phenological events and climatological data (monthly averages of relative humidity, precipitation, mean temperature, maximum temperature, and minimum temperature) were investigated using Spearman's correlation. The level of significance was verified by a p-value < 0.05. Meteorological data were obtained from EPAGRI - Experimental Station of Ponte Serrada -SC. For statistical analyses and graph creation, R Studio 4.1 software was used.

3. RESULTS

3.1. DEMOGRAPHIC STRUCTURE OF REPRODUCTIVE INDIVIDUALS

In the 16 hectares, 171 reproductive individuals were measured, resulting in an average of 10.7 reproductive individuals per hectare. All individuals recorded above 15 cm in DBH were reproductive. The average DBH per hectare was 48.8 cm, ranging from 15 to 110.5 cm. The measured basal area was 2.2 m2 ha-1. Considering the distribution in diameter classes (Figure 2), we found a higher frequency of individuals in the intermediate DBH classes (between 35 cm and 65 cm), accounting for 69% of total individuals. The frequency of individuals decreases as the diameter classes increase, with the last four classes containing 4.8% of the individuals. It is evident that the frequency of individuals per diameter class follows the trend of a normal distribution.

Figure 2
Frequency distribution in diameter classes for reproductive individuals in a 16-hectare area of an Ocotea porosa population in Passos Maia, SC.
Figura 2
istribuição de frequência em classes diamétricas para indivíduos reprodutivos em uma área de 16 hectares de uma população de Ocotea porosa em Passos Maia SC.

3.2. GENETIC DIVERSITY

In the studied population, 30 different alleles were sampled. The average number of individuals analyzed per locus was 160. The mean number of alleles per polymorphic locus (Âp) was 3.22, while the mean number of alleles per locus (Â) was 3, differing by about 51% from the mean effective alleles per locus (Âe), which was 1.5. The genetic diversity (H^E) found in the analyzed population was 0.3. This value substantially differed from the observed heterozygosity (H^O), which was 0.181. This discrepancy between H^E and H^O resulted in a fixation index (f^) of 0.379, statistically different from zero. From the fixation index, the effective number of individuals was estimated to be 103, approximately 40% less than the total sample. Finally, the estimated MVA for genetic conservation of the population was 56.2 hectares.

3.3. INTERNAL GENETIC STRUCTURE

The analyzed population exhibits positive and significant coancestry (θ^xy) up to 80 meters between individuals (Figure 3). Additionally, starting from 260 meters, the graph shows that coancestry values become negative and statistically different from zero (p > 0.05). Based on coancestry data, a neighborhood size (Nb) of 116.5 individuals was estimated. Since the study site has a density of 10.7 reproductive individuals/ha, the estimated deme area was 10.9 hectares.

Figure 3
Internal genetic structure for a population of reproductive Ocotea porosa individuals in Passos Maia, SC. Dashed lines represent the confi dence interval (95%). Solid line represents the mean values of coancestry.
Figura 3
Estrutura genética interna para uma população de indivíduos reprodutivos de Ocotea porosa em Passos Maia - SC. Linhas tracejadas representam o envelope de confi ança (95%). Linha sólida representa os valores médios de coancestria.

3.4. REPRODUCTIVE PHENOLOGY

In all phenophases, synchrony levels exceeding 60% were recorded (Figure 4A). The initiation of floral bud emergence occurred in September (Figure 4A) and reached peak synchrony in the same month. Similarly, flowering began in September but peaked in November. The first green fruits were observed in November, and peak synchrony occurred between December and January. Fruit maturation was recorded from January to April, with the highest synchrony in February.

Figure 4
Phenophase activity (A) and phenophase intensity (B) for an Ocotea porosa population in Passos Maia, SC.
Figura 4
Atividade de fenofases (A) e intensidade de fenofases (B) para Ocotea porosa no Município de Ponte Serrada SC.

Figure 4B shows the intensities of each reproductive phenophase assessed using the Fournier method. As also shown in Figure 4B, the floral bud event was most intense in September, while the intensity of flowering reached its peak in October. Subsequent phenophases, i.e., unripe fruits and ripe fruits, had their peak intensities in January and February, respectively. The spearman correlation results were significant only for the phenophases of unripe fruits versus maximum temperature (0.87), average temperature (0.93), and precipitation (-0.70), as well as the positive correlation between ripe fruits and minimum temperature (0.79).

