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A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from 
the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial 
interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed 
to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in 
nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach 
was numerically stable and robust with respect to deviations in the initial conditions or experimental noises. 
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INTRODUCTION

The process of obtaining physical information from experimental 
data is an ill-posed inverse problem if one of the three conditions, 
existence, uniqueness and continuity with respect to experimental 
noises, is not satisfied.1 Usually, robust techniques are required to 
solve this kind of problem which appears in several scientific and 
technological areas. For example, calculation of kinetic parameters 
from experimental properties related to chemical concentrations is 
called inverse kinetic problem. Methods of parameters estimation 
such as rank annihilation factor analysis,2 curve resolution methods,3 
Monte Carlo4 or control type technique5 have been extensively des-
cribed in literature to estimate kinetic constants. A common difficulty 
in all these techniques is the sensitivity with respect to experimental 
random noises of the derivative operators, used to model the kinetic 
processes. This fact is sufficient to classify the problem as an ill-posed 
kinetic inverse problem.6 

The work to be developed here consists in an application of a 
stable numerical method to deal ill-posed kinetic problem. Recently a 
general approach based on recurrent neural networks was proposed to 
solve this kind of problem.7,8 This technique has also been used suc-
cessfully to study magnetic resonance multiple sclerosis diagnostic,9 
retrieval of probability density function from experimental positron 
annihilation lifetime spectra,10 for the inversion of intermolecular 
potential11 and to calculate molecular force fields from experimental 
vibrational frequencies.12 

The neural network technique can also be applied to a kinetic 
problem of industrial interest which involves irreversible consecutive 
reactions: the hydrogenation of the Citral molecule. This molecule 

contains different reaction sites and the hydrogenation process is 
described by a complex kinetic model, although parallel reactions, like 
acetalization and cyclization can also occur. Increasing the catalyst 
density in the reaction medium, by drainage of the liquid phase, will 
enhance the principal reactions speed. As a consequence, the stages of 
competitive reactions are delayed.13,14 Rate constants for the process 
under consideration are obtained from experimental concentrations 
of the final product. 

A model system of four kinetic equations will be used to exem-
plify and emphasize the usefulness of the methods dealing with 
random noise in the concentrations. Experimental data will carry an 
inherent error and the preliminary analysis with synthetic data will 
be important to learn about inverting real laboratory data. Inverting 
data with noise is not possible to methods that use matrix procedure. 
The robustness of the neural network with respect to experimental 
noises is compared with the Simplex and the Levenberg-Marquardt 
methods, commonly used in nonlinear regression approaches.15,16.

THEORETICAL BACKGROUND

Citral hidrogenation kinetic modeling

According to the Langmuir-Hinshelwood kinetics, catalytic 
hydrogenation of citral on nickel catalyst is an isothermal conse-
cutive first order reaction and can be described as a competitive 
absorption model.14 In this process, the citral (A component) reacts 
in three irreversible first-order reactions, in which the primary 
product citronellal, (B component), is formed very fast, whereas 
citronellol (C component) and 3,7-dimetyloctanol (D component) 
are formed in a comparative slowly way. This reaction sequence 
can be seen in Figure 1.13,14
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To accelerate the secondary and tertiary products formation, a 
semi batch reactor concept has to be adopted. In this procedure, the 
catalyst-liquid ratio is increased with time by a constant volumetric 
flow out from the reactor, allowing the accurate kinetic parameters 
determination in a single experiment.13,14 In this semi batch reactor 
mode, as established in the references 13 and 14, the mass balance 
equation is 

	 	 (1)

in which ni, ri, mcat and n·i,out  are respectively the molar amount, the 
generation rate, the catalyst mass and the molar flow of i-th component. 
Due to an extensive stirring on the reactor, the concentrations in the 
continuously pumped volume flow and in the semi-batch reactor 
are constant and one can adopt n·i,out = ni and also, ni = ciVL, with 
VL = V0 - VT. Therefore, the Equation 1 can be rewritten as,

	

	

and in a simplified form, 

	

 	 (2)

since dVL/dt = -Vout and the variable bulk density of the catalyst (V0 
is the initial volume of the liquid fase, V the volumetric flow and  t 
the time of the reaction).

