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SUMMARY

OBJECTIVE: This study aimed to propose a co-expression-network (CEN) based gene functional inference by extending the “Guilt by 
Association” (GBA) principle to predict candidate gene functions for type 1 diabetes mellitus (T1DM). 

METHODS: Firstly, transcriptome data of T1DM were retrieved from the genomics data repository for differentially expressed gene (DEGs) 
analysis, and a weighted dif﻿ferential CEN was generated. The area under the receiver operating characteristics curve (AUC) was chosen 
to determine the performance metric for each Gene Ontology (GO) term. Differential expression analysis identified 325 DEGs in T1DM, 
and co-expression analysis generated a differential CEN of edge weight > 0.8.

RESULTS: A total of 282 GO annotations with DEGs > 20 remained for functional inference. By calculating the multifunctionality score 
of genes, gene function inference was performed to identify the optimal gene functions for T1DM based on the optimal ranking gene 
list. Considering an AUC > 0.7, six optimal gene functions for T1DM were identified, such as regulation of immune system process and 
receptor activity. 

CONCLUSIONS: CEN-based gene functional inference by extending the GBA principle predicted 6 optimal gene functions for T1DM. The 
results may be potential paths for therapeutic or preventive treatments of T1DM.
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ORIGINAL ARTICLE

INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a disorder of 

glucose homeostasis characterized by progressive 
insulin deficiency, which results in hyperglycemia 
that develops as a result of autoimmune destruction 
of the pancreatic β-cell1. The morbidity of T1DM has 
increased worldwide in the last decades, especially in 
childhood and developed countries2.

Increasingly, high-throughput genome-wide asso-
ciation studies have resulted in a paradigm shift in 
the way that researchers view complex diseases. 
As a powerful approach for molecular research, 
high-throughput genome-wide analysis has been 
applied for unprecedented discovery in various 
diseases. Transcriptome analysis has yielded huge 
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amounts of genes influencing the likelihood of 
developing T1DM3-5. Understanding the function of 
uncharacterized genes is one of the major challenges 
of biology6,7. While most biological functions arise 
from integrated activities between many genes, mak-
ing gene function prediction complex8. Gene inter-
action usually involves participation in the same or 
related cellular functions. Thus, gene interactions 
can be used to infer gene functional relationships. 
The function of a protein can be inferred by observing 
whether it interacts with another protein of known 
function, which is an example of the “guilt by asso-
ciation” concept9,10. Gene networks have been widely 
used to predict gene function using the neighbor 
voting algorithm, a basic application of the “guilt by 
association” principle9,11.

In this study, we performed a network-based gene 
function inference to explore informative genes and 
gene functions involved in the development of T1DM 
by expanding the “guilt-by-association’’ method.

METHODS

Our gene function prediction procedure contained 
two main core steps: network characterization across 
thousands of gene ontology (GO) annotation sets using 
a fully vectorized neighbor voting algorithm, and gene 
multifunctionality assessment to determine the opti-
mal gene functions.

Differential co-expression network from tran-
scriptome data
Here, the transcriptome data of T1DM retrieved 

from the public functional genomics data repository 
Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/), under the accessing num-
ber of GSE5509812, were utilized to determine gene 
differential expression and gene co-expression. The 
microarray data were obtained from peripheral blood 
mononuclear cells of 12 patients with newly diagnosed 
T1DM and 10 normal controls and presented on the 
GPL570 (Affymetrix U133 Plus 2.0) platform. Detailed 
sample characteristics and microarray experiments 
have been shown in a previous study12. Gene expres-
sion levels were normalized using the robust multiar-
ray average (RMA) procedure and normalized using 
the median method.

Gene differential expressions between T1DM 
and normal controls were measured by Linear 
Models for Microarray Data (Limma) package in 

R. By assimilating a set of gene-specific t-tests and 
a Benjamini-Hochberg false-discovery-rate (FDR) 
based method13 to adjust the p-values, differentially 
expressed genes were determined under the thresh-
old values of p < 0.05 and |log2FoldChange| ≥ 2. Then, 
a network was generated based on these differen-
tially expressed genes, and the Spearman’s correla-
tion coefficient (SCC), a measure of the correlation 
between two genes, was used to re-weight the gene 
network. In the differential co-expression network, 
SCC gives a value of edge connection between -1 and 
+1 inclusive, and the SCC absolute value was consid-
ered as the weight value of the edge; a weight value 
close to 0 represents a weaker connection between 
two genes, and a weight value close to 1, a stronger 
connection between two genes.