4. DISCUSSION

4.1. DEMOGRAPHIC STRUCTURE OF REPRODUCTIVE INDIVIDUALS

The evaluated population exhibited a density of reproductive individuals consistent with most values reported in the literature, specifically those considering the inclusion of DBH ≥ 15 cm. According to data from the Forest and Floristic Inventory of Santa Catarina (Montagna et al. 2018aMontagna T, de Gasper A, Oliveira L, Lingner D, Aguiar M, Schorn L, et al. Situação atual e recomendações para conservação de 13 espécies de alto valor para uso e conservação no estado de Santa Catarina. In: Gasper AL de, Oliveira LZ, Lingner DV, Vibrans AC, organizadores. Inventário Florístico Florestal de Santa Catarina - Volume 7. Blumenau: Edifurb; 2018a. p. 256.), the average density of O. porosa populations in Santa Catarina (SC) is 12.8 ind.ha-1, a value similar to that reported by Schaaf et al. (2006)Schaaf LB, Figueiredo Filho A, Galvão F, Sanquetta CR. Alteração na estrutura diamétrica de uma floresta ombrófila mista no período entre 1979 e 2000. Rev Árvore. 2006;30(2):283-95. doi: 10.1590/S0100-67622006000200016
https://doi.org/10.1590/S0100-6762200600...
(9.2 ind.ha-1). However, various publications by Klein on the flora and vegetation of Santa Catarina described the understory of Araucaria Forest in the plateau region as extensively dominated by O. porosa (Klein 1974Klein RM. Importância e fidelidade das Lauráceas na” formação de Araucária” do Estado de Santa Catarina. Insul Rev Botânica. 1974;7:3-19.), reaching up to 90% in abundance (Klein 1960Klein RM. O aspeto dinâmico do pinheiro brasileiro. Sellowia. 1960;12:17-45.).

The reduction in density values can be attributed to historical exploitation of the species. As reported by Klein (1979)Klein RM. Ecologia da flora e vegetação do Vale do Itajaí. Sellowia. 1979;31:1-164., Santa Catarina developed under the strong influence of the timber industry, especially after World War II, and O. porosa was the most exploited species. The present study was conducted on private property, which, according to the owner, was the site of a sawmill prior to 1953. This timber activity continued until the mid-1990s, after which the fragment remained "untouched." Nonetheless, the presence of sawmills was common in this region, giving evidence of exploitation into the mid-20th century (Moretto 2017Moretto SP. Meio ambiente e sociedade: as transformações na paisagem do Oeste Catarinense, na segunda metade do século XX. História Rev. 2017;22(2):107. doi: 10.5216/hr.v22i2.47211
https://doi.org/10.5216/hr.v22i2.47211...
).

4.2. GENETIC DIVERSITY

The estimated results indicate that the evaluated population possesses high genetic diversity (He = 0.3) when compared to the average for long-lived perennial woody species (0.149) (Hamrick and Godt 1990Hamrick JL, Godt MJW. Allozyme diversity in plant species. In: Plant population genetics, breeding and genetic resources. Massachusetts: Sinauer; 1990. p. 43-63.). Based on results reported by other authors (Tarazi et al. 2010Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
https://doi.org/10.1007/s10592-009-9939-...
; Reis et al. 2012Reis M, Mantovani A, Silva J, Mariot A, Bittencourt R, Nazareno A, et al. Distribuição da Diversidade Genética e Conservação de Espécies Arbóreas em Remanescentes Florestais de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL de, Lingner DV, organizadores. Inventário Florístico Florestal de Santa Catarina - Diversidade e conservação dos remanescentes Florestais. 1º ed Blumenau: Edifurb; 2012. p. 143-69.), high levels of genetic diversity are expected for species of the Ocotea genus. The observed heterozygosity is considered low, indicating an excess of homozygotes. The fixation index ( f ) is considerably higher than fixation indices reported in other studies on the Ocotea genus (Tarazi et al. 2010Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
https://doi.org/10.1007/s10592-009-9939-...
; Montagna et al. 2018), suggesting a deviation in the frequency of heterozygotes from what is expected under Hardy-Weinberg equilibrium.

