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The Practical Stochastic Model is a simple and robust method to describe coupled chemical reactions. The connection between 
this stochastic method and a deterministic method was initially established to understand how the parameters and variables that 
describe the concentration in both methods were related. It was necessary to define two main concepts to make this connection: the 
filling of compartments or dilutions and the rate of reaction enhancement. The parameters, variables, and the time of the stochastic 
methods were scaled with the size of the compartment and were compared with a deterministic method. The deterministic approach 
was employed as an initial reference to achieve a consistent stochastic result. Finally, an independent robust stochastic method was 
obtained. This method could be compared with the Stochastic Simulation Algorithm developed by Gillespie, 1977. The Practical 
Stochastic Model produced absolute values that were essential to describe non-linear chemical reactions with a simple structure, and 
allowed for a correct description of the chemical kinetics.
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INTRODUCTION

The Ehrenfest Urn Model (EUM), or as it is also named, the 
Stochastic Monte Carlo Method,1-4 was developed to statistically 
prove Boltzmann’s H Theorem, which describes the irreversible 
route to thermodynamic equilibrium.5 The standard Ehrenfest Urn 
Model consists of two urns filled with numbered balls. The process 
is characterized by the extraction and the reallocation of numbered 
balls between the urns using random numbers. That process proceeds 
until the thermodynamic equilibrium is reached.3 The chemical kinetic 
equations6 can also be solved by using the EUM in order to describe 
the thermodynamic equilibrium and steady states.

The Practical Stochastic Model (PSM) can be compared with the 
Stochastic Simulation Algorithm (SSA) as developed by Gillespie7 
and to the lattice-gas automata techniques.8,9 However, the PSM was 
developed independent of those methods and is significantly easier.

The development of the PSM was based on the earlier works for 
simple first and second order reactions4,10 and was then expanded to 
non-linear reactions. The non-linear systems addressed in this work 
are formed by the different classes of coupled reactions, where the 
chemical species are present in two or more different (kinetic rate) 
equations. That dependence of the kinetic behavior of the chemical 
species in different kinetic rate equations is responsible for creating 
polynomial terms in a different form of linear in the rate law. The 
concept of non-linearity in chemical systems comes from that fact. A 
particular class of reaction, which has capital importance, is the auto-
catalytic process. These reactions are responsible for the concentration 
of oscillation of the intermediary chemical species. For example, the 
reaction X+Y→2X is a bimolecular reaction, since two substances 
participate in this reaction step. This reaction can also be nominated 
as a unimolecular autocatalytic reaction, since the catalytic substance 
only appears once in the reactant side. The reaction 2X+Y→3X is a 
trimolecular reaction, or a bimolecular autocatalytic one, based upon 
similar discussions as above.11 A classical non-linear chemical reac-
tion is the Belousov-Zhabotinsky reaction. It is an important example 
of dynamic chemical systems, composed of more than one chemical 
step, and among those steps, autocatalytic reactions.11

Some definitions concerning the theory employed in this study are 
to be considered as follows: 1) Stochastic – a Numerical Method that 
considers a time evolution of a discrete chemically reacting system;7 
2) Monte Carlo Method – a Mathematical Tool for integrating an ODE 
based on random sampling;1 3) Deterministic – a Numerical Method 
that considers the time evolution of a continuous chemically reacting 
system;7 4) Non-Linear ODE – A set of coupling Ordinary Differential 
Equations with polynomial degree terms higher than one (linear);12 
5) Steady State – a Solution of ODE where the value of a dependent 
variable (concentration) does not change over time;12 6) Stability 
of ODE – a Linear Behavior (stable or unstable) around the steady 
state;12 7) Trace (tr) of Stability Matrix – the Sum of Eigenvalues of 
a Linearized ODE: tr<0 (stable); tr>0 (unstable).12

The initial Monte Carlo studies,4,10 mainly for first order reactions, 
have been considered in several other works:13-16 a) Luminescence 
and Kinetics of Excited States Decay;13 b) Transfer Mechanism of 
Electronic Excitation Energy: Perrin Model for Static Suppression 
of Luminescence;14 c) Study of Homogeneous Chemical Reactions;15 
d)  Simulation of the Suppression Mechanism of Luminescence: 
Kinetic Model of Stern-Volmer.16

The PSM method can accurately describe the linear and non-
-linear chemical kinetic reactions, where the fluctuations are naturally 
obtained, simulating the finiteness of the systems. This method is con-
sistent, robust, simple, practical, and independent of a deterministic 
Ordinary Differential Equation (ODE). The PSM is a simple model 
of a “particle” exchange between containers, where the state of the 
system is defined in terms of the container occupancy.4 The system’s 
evolution is driven by state dependent transition probabilities, which 
depend on the occupancy. The PSM could be considered as a simple 
and practical reformulation of the SSA. This equivalence can be 
defined by just introducing containers as chemical species and the 
transition probabilities as reaction propensities. The main advantages 
of the PSM, which give absolute values, are: simplicity, efficiency, 
and intuitiveness.