The generation rates, ri , to the citral hydrogenation can be 
obtained considering the competitive adsorption model in which all 
the reactants are adsorbed on the same active sites and molecular 
hydrogen is also adsorbed. This scheme can be written as:

	  	

(3)

in which * is the active site, Pi and Pi +1 are consecutive hydroge-
nation products. In this representation, hydrogenation reactions can 
be assumed as irreversible and rate-determining steps, deriving the 
rate Equations 4:

	 	 (4)

with CH, Ki and ki the hydrogen concentration, the adsorption cons-
tants and the reaction rate constants, respectively. However, it was 
shown that citral hydrogenation is better represented considering 
the denominator equal to the unit in Equations 4.13,14 In this case, 
the adsorption of all components were neglected and the generation 
rates for the components, 

	

can be substituted in Equations 2, resulting in the kinetic Equations 5:

	 	 (5)

Since CH is kept constant, the above coupled differential equa-
tion can be seen as a linear system on the concentrations, even for 
a time-varying parameter, r. Rate constants will be obtained from 
this kinetic model. 

Neural network theoretical background

To obtain the citral hydrogenation kinetic rate constants from 
the product concentration data, an ill-posed inverse problem has 
to be solved. This is clear, if experimental data are treated as a 
first place. Taking derivative of concentrations will enlarge the 
measured inherent experimental error, for the experimental er-
rors are random. This can give positive and negative derivate of 
the concentration. The objective of inverse kinetic problem is to 
handle this ill-posed problem. In this work, a methodology using 
recurrent neural network is applied.8 This approach is different 
from the one that uses a pre-defined function, since in this case 
errors are neglected.

Artificial neural networks are computer codes that simulate the 
human brain mechanism. While dealing with inverse problem, the 
purpose of neural networks is to find a solution of minimum norm and 
also one which produces a residual minimum norm.17-21 The Hopfield 
neural network (HNN) works as a dynamical system, which can be 
confirmed by its time derivative of the error function. Concepts like 
initial conditions, trajectory and constant of motion are also used in 
the algorithm, in the same way as in dynamical systems. Following 
Vemuri and Jang, an energy function is defined as 17-21 

	 	 (6)

Figure 1. Consecutive reactions for the Citral hidrogenation in Ni/Al2O3
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with Ccal and Cexp the calculated and experimental properties, res-
pectively. 

Since the calculated property, Ccal, depends on the activated neu-
rons, f (ui(t), and the neurons states are changed during the learning 
time, t, the derivative of the energy function can be represented as19,21 

	 	 (7)

in which ej = (Ccal,j - Cexp,j) and n is the number of neurons used in the 
network. This is also the number of variables to be retrieved from the 
inversion process from the m experimental data.8

In the neural network algorithm, two conditions have to be impo-
sed such that the error function is a decreasing function with respect 
to the learning time. The first one to be imposed is:

		
	  
or 

	 	 (8)

transforming (7) into

	 	 (9)

An increasing activation function, that is,∂fi/∂ui > 0, will make, 
from (9), the error function to be a decreasing function. This constitu-
tes the second condition in the algorithm. This important property of 
the Hopfield network will guarantee an ever decreasing error during 
the learning process which is not satisfied by other algorithm, such 
as Simplex and Levenberg-Marquardat approaches.

In this algorithm, among infinite solutions, the network provides 
that one which best reproduces the experimental property. This property 
is not necessarily the variables of the system, but can be a function of 
them. For example, in the present work, the measured property is the 
chemical concentration, Cexp, and the variables (activated neurons) are 
the rate constants of the process, which vary with the network learning 
time, i.e during the minimization of energy, E. The evaluated property, 
Ccal, is obtained by numerical integration of Equations 8.

From a given initial guess, necessary to start the learning process, 
the set of differential equations, Equations 8, was integrated by a four-
th order Runge-Kutta method,22 whereas the gradient were calculated 
by a two point central difference equation. Learning process is stopped 
at the point in which, dui/dt = 0 , the minimum of the error function. 

Due to the dynamical character of the Hopfield neural network, 
inversion of matrix is not actually necessary. The neurons are adapted 
themselves to meet the objective function. This is another important 
neural network approach advantage. In extreme cases this recursive 
theory is capable to find the solution of even rank deficient cases. 
Associate with this point, the neural network does not require an 
analytical function to be fitted, as exemplified in the present work. 
This has also been discussed in another work in which functional 
solution was found. 7 

RESULTS AND DISCUSSION

Analysis with simulated data

The first part of this work was performed using simulated data 
to check the efficiency of the proposed method. For this procedure, 

analytical or numerical solutions of Equations 5 are necessary. To 
analytically solve these equations one can use the integrant factor 
theory, obtaining,

	 	 (10)

	 	 (11)

	 	 (12)

with ; r0 = mcat/V0 and t0 = V0/V. 