Intensive historical exploitation and distribution in severely anthropogenic environments are factors contributing to the high f^ value (Reis et al. 2012Reis M, Mantovani A, Silva J, Mariot A, Bittencourt R, Nazareno A, et al. Distribuição da Diversidade Genética e Conservação de Espécies Arbóreas em Remanescentes Florestais de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL de, Lingner DV, organizadores. Inventário Florístico Florestal de Santa Catarina - Diversidade e conservação dos remanescentes Florestais. 1º ed Blumenau: Edifurb; 2012. p. 143-69.), a trend described for other species (de Sousa et al. 2020de Sousa VA, Reeves PA, Reilley A, de Aguiar AV, Stefenon VM, Richards CM. Genetic diversity and biogeographic determinants of population structure in Araucaria angustifolia (Bert.) O. Ktze. Conserv Genet. 2020;21(2):217-29. doi: 10.1007/s10592-019-01242-9
https://doi.org/10.1007/s10592-019-01242...
; Mariot et al. 2020Mariot A, Montagna T, Reis MS dos. Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation. J For Res. 2020;31(4):1325-32. doi: 10.1007/s11676-019-00934-9
https://doi.org/10.1007/s11676-019-00934...
). For example, in a study of six plant species, Lauterjung et al. (2019)Lauterjung MB, Montagna T, Bernardi AP, da Silva JZ, da Costa NCF, Steiner F, et al. Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape. For Ecol Manage. 2019;435:144-50. doi: 10.1016/j.foreco.2018.12.058
https://doi.org/10.1016/j.foreco.2018.12...
concluded that heavily exploited species in the past exhibited concerning genetic indices. Another factor that may have influenced a high f^ value is the significant genetic structure found in the evaluated population (Bittencourt and Sebbenn, 2009Bittencourt JVM, Sebbenn AM. Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genet Genomes 2009;5:573-82. doi: 10.1007/s11295-009-0210-4.
https://doi.org/10.1007/s11295-009-0210-...
; Meirmans 2015Meirmans PG. Seven common mistakes in population genetics and how to avoid them. Mol Ecol 2015;24:3223-31. doi.org/10.1111/mec.13243.
https://doi.org/doi.org/10.1111/mec.1324...
).

The high estimated and significantly positive fixation index resulted in a reduction in the N^e. However, even with the reduction in N^e, the estimated minimum viable area (56.2 ha) was smaller than the size of the studied fragment (227 ha), as well as the property (2,466 ha). Therefore, based on a reference size of 1,000 individuals (Lynch 1996Lynch M. A Quantitative-Genetic Perspective on Conservation Issues. In: Hamrick JL, Avise JC, organizadores. Conservation Genetics. Boston, MA: Springer US; 1996. p. 471-501. doi: 10.1007/978-1-4757-2504-9_15
https://doi.org/10.1007/978-1-4757-2504-...
) and the estimated N^e, the study site is capable of supporting a minimum number of individuals able to sufficiently mitigate the effects of genetic drift and allow for seed collection. Similar results were described by Montagna et al. (2018b)Montagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16. for two populations of O. catharinensis in the state of Santa Catarina.

4.3. INTERNAL GENETIC STRUCTURE

Significant IGS has been reported for the genus Ocotea in various studies, and with different spatial scales of significance. Bittencourt (2007)Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p. found significance within 0-19 meters, Tarazi et al. (2010)Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
https://doi.org/10.1007/s10592-009-9939-...
within 0-80 meters, and Montagna et al. (2018b)Montagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16. within 0-60 meters. In contrast, Kageyama et al. (2003)Kageyama PY, Cunha GC, Barreto KD, Mendes FBG, Camargo FRA, Sebbenn AM. Diversidade e autocorrelação genética espacial em populações de Ocotea odorifera (Lauraceae). Sci For. 2003;(64):108-19. found no significant structuring. Expanding comparisons to the Lauraceae family, studies by Chung et al. (2000)Chung MG, Chung MY, Oh GS, Epperson B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity (Edinb). 2000;85(5):490-7. doi: 10.1046/j.1365-2540.2000.00781.x
https://doi.org/10.1046/j.1365-2540.2000...
, Chung et al. (2003)Chung MY, Nason JD, Epperson BK, Chung MG. Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity (Edinb). 2003;90(1):98-106. doi: 10.1038/sj.hdy.6800187
https://doi.org/10.1038/sj.hdy.6800187...
, and Hardy et al. (2005)Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, et al. Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol. 2005;15(2):559-71. doi: 10.1111/j.1365-294X.2005.02785.x
https://doi.org/10.1111/j.1365-294X.2005...
showed the absence of significant structuring. It should be noted that studies on IGS for Ocotea species tend to indicate genetic structuring that extends upward of 100 meters.