In this representation of the differential co-ex-
pression network, each row and column indicated a 
node, and the connection between the two was indi-
cated by the corresponding entry in the adjacency 
matrix. Moreover, Cytoscape (http://cytoscape.org/) 
was employed to visualize the differential co-expres-
sion network.

Furthermore, topological centrality is effective 
for identifying essential molecules in well-charac-
terized interaction networks. Here we analyzed the 
topological centrality of the differential co-expres-
sion network. Degree quantifies the local topology 
of each node, by summing up the number of its 
adjacent nodes. Genes with high node degrees tend 
to be associated with many functions. Thus, degree 
centrality of the differential co-expression network 
was investigated.

GO annotation
After representing the differential co-expression 

network as a matrix, we performed a gene attribute 
analysis to determine the gene set label vectors and 
assess gene multifunctionality. The GO consortium 
(http://geneontology.org/) contains 19,003 human 
GO terms, covering 18,402 genes. To improve the 
prediction performance, only GO terms with differ-
entially expressed genes > 20 remained in the subse-
quent analysis.

Network-based gene function prediction
After obtaining both the network and the annota-

tions, we assessed the network through its topology 
and the annotations through gene multifunctional-
ity calculation.
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Neighbor voting for gene function prediction

Neighbor voting algorithm based on the 
“guilt-by-association” principle was employed to per-
form the gene function prediction. In the “guilt-by-as-
sociation” principle, genes with shared functions are 
preferentially connected. In a network, genes with 
similar neighbors may share common properties, 
giving rise to a prediction metric based on the sim-
ilarity of neighbors. In this study, we applied the 
neighbor voting algorithm based on the differential 
co-expression network and GO annotations. Specifi-
cally, we hid a subset of gene labels in one GO term 
and assessed whether the remaining genes in this GO 
term could predict the identities of the hidden genes 
using information inferred from the differential co-ex-
pression network.

Multifunctionality assessment
Gene multifunctionality refers to genes possessing 

multiple molecular functions, each of which can be 
characterized by the set of genes inferred to be inter-
acting in a particular biological context14. Moreover, 
node degree is unambiguously linked to multifunc-
tionality, and multifunctional genes often are expected 
to exhibit a higher node degree. As with node degree, 
multifunctionality is also a key factor in explaining 
the results of gene function prediction. Given a gene 
i, its multifunctionality was defined as:

Where nk is the number of genes within the GO 
term k, and n’k is the number of genes outside the 
GO term k. The more highly annotated or multifunc-
tional a gene is, the higher the chances of predicting 
them as good candidates for having any annotation. A 
comparison of gene multifunctionality with the neigh-
bor voting performance AUC presented an indication 
of the degree to which generic predictions dominate 
results. Thus, as a control of the annotations in the 
neighbor voting algorithm, we performed a gene mul-
tifunctionality assessment using GO annotations and 
generated a ranked score for each gene.

RESULTS
Objects

We firstly obtained the accessible expression data 
of T1DM to identify the differentially expressed genes 
and generate the gene co-expression. We constructed 
the co-expression adjacency matrix of 325 differen-
tially expressed genes (covering 52,650 interactions), 
where the entry indicated the connection between two 
genes (Figure 1A).

FIGURE1. Two necessary objects for the network-based function inference by extending the “guilt by association” method. A: 
Differential co-expression network matrix; B: Gene set annotation vectors.
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Subsequently, these GO terms were represented as 
a binary vector, where each entry corresponded to a 
differentially expressed gene, with a 1 indicating that 
the differentially expressed gene was a member of this 
GO term, and a 0 if it was not (Figure1B).

Differential co-expression network
After generating a co-expression matrix of 325 dif-

ferentially expressed genes, gene interactions with 
weight values < 0.8 were removed, and the remaining 
gene interactions were used to construct the differen-
tial co-expression network, including 45 differentially 
expressed genes and 675 interactions (Figure 2A). 
A degree centrality analysis was performed for the 
co-expression network and illustrated the distribution 
of node degree in Figure2B.

Gene function inference
Generally, genes with similar neighbors may 

share common properties. Thus, we performed gene 
function inference for T1DM based on the differen-
tial co-expression network. A node degree analysis 
is an important assessment of the network. Genes 
with high node degrees tend to be involved in many 
GO annotations set. Thus, we analyzed the gene node 
degree and calculated the node degree AUC (Figures 
3A and 3B). A total of 176 terms were identified with 
AUC > 0.5. Moreover, one GO term defense response 
to another organism (AUC = 0.718) showed good per-
formance with AUC > 0.7.