In Figure 2 Equations 10, 11 and 12 were confronted with expe-
rimental data at 50 oC with drainage of the liquid phase at hydrogen 
pressure of 10 bar. The experimental data and parameters were 
obtained from refs. 13, 14 and are presented in Table 1. The good 
agreement of these data confirms the reliability of the model.

At this point it is important to emphasize that using analytical 
functions to fit the data implicitly assumes these are the correct func-
tions, requiring a very large number of data, which is not usually the 
case. Therefore, one has, in general, an approximated solution to 
the problem. Rate constants obtained by the above procedure have 
a meaning only within this restriction. Methods such as Levenberg-
Marquardt and others least square approaches require, at some 
stage,  inversion of a matrix. Applying this inverted matrix to the 
experimental data will cause large fluctuation on the results, due 
to the matrix condition, as discussed in ref. 18 for a model system.

Figure 2. Experimental and simulated data at 50 oC with drainage of the 
liquid phase at hydrogen pressure of 10 bar.13,14 Kinetic model is presented 
as full line and experimental data by symbols: () Citral, () Citronellal 
and () Citronellol
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Also, retrieving kinetic models from experimental concentration 
data is a challenging subject in this area. The consecutive kinetic 
model analyzed here is a prototype, which allows a clear comparison 
among the most used techniques to deal with this kind of problem. 
Nevertheless, one may ask if this model is a correct one, for the 
given data. This kind of problem, which in the inverse problem area 
is known as an inverse problem to find the kernel, is a more difficult 
one. Further work along this line, adapting the present algorithm to 
find the kernel, can be carried out in the future.

Initial guesses for the rate constants are used as neural network 
inputs whereas the activated neuron states correspond to inverted 
rate constants. This initial condition is important to obtain converged 
results and can be used as a criterion to check the reliability of the 
computational method, since for an exact initial guess and theoretical 
data, activated neuron states can not change in the learning time. Dif-
ferent initial conditions, necessary to propagate the coupled differen-
tial equations, were tested in the procedure using simulated data. For 
example, if an initial guess of 10% away from the correct value is used, 

the inverted rate constants produce an error,  
 
of 1.68×10-7 in relation to experimental Citronellol concentrations. 

To test the algorithm stability, random noises in the range 1-10% 
were added to the simulated concentrations. Even at a noise level 
of 10%, the algorithm was stable, as shown in Table 2. In this case, 
the maximum error is 10.4% to the k2 constant and the error in the 
recovered concentration is 1.31x10-7. In all these tests the error in 
recovered k1 was null. 

Analysis with experimental data

Citronellol experimental concentrations were also used in the 
inversion procedure. Necessary data to define this system are given 
in Table 1. If the constants listed in this table are taken as initial 
condition, from which the neural network is suppose to learn, the rate 
constants (units as in Table 1) recovered by the network are k1=134; 

k2=4.97 and k3=4.43, with a residual error of 6.75x10-4. 
The concentrations obtained in the direct problem by using these 

inverted rate constants are in better agreement with experimental con-
centrations than the simulated results obtained by the kinetic model, 
Equations 5. For initial guesses up to 10% far off those listed in Table 
1, the algorithm was also robust and the rate constants calculated are 
the same as presented in the previous paragraph. The neural network 
performance was compared to other optimization methods, usually 
employed in nonlinear regression such as Simplex and the Levenberg-
Marquardt algorithms.15,16 A comparison between these methods and 
the neural network is shown in Tables 2-3 in which the robustness 
of the three methods was checked by adding random noises to the 
simulated concentrations. 

The neural network is more robust than the other algorithms 
investigated for all noise levels analyzed here. For example, the 
following average deviations in the rate constants with respect to 
its reference values are obtained considering different noises in the 
concentrations. For a noise error of 3%, the neural network approach 
returns an error of 1.6% in the inverted rate constants, whereas the 
recovery for the Simplex and Levenberg-Marquardt are 122.9 and 
6.8%, respectively. For errors of 7% in the simulated data, the reco-
vered rate constants are 3.7% (neural network), 325% (Simplex) and 
20.5% (Levenberg-Marquardt).