Several factors may contribute to the estimated IGS in the present study. The mating system of the species is mixed with a predominance of outcrossing, but O. porosa flowers also exhibit self-compatibility, allowing for self-pollination. The reported pollination distance for the species is considered limited, primarily for short-flight insects such as Frankliniella gardeniae (Danieli-Silva and Varassin 2013Danieli-Silva A, Varassin IG. Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation. Plant Species Biol. 2013;28(1):31-40. doi: 10.1111/j.1442-1984.2011.00354.x
https://doi.org/10.1111/j.1442-1984.2011...
). According to Wessinger (2021)Wessinger CA. From pollen dispersal to plant diversification: genetic consequences of pollination mode. New Phytol. 2021;229(6):3125-32. doi: 10.1111/nph.17073
https://doi.org/10.1111/nph.17073...
, this increases the likelihood of cross-pollination between flowers on the same plant and between neighboring plants, leading to genetic structuring. Species pollinated by insects are more likely to exhibit genetic structuring compared to those pollinated by vertebrates (Melo and Franceschinelli 2016Melo AT de O, Franceschinelli EV. Gene flow and fine-scale spatial genetic structure in Cabralea canjerana (Meliaceae), a common tree species from the Brazilian Atlantic forest. J Trop Ecol. 2016;32(2):135-45. doi: 10.1017/S0266467416000067
https://doi.org/10.1017/S026646741600006...
). Furthermore, a pattern of aggregated distribution (Bittencourt 2007Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p.) coupled with low population density (Montagna et al. 2018aMontagna T, de Gasper A, Oliveira L, Lingner D, Aguiar M, Schorn L, et al. Situação atual e recomendações para conservação de 13 espécies de alto valor para uso e conservação no estado de Santa Catarina. In: Gasper AL de, Oliveira LZ, Lingner DV, Vibrans AC, organizadores. Inventário Florístico Florestal de Santa Catarina - Volume 7. Blumenau: Edifurb; 2018a. p. 256.) facilitates restricted gene flow to spatially close individuals, resulting in increased endogamy (Goncalves et al. 2022Goncalves AL, García MV, Barrandeguy ME, González-Martínez SC, Heuertz M. Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genet Genomes. 2022;18(3):18. doi: 10.1007/s11295-022-01550-1
https://doi.org/10.1007/s11295-022-01550...
).

The estimated neighborhood size (116.5 individuals) in the present study is higher than that reported by Bittencourt (2007)Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p. (62 individuals) and Montagna et al. (2018b)Montagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16. (44 and 48 individuals). On the other hand, the deme size measured in our study (10.9 hectares) is larger than that reported by Tarazi et al. (2010)Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
https://doi.org/10.1007/s10592-009-9939-...
(5 and 6 hectares) and Bittencourt (2007)Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p. (2.3 hectares), but intermediate in relation to that described by Montagna et al. (2018b)Montagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16. (8.8 and 11.7 hectares). Although recommendations emphasize the importance of preserving large areas (Bittencourt 2007Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p.), the estimates of deme size demonstrate that even small fragments (<30 hectares) can contain more than one deme and, therefore, contribute to the species conservation.

4.4. REPRODUCTIVE PHENOLOGY

The observed phenological pattern for the evaluated O. porosa population aligns with that found in other studies reporting on the reproductive phenology of the species. In spite of differences in the duration of phenophases, the overall reproductive cycle of O. porosa, as reported in the present study, is consistently corroborated in the literature, i.e., beginning in August (Bittencourt 2007Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p.) and ending in April (Seubert 2017Seubert RC. Ecologia e variabilidade genética de uma população natural isolada de Ocotea porosa no Parque Nacional da Serra do Itajaí. [Dissertação de Mestrado]. Blumenau: Universidade de Blumenau; 2017. 146 p.). Variations in phenological pattern among individuals and populations of the same species are common in tree Lauraceae species dispersed by birds (Wheelwright 1986Wheelwright NT. A seven-year study of individual variation in fruit production in tropical bird-dispersed tree species in the family Lauraceae BT - Frugivores and seed dispersal. In: Estrada A, Fleming TH, organizadores. Dordrecht: Springer Netherlands; 1986. p. 19-35. doi:10.1007/978-94-009-4812-9_3
https://doi.org/10.1007/978-94-009-4812-...
). Additionally, general consensus holds that the phenological pattern of O. porosa is considered regular and annual (Rêgo et al. 2006Rêgo GM, Lavoranti OJ, Neto AA. Caracterização morfológica da fenofase reprodutiva da imbuia. Colombo, PR: Embrapa Florestas; 2006. p. 4.), and the results of the present study support these observations.