Based on the optimal ranking gene list, we gen-
erated the distribution of AUCs for 282 GO terms 
(Figure 3C). Go terms with AUC > 0.7 were defined 

FIGURE 2. A: The distribution of node degree of the co-expression network. B: Differential co-expression network with edge 
weight > 0.8 and node degree > 1.

FIGURE 3. The distributions of the area under the receiver operating characteristics curve (AUC) scores. A: Distribution of AUC 
scores from the neighbor voting algorithm. B: Distribution of AUC scores for node degree ranking. C: Distribution of AUC scores 
from multifunctionality assessment. red: median, grey: inter-quartile ranges. 
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as the optimal gene functions for T1DM, including 
regulation of immune system process (AUC = 0.741), 
positive regulation of immune system process (AUC 
= 0.738), system process (AUC = 0.725), signal trans-
ducer activity (AUC = 0.717), transmembrane signaling 
receptor activity (AUC = 0.713), and receptor activity 
(AUC = 0.713).

DISCUSSION

In this study, we proposed a co-expression net-
work-based gene functional inference by extending the 
“Guilt by Association” strategy to predict candidate 
gene functions for T1DM from the GO consortium, 
which is important for revealing the molecular mecha-
nisms and future applications of therapeutic decisions.

By extending the “Guilt by Association” strategy on 
the differential co-expression network, we generated 
several optimal gene functions for T1DM by assessing 
gene multifunctionalities, such as regulation of the 
immune system process and receptor activity. Regu-
lation of the immune system process is defined as any 
process that modulates the frequency, rate, or extent of 
an immune system process. It is well known that T1DM 
is a chronic autoimmune disorder with the destruction 
of pancreatic β cells in genetically predisposed individu-
als with impaired immune regulation. Previous studies 
have revealed altered immune regulation in patients 
with T1DM15,16. Dys-regulation of the immune system 

contributes to the breakdown of immune regulation, 
leading to T1DM17. Eizirik et al.18 indicated that innate 
immunity and inflammatory mediators play important 
roles in the process of T1DM. Moreover, several genetic 
variants in T1DM have been proven to have functional 
features of impaired immune regulation19. Regulation 
of the immune system process might enable investi-
gators to restore immune imbalances with therapeu-
tic interventions.

CONCLUSIONS

Using a co-expression network-based gene func-
tional inference based on the “Guilt by Association” 
principle, our study predicted 6 optimal gene functions 
related to the regulation of immune system process 
and receptor activity, which might lead to potential 
paths for therapeutic or preventive treatments of 
T1DM and its complications.
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RESUMO

OBJETIVO: O objetivo deste estudo é realizar uma inferência funcional genética baseada na rede de coexpressão (CEN), expandindo o 
escopo do princípio de “Culpa por Associação” (GBA - Guilt by Association) para prever as funções genéticas do diabetes mellitus tipo 
1 (T1DM).

MÉTODOS: Primeiro, os dados transcritos do T1DM foram recuperados do repositório de dados genômicos para a análise dos genes 
diferenciais (DEGs), e foi gerada uma CEN diferencial ponderada. A área sob a curva ROC (AUC) foi escolhida para determinar a métrica 
de desempenho para cada termo de Ontologia Genética (GO). A análise da expressão diferencial identificou 325 DEGs no T1DM, e a 
análise de coexpressão gerou uma CEN diferencial com aresta de peso >0,8.

RESULTADOS: Um total de 282 anotações de GO com DEGs >20 foram mantidas para inferência funcional. Ao calcular a pontuação de 
multifuncionalidade dos genes, a inferência da função genética foi realizada para identificar as funções genéticas ideais para T1DM 
com base na lista de classificação genética ideal. Considerando um valor de AUC >0,7, foram identificadas seis funções genéticas ideais 
para a T1DM, tais como a regulação do processo imunológico e da atividade dos receptores. 

CONCLUSÕES: A inferência funcional genética baseada em CEN, ao expandir o princípio de GBA, previu seis funções genéticas ideais 
para o T1DM. Os resultados podem ser caminhos potenciais para tratamentos terapêuticos ou preventivos do T1DM.

PALAVRAS-CHAVE: Diabetes mellitus tipo 1. Ligação proteica. Estudos de associação genética. Genética.
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