This method has already been used for many years in the clas-
sroom to simulate the kinetic behavior of first and second order 
reactions. To introduce the method, a vector with only 10 positions 
can be used with a manual random selection. 10 is a good number 
to perform a manual selection, as it is small enough to manually 
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realize first order kinetics in approximately 15 minutes (with second 
order reactions, the time increases as N2) and is large enough to 
avoid strong fluctuations that could obliterate the visualization of 
the kinetic behavior. It is necessary to use a computer to carry out 
simulations for a large N. 

This method is a very easy and efficient statistical integration tool 
and avoids the use of more advanced mathematical techniques, but 
still allows for accurate descriptions of the various chemical aspects 
related to reactions, including the relaxation time (the necessary time 
for a reaction to reach equilibrium); thermodynamic equilibrium and 
fluctuations; and a description of the steady states. This method is 
efficient for teaching chemical kinetics and becomes a very powerful 
tool in a simple way for simulating chemical reactions.

METHODOLOGY

The PSM was built step-by-step with simple (first and second-
-order) reactions, and it was completed considering non-linear reac-
tions as do the Lotka17 and the Brusselator12 systems. The parameters 
and variables of the stochastic method were initially adjusted to the 
deterministic method (ODE) in order to establish the main rules of 
this particular stochastic one. These rules are: a) N-scale – parameters, 
variables, and time were scaled by N (the total number of positions); 
b) Dilution (d) – compartment filling or vector occupation, which 
represents the “particle concentrations”; c) m-rate – the rate of the 
reaction enhancement, which indicates how many times one reaction 
must be repeated in order to obtain the true concentration of variables 
from a normalized vector occupation. The N-scale was established 
with first and second order reactions; d and m were revealed consi-
dering the Lotka model system.

The PSM is based on Monte Carlo steps and could be compa-
red to the Stochastic Simulation Algorithm (SSA) as developed by 
Gillespie7 (see Supplementary Material (SM) – Section A.1: Figure 
1S and Figure 2 for reference).7 Zhdanov8 also considers the Monte 
Carlo method in order to solve the Brusselator system, which is shown 
in SM (Section A.2).

The PSM approach was developed for comparing its solution 
to the deterministic methodology. This stochastic simulation assu-
mes that the compartments can have any occupation from 0 to N, 
which represents the concentration variables. The dilution variable 
(d) is defined as the vector occupation divided by the total number 
of positions (N). d is numerically equal to a p probability to find a 
particle in the vector.

The necessary steps to simulate a typical reaction are (as in the 
explicit example that is given in Supplementary Material (SM) – 
Section A.3):4 
I	 Randomly select a number from 1 to N; if the position at the same 

selected number, in a specific compartment, is occupied (by a 
“particle”), then its “particle” is withdrawn from this place and 
is relocated in another compartment at the same number posi-
tion with a q probability. This process chemically represents the 
conversion, e.g., of A to B. This probability of q is connected to 
Arrhenius’ equation, which is a function of the activation energy, 
orientation, cross section, and molecular velocity, for real systems. 
The p probability of finding the “particle” in the compartment is 
numerically equal to dilution, which is connected to the density 
of the particle (i.e., concentration).

II	 Randomly select other number from 1 to N and a similar proce-
dure as above is considered for other “reagents”. 

III	 After running these above steps, the all-step-procedure is restarted 
and repeated until it reaches an equilibrium or a steady state.4

IV	 When the position corresponding to a randomly selected number 
is empty, it means that no reactions are occurring, but the time 

flow continues, i.e., the number corresponding to the Monte Carlo 
step is also computed.
In order to simplify the discussions, it is assumed that q=1, howe-

ver, the values of q for 0≤ q≤ 1 can also be considered, for example, 
as in the Lotka model17 (see below and in the SM), and was solved 
for different values of q.

In the PSM approach, the step size time is effectively proportional 
to 1/N. This procedure would be equivalent to the Euler method, with 
the step size converging to zero for increasing N. The PSM completely 
describes the chemical kinetic reactions and it can be extended using 
non-null diffusion constants and dimensions higher than one. More 
details are discussed in following sections.

RESULTS AND DISCUSSION

In the first step, it was necessary to establish connections between 
the stochastic method and the deterministic method. For that, several 
kinds of chemical reactions were used, in order to obtain the main 
stochastic rules. Those rules are simple and intuitive and contribute 
to an understanding of the method and its generalizations. Finally, 
the developed stochastic method is very accurate and can potentially 
describe any kind of chemical kinetic reaction. The main steps of 
those connections are given below:

Stochastic and deterministic connections: time flow

The stochastic and deterministic time flow connections were ob-
tained from several simulations (see SM – Section B). The flow of time 
obtained from the deterministic solution is numerically equivalent 
to the number corresponding to the Monte Carlo step divided by N, 
where N is the size of the system, or the size of the compartments. 
The compartments could not be fully occupied.