Although not detected through correlation analysis, it was observed that the onset of flowering is related to an increase in temperature (average, maximum, and minimum) and precipitation. For example, the peak intensity of flowering coincided with the month of highest rainfall (October). Studies conducted across different formations in the Atlantic Forest domain have demonstrated a seasonal pattern for the flowering period, with an increase in this phenophase during the transition from the colder, drier period to the warmer and rainier months, typically occurring between September and January (Funch et al. 2002Funch LS, Punch R, Barroso GM. Phenology of Gallery and Montane Forest in the Chapada Diamantina, Bahia, Brazil. Biotropica. 2002;34(1):40-50. doi: 10.1111/j.1744-7429.2002.tb00240.x
https://doi.org/10.1111/j.1744-7429.2002...
; Cascaes et al. 2013Cascaes Mf, Citadini-Zanette V, Harter-Marques B. Reproductive phenology in a riparian rainforest in the south of Santa Catarina state, Brazil. An Acad Bras Cienc. 2013;85(4):1449-60. doi: 10.1590/0001-37652013105112
https://doi.org/10.1590/0001-37652013105...
). This happens because phenology is determined by climatic and physiological factors (Rodarte et al. 2007Rodarte ATA, Lima HA de, Benevides CR. Fenologia de espécies arbóreas e arbustivas na Restinga de Maricá, RJ [Internet]. In: Rêgo GM, Negrelle RRB, Morellato LPC, organizadores. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo, PR: Embrapa Florestas; 2007. p. 422. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104696/1/AtividadesFenologicas.pdf
https://ainfo.cnptia.embrapa.br/digital/...
).

4.5. SEED COLLECTION

The results of this research have important implications for seed collection in O. porosa populations. Despite the difference in estimated density (10.7 individuals.ha-1) from that reported by Klein (1974)Klein RM. Importância e fidelidade das Lauráceas na” formação de Araucária” do Estado de Santa Catarina. Insul Rev Botânica. 1974;7:3-19., who suggested a population reduction, the total area of the fragment is still large enough to maintain multiple demes and minimum viable populations. Furthermore, despite the positive and significant fixation index, the diversity values are considered high. Based on these results, it is reasonable to conclude that the studied population constitutes an important site for seed collection.

According to IGS results, seed collection should respect a minimum distance of 80 meters between plants to reduce the chances of relatedness among parent plants. To maximize the capture of genetic diversity, it is recommended that seeds be collected from individuals separated by a minimum distance of 240 meters. Other factors, such as type of pollinator (short flight), dispersal, mating system (mixed), distribution (aggregated), and historical use (population reduction), reinforce the adoption of distance criteria for O. porosa seed collection.

Collecting seeds at the right time is important because fruits collected from the ground are more likely to contain old, moldy, or insect-infested seeds (Pedrini et al. 2020Pedrini S, Gibson-Roy P, Trivedi C, Gálvez-Ramírez C, Hardwick K, Shaw N, et al. Collection and production of native seeds for ecological restoration. Restor Ecol. 2020;28(S3). doi: 10.1111/rec.13190
https://doi.org/10.1111/rec.13190...
). Given this context and based on the results of reproductive phenology, it is reasonable to suggest that the recommended time for fruit collection would be between January and February, the period of peak fruit maturity.

5. CONCLUSION

The evaluated population has a high density of individuals, high genetic diversity, a high fixation index, and significant spatial genetic structure up to 80 meters apart. Based on these results, it can be concluded that the forest fragment can be used as a seed collection area for O. porosa. The recommended time for collection is between January and February. These results have relevant and novel implications for O. porosa seed collection practices, especially for ecological restoration purposes. Additionally, estimates of minimum viable area (MVA) and deme size are important indicators for O. porosa conservation, which is distributed in environments with intense anthropogenic activity.