Neural network is a superior method to retrieve rate constants 
from simulated data with random noise, as evident from the above 
considerations. If simulated concentrations without random noises are 
employed, the three techniques have similar efficiency. Using expe-
rimental data with Levenberg-Marquardt and Simplex, the recovered 
constants are in total disagreement in respect to the listed in Table 
1; despite the residual error is about 10-6 in both cases. For ill-posed 
problem small residual error does not mean a precise inverted result, 
also evident from the above consideration.

The advantage of neural networks while dealing with experi-
mental data can be attributed to its dynamical character, since matrix 
inversion is not necessary in the algorithm. The neurons are adjusted 
to reach an objective function. The Levenberg-Marquardt algorithm 
requires an inversion matrix procedure, like other least squares ap-
proaches. The Simplex method also do not invert matrix, but is very 
sensitive with experimental error, as exemplified in the above results. 

The evolution of the neuron states during the learning time shows 
the rate constant, k2, achieves the optimal result faster than k1 and k3. 
Also, it is observed that using initial guesses with error of 10% in k1 
and k3, all the algorithms do not converge. This can be explained by 
the sensitivity analysis, which measures the capability of inversion 
of some parameter from experimental/simulated data. The sensiti-
vity of Citronellol data, Cc, with respect to the rate constants,23 i.e. 
S1 = ∂Cc/∂k1, S2 = ∂Cc/∂k2, S3 = ∂Cc/∂k3 denotes the level of information 

Table 1. Experimental parameters for citral hydrogenation at 50 oC and 10 
bar. According to refs. 13 and 14

parameter value

C0A 0.102 mol/L

H2 solubility 0.00023 

r0 1.54 g/L

t0 263.9 min

k’1 134 L2/mol min g

k’2 4.96  L2/mol min g

k’3 4.42  L2/mol min g

Table 2. Analysis of random noise in the simulated concentration by neural 
network. Numbers in parentheses are for power of 10

Random noise added 
in the concentration

%

% error in 
recovered k2

% error in 
recovered k3

Error in recovered 
concentration

1 1.21 0 1.58(-9)

4 3.23 0.23 1.37(-8)

5 5.24 0.45 3.64(-8)

7 7.26 0.45 6.84(-8)

9 9.27 0.68 1.08(-7)

10 10.4 0.68 1.31(-7)

Table 3. Analysis of random noise in the simulated concentration by Simplex 
and Levenberg-Marquardt algorithms 

Levenberg-Marquardt Simplex

Random noise added in the 
concentration

Random noise added in the 
concentration

0% 3% 7% 10% 0% 3% 7% 10%

Error in k’1  (%) 0.1493 0.5970 0 0 0 0 0 0

Error in k’2 (%) 0.1008 3.306 7.016 10.18 0 3.004 7.016 10.00

Error in k’3  (%) 0.8597 1.425 7.737 7.805 0 3.325 7.805 11.19

Error* 4.220
(-11)

2.555 
(-09)

1.809
(-11)

7.055
(-09)

3.914
(-18)

2.117
(-16)

2.509
(-16)

2.538
(-17)

*As Equation 6. Numbers in parentheses are for power of 10.
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intrinsic in the data with respect to each parameter. Figure 3 shows 
the sensitivity curves along the learning time. Low sensitivity values 
show a limited potentiality to the inversion procedure, and this ex-
plains why the convergence to obtain k2 is faster than for k1 and k3. 

CONCLUSION

A method based on artificial neural networks has been applied to 
solve an inverse kinetic problem related to Citral molecule hydroge-
nation. Rate constants from the experimental and simulated product 
concentration were calculated. The accuracy of the inverse problem 
solution is guaranteed by the decreasing error property of the present 
approach and the inverted rate constants reproduce concentrations in 
agreement with experimental values. Analytical solutions for differen-
tial kinetics equations were also used in the present work to reproduce 
and discuss the results obtained by the Levenberg-Marquardt and 
Simplex algorithms.

The present method can be used for any set of differential equa-
tions which describe a kinetic reaction mechanism. The algorithm was 
numerically stable in relation to different initial conditions and also 
it was more robust with respect to random noises in the experimental 
concentration than Levenberg-Maquardt and Simplex algorithms, 
common inversion methods used to solve this kind of problem. The 
strong numerical stability of the method allows treatment of data with 
large experimental noises and guarantees an efficient convergence for 
initial conditions close to the real estimated parameters. 
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Figure 3. Reaction time evolution of Citronellol data sensitivities: S1 (*), S2 
(o) and S3 (full line)