Each step of the first order reaction occurs with a probability 
(p) equal to dilution (d). Equivalently, the probability of p for each 
second order reaction step is equivalent to the product of dilution. 
The stochastic simulations describe this statistically.

The first and second-order reactions of the stochastic approach 
can be described by (scaled) relative values of the concentrations 
(parameters and variables). However, a set of coupled non-linear 
reactions should be described by absolute values. For example, the 
stability matrix trace (tr)12 of the non-linear system depends on the 
absolute values such as, e.g., tr = q2B –q4–q3 (q1A/q4)2 or tr = B - 1 
-A2 (with unitary probabilities) for the Brusselator system, where 
A and B are the concentration parameters (SM – Section A.2). For 
example, if one can correctly describe the concentration evolution 
in time for the Brusselator system with tr>1, it is necessary to 
require that B>1.

Stochastic and deterministic connections: absolute 
concentrations

In order to develop a concise stochastic theory, it is necessary to 
understand the relationship between the stochastic and deterministic 
methods for the absolute values of the concentrations (parameters 
and variables). It is easier to start the analysis firstly by considering 
the absolute values of concentration parameters (e.g., A) bigger than 
unity with concentration variables less than unity. The parameters are 
ever constants for deterministic and stochastic methods. They can be 
understood as reagents or products, which are consumed or produced, 
but are kept as constants, on average, for a stochastic method. 

If [A] ≤ 1 is the numerical value of [A], obtained from the above 
stochastic method, it is similar to that of a deterministic one. However, 
if [A] > 1, it is necessary to use a “reservoir” for the A parameter, 



Silva-Dias and López-Castillo1234 Quim. Nova

since it is not possible to have NA>N. In other words, it is necessary 
to increase the probability, by adding more random selection steps 
to the reaction, especially where the A parameter appears, in order 
to overcome that limitation. 

That step must be m–repeated in order to increase the probability 
(by addition), in order to obtain the true concentration. The factor m 
or the rate of reaction enhancement can be interpreted as increasing 
the collision factor by the “density” of the concentration. The con-
centration [A] can then be defined as [A] = mNA/N.

Several combinations were performed to show the correctness 
of the relation [A] = mNA/N; the main difference appears in the fluc-
tuation amplitude; since this depends on N1/2 18 (see SM – Section 
C), the relation of [A] = mNA/N is trivially obtained. That relation 
means that the time flow decreases m-times, while the velocity and 
the concentration become m-times larger.

Similarly, one can also study the absolute values of the dependent 
variables (e.g., X) that are greater than unity. In this case, the m-factor 
is now a variable, i.e., it changes with the progress of the reaction. 
In order to describe that, it is necessary to implement an “adjustable 
reservoir” (or accumulator), where the excess of the compartment, 
e.g., X, is added to it. That is, if [X] (≥ 1), then formally NX = [X] N, 
and the excess is given by Ex = NX – N = ([X] – 1) N, where N is the 
maximum number of occupations of the X compartment, as defined 
above. A relative excess can be defined as e = Ex/N.

The real number r = 1+ e = (N + Ex)/N = NX/N = [X] is taken 
into account when [X] > 1. A natural number m can be defined by 
the application of a truncation operation over r, i.e., m = trunk (r). 
The usual procedure does not change if r ≤ 1, i.e., just choosing the 
random number (m=1) once is enough. However, if m= trunk (r) ≥ 
2, it is necessary to add (m – 1) random choices.

If [X] > 1, the difference between r and m, i.e., the relative excess 
e = r – m, must be added to an “accumulator” (acc) for each random 
chosen step. It is necessary to accumulate that difference, since it 
is not possible to make a fractional number of random selections. 
When the accumulator exceeds the unit, additional random choices 
are carried out in the same step, and the accumulator suffers a re-
duction. For example, the random choice must be carried out when 
r = [X] > 1 and the excess (e = r - m) is added to the accumulator, 
acc’ = acc + e. At the next step, a new r = [X] is obtained, and a 
new excess e’ is added to the accumulator, i.e., acc’’ = acc’ + e’. 
After k-random selections, the accumulator could exceed the unit 
(acc≥ 1) and the number of random choices could usually increase 
by one unit, i.e., m=1 changes to m=2. In that case, the accumulator 
must decrease itself by one unit. This procedure should be done 
when [X] >1.

The general PSM scheme is shown in SM – Section A.1. The 
complete flowchart for the A+X→Y reaction (as discussed in