6. REFERENCES

  • Alfenas AC. Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microrganismos. 1º ed. Viçosa: Editora Universidade Federal de Viçosa; 1998.
  • Bencke CSC, Morellato LPC. Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev Bras Botânica. 2002;25(3):269-75. doi: 10.1111/j.1744-7429.2000.tb00620.x
    » https://doi.org/10.1111/j.1744-7429.2000.tb00620.x
  • Bittencourt JVM, Sebbenn AM. Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genet Genomes 2009;5:573-82. doi: 10.1007/s11295-009-0210-4.
    » https://doi.org/10.1007/s11295-009-0210-4.
  • Bittencourt R. Caracterização da estrutura genética interna e aspectos da auto-ecologia de uma população natural de imbuia (Ocotea porosa - Lauraceae) [Dissertação de Mestrado]. Florianópolis: Universidade Federal de Santa Catarina; 2007. 83 p.
  • Brasil. portaria mma nº 148, de 7 de jun. de 2022. Brasília, Brasil: Presidência da República; 2022. Available from: https://www.in.gov.br/web/dou/-/portaria-mma-n-148-de-7-de-junho-de-2022-406272733
    » https://www.in.gov.br/web/dou/-/portaria-mma-n-148-de-7-de-junho-de-2022-406272733
  • Breed MF, Harrison PA, Bischoff A, Durruty P, Gellie NJC, Gonzales EK, et al. Priority Actions to Improve Provenance Decision-Making. Bioscience. 2018;68(7):510-6. doi: 10.1093/biosci/biy050
    » https://doi.org/10.1093/biosci/biy050
  • Cascaes Mf, Citadini-Zanette V, Harter-Marques B. Reproductive phenology in a riparian rainforest in the south of Santa Catarina state, Brazil. An Acad Bras Cienc. 2013;85(4):1449-60. doi: 10.1590/0001-37652013105112
    » https://doi.org/10.1590/0001-37652013105112
  • Chung MG, Chung MY, Oh GS, Epperson B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity (Edinb). 2000;85(5):490-7. doi: 10.1046/j.1365-2540.2000.00781.x
    » https://doi.org/10.1046/j.1365-2540.2000.00781.x
  • Chung MY, Nason JD, Epperson BK, Chung MG. Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity (Edinb). 2003;90(1):98-106. doi: 10.1038/sj.hdy.6800187
    » https://doi.org/10.1038/sj.hdy.6800187
  • Cockerham CC. Variance of gene frequencies. Evolution (N Y) 1969;23:72-84.
  • Crouzeilles R, Santiami E, Rosa M, Pugliese L, Brancalion PHS, Rodrigues RR, et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspect Ecol Conserv. 2019;17(2):80-3. doi: 10.1016/j.pecon.2019.04.003
    » https://doi.org/10.1016/j.pecon.2019.04.003
  • Danieli-Silva A, Varassin IG. Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation. Plant Species Biol. 2013;28(1):31-40. doi: 10.1111/j.1442-1984.2011.00354.x
    » https://doi.org/10.1111/j.1442-1984.2011.00354.x
  • Fournier LA. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba. 1974;24(4):422-3.
  • Fournier LA, Charpantier C. El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Turrialba. 1978;7(25-26):13-20.
  • Funch LS, Punch R, Barroso GM. Phenology of Gallery and Montane Forest in the Chapada Diamantina, Bahia, Brazil. Biotropica. 2002;34(1):40-50. doi: 10.1111/j.1744-7429.2002.tb00240.x
    » https://doi.org/10.1111/j.1744-7429.2002.tb00240.x
  • Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, et al. International principles and standards for the practice of ecological restoration. Restor Ecol. 2019;27(S1). doi: 10.1111/rec.13035
    » https://doi.org/10.1111/rec.13035
  • Goncalves AL, García MV, Barrandeguy ME, González-Martínez SC, Heuertz M. Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genet Genomes. 2022;18(3):18. doi: 10.1007/s11295-022-01550-1
    » https://doi.org/10.1007/s11295-022-01550-1
  • Goudet J. Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. Heredity (Edinb). 2002;86:485-6.
  • Hamrick JL, Godt MJW. Allozyme diversity in plant species. In: Plant population genetics, breeding and genetic resources. Massachusetts: Sinauer; 1990. p. 43-63.
  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, et al. Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol. 2005;15(2):559-71. doi: 10.1111/j.1365-294X.2005.02785.x
    » https://doi.org/10.1111/j.1365-294X.2005.02785.x
  • Kageyama PY, Cunha GC, Barreto KD, Mendes FBG, Camargo FRA, Sebbenn AM. Diversidade e autocorrelação genética espacial em populações de Ocotea odorifera (Lauraceae). Sci For. 2003;(64):108-19.
  • Klein RM. O aspeto dinâmico do pinheiro brasileiro. Sellowia. 1960;12:17-45.
  • Klein RM. Importância e fidelidade das Lauráceas na” formação de Araucária” do Estado de Santa Catarina. Insul Rev Botânica. 1974;7:3-19.
  • Klein RM. Ecologia da flora e vegetação do Vale do Itajaí. Sellowia. 1979;31:1-164.
  • Lauterjung MB, Montagna T, Bernardi AP, da Silva JZ, da Costa NCF, Steiner F, et al. Temporal changes in population genetics of six threatened Brazilian plant species in a fragmented landscape. For Ecol Manage. 2019;435:144-50. doi: 10.1016/j.foreco.2018.12.058
    » https://doi.org/10.1016/j.foreco.2018.12.058
  • Lewis P., Zaykin D. GDA (Genetic Data Analysis): computer program for the analysis of allelic data [Internet]. Connecticut; 2001. Available from: http://phylogeny.uconn.edu/software/
    » http://phylogeny.uconn.edu/software/
  • Lindgren D, Mullin TJ. Relatedness and status number in seed orchard crops. Can J For Res 1998;28:276-83. doi.org/10.1139/x97-217.
    » https://doi.org/doi.org/10.1139/x97-217
  • Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot. 1995;82(11):1420. doi: 10.1002/j.1537-2197.1995.tb12679.x
    » https://doi.org/10.1002/j.1537-2197.1995.tb12679.x
  • Luna-Nieves AL, Meave JA, Morellato LPC, Ibarra-Manríquez G. Reproductive phenology of useful Seasonally Dry Tropical Forest trees: Guiding patterns for seed collection and plant propagation in nurseries. For Ecol Manage. 2017;393:52-62. doi: 10.1016/j.foreco.2017.03.014
    » https://doi.org/10.1016/j.foreco.2017.03.014
  • Lynch M. A Quantitative-Genetic Perspective on Conservation Issues. In: Hamrick JL, Avise JC, organizadores. Conservation Genetics. Boston, MA: Springer US; 1996. p. 471-501. doi: 10.1007/978-1-4757-2504-9_15
    » https://doi.org/10.1007/978-1-4757-2504-9_15
  • Mariot A, Montagna T, Reis MS dos. Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation. J For Res. 2020;31(4):1325-32. doi: 10.1007/s11676-019-00934-9
    » https://doi.org/10.1007/s11676-019-00934-9
  • Melo AT de O, Franceschinelli EV. Gene flow and fine-scale spatial genetic structure in Cabralea canjerana (Meliaceae), a common tree species from the Brazilian Atlantic forest. J Trop Ecol. 2016;32(2):135-45. doi: 10.1017/S0266467416000067
    » https://doi.org/10.1017/S0266467416000067
  • Melo FPL, Pinto SRR, Brancalion PHS, Castro PS, Rodrigues RR, Aronson J, et al. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environ Sci Policy. 2013;33:395-404. doi: 10.1016/j.envsci.2013.07.013
    » https://doi.org/10.1016/j.envsci.2013.07.013
  • Meirmans PG. Seven common mistakes in population genetics and how to avoid them. Mol Ecol 2015;24:3223-31. doi.org/10.1111/mec.13243.
    » https://doi.org/doi.org/10.1111/mec.13243
  • Meyer L, Sevegnani L, Gasper A., Schorn L., Vibrans A., Lingner D., et al. Fitossociologia do Componente arbóreo/arbustivo da Floresta Ombrófila Mista em Santa Catarina. In: Inventário Florístico Florestal de Santa Catarina, vol III, Floresta Ombrófila Mista. 1º ed Blumenau: Edifurb; 2013. p. 25-31.
  • Montagna T, de Gasper A, Oliveira L, Lingner D, Aguiar M, Schorn L, et al. Situação atual e recomendações para conservação de 13 espécies de alto valor para uso e conservação no estado de Santa Catarina. In: Gasper AL de, Oliveira LZ, Lingner DV, Vibrans AC, organizadores. Inventário Florístico Florestal de Santa Catarina - Volume 7. Blumenau: Edifurb; 2018a. p. 256.
  • Montagna T, Lauterjung MB, Candido-Ribeiro R, da Silva JZ, Hoeltgebaum MP, da Costa NCF, et al. Spatial genetic structure, population dynamics, and spatial patterns in the distribution of Ocotea catharinensis from southern Brazil: Implications for conservation. Can J For Res. 2018b;48(5):506-16.
  • Montagna T, Silva JZ, Pikart TG, Reis MS. Reproductive ecology of Ocotea catharinensis , an endangered tree species. Ren ZX, organizador. Plant Biol. 2018c;20(5):926-35. doi: 10.1111/plb.12847
    » https://doi.org/10.1111/plb.12847
  • Moretto SP. Meio ambiente e sociedade: as transformações na paisagem do Oeste Catarinense, na segunda metade do século XX. História Rev. 2017;22(2):107. doi: 10.5216/hr.v22i2.47211
    » https://doi.org/10.5216/hr.v22i2.47211
  • Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583 - 590. doi: 10.1093/genetics/89.3.583
    » https://doi.org/10.1093/genetics/89.3.583
  • Pedrini S, Dixon KW. International principles and standards for native seeds in ecological restoration. Restor Ecol. 2020;28:286-303. doi: 10.1111/rec.13155
    » https://doi.org/10.1111/rec.13155
  • Pedrini S, Gibson-Roy P, Trivedi C, Gálvez-Ramírez C, Hardwick K, Shaw N, et al. Collection and production of native seeds for ecological restoration. Restor Ecol. 2020;28(S3). doi: 10.1111/rec.13190
    » https://doi.org/10.1111/rec.13190
  • Rêgo GM, Lavoranti OJ, Neto AA. Caracterização morfológica da fenofase reprodutiva da imbuia. Colombo, PR: Embrapa Florestas; 2006. p. 4.
  • Reis A, Tres DR, Scariot EC. Restauração na Floresta Ombrófila Mista através da sucessão natural. Pesqui Florest Bras. 2007;(55):67-73.
  • Reis M, Mantovani A, Silva J, Mariot A, Bittencourt R, Nazareno A, et al. Distribuição da Diversidade Genética e Conservação de Espécies Arbóreas em Remanescentes Florestais de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL de, Lingner DV, organizadores. Inventário Florístico Florestal de Santa Catarina - Diversidade e conservação dos remanescentes Florestais. 1º ed Blumenau: Edifurb; 2012. p. 143-69.
  • Rodarte ATA, Lima HA de, Benevides CR. Fenologia de espécies arbóreas e arbustivas na Restinga de Maricá, RJ [Internet]. In: Rêgo GM, Negrelle RRB, Morellato LPC, organizadores. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Colombo, PR: Embrapa Florestas; 2007. p. 422. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104696/1/AtividadesFenologicas.pdf
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104696/1/AtividadesFenologicas.pdf
  • Santa Catarina. Resolução CONSEMA Nº 51, de 05 de dez. de 2014. Conselho Estadual de Meio Ambiente - CONSEMA. Florianópolis, Brasil. Secretaria de Estado do Desenvolvimento Econômico Sustentável. Available from: https://www.sde.sc.gov.br/index.php/biblioteca/consema/legislacao/resolucoes/2014/2354-resolucao-consema-n-51-2014/file
    » https://www.sde.sc.gov.br/index.php/biblioteca/consema/legislacao/resolucoes/2014/2354-resolucao-consema-n-51-2014/file
  • Schaaf LB, Figueiredo Filho A, Galvão F, Sanquetta CR. Alteração na estrutura diamétrica de uma floresta ombrófila mista no período entre 1979 e 2000. Rev Árvore. 2006;30(2):283-95. doi: 10.1590/S0100-67622006000200016
    » https://doi.org/10.1590/S0100-67622006000200016
  • Sebbenn AM. Número de árvores matrizes e conceitos genéticos na coleta de sementes para reflorestamentos com espécies nativas. Rev do Inst Florest. 2002;14(2):115-32.
  • Seubert RC. Ecologia e variabilidade genética de uma população natural isolada de Ocotea porosa no Parque Nacional da Serra do Itajaí. [Dissertação de Mestrado]. Blumenau: Universidade de Blumenau; 2017. 146 p.
  • SOS Mata Atlântica. Mata Atlântica. São Paulo; 2020 [cited 2022 dec. 20]. Available from: https://www.sosma.org.br/causas/mata-atlantica/
    » https://www.sosma.org.br/causas/mata-atlantica/
  • de Sousa VA, Reeves PA, Reilley A, de Aguiar AV, Stefenon VM, Richards CM. Genetic diversity and biogeographic determinants of population structure in Araucaria angustifolia (Bert.) O. Ktze. Conserv Genet. 2020;21(2):217-29. doi: 10.1007/s10592-019-01242-9
    » https://doi.org/10.1007/s10592-019-01242-9
  • Stingemore JA, Krauss SL. Genetic Delineation of Local Provenance in Persoonia longifolia: Implications for Seed Sourcing for Ecological Restoration. Restor Ecol. 2013;21(1):49-57. doi: 10.1111/j.1526-100X.2011.00861.x
    » https://doi.org/10.1111/j.1526-100X.2011.00861.x
  • Tarazi R, Mantovani A, dos Reis MS. Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet. 2010;11(3):965-76. doi: 10.1007/s10592-009-9939-4
    » https://doi.org/10.1007/s10592-009-9939-4
  • Varty N, Guadagnin DL. Ocotea porosa IUCN Red List Threat Species. 1998;e.T32978A9.
  • Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13(4):921-35. doi: 10.1046/j.1365-294X.2004.02076.x
    » https://doi.org/10.1046/j.1365-294X.2004.02076.x
  • Wessinger CA. From pollen dispersal to plant diversification: genetic consequences of pollination mode. New Phytol. 2021;229(6):3125-32. doi: 10.1111/nph.17073
    » https://doi.org/10.1111/nph.17073
  • Wheelwright NT. A seven-year study of individual variation in fruit production in tropical bird-dispersed tree species in the family Lauraceae BT - Frugivores and seed dispersal. In: Estrada A, Fleming TH, organizadores. Dordrecht: Springer Netherlands; 1986. p. 19-35. doi:10.1007/978-94-009-4812-9_3
    » https://doi.org/10.1007/978-94-009-4812-9_3

Publication Dates

  • Publication in this collection
    04 Dec 2023
  • Date of issue
    2023

History

  • Received
    25 Jan 2023
  • Accepted
    29 Sept 2023
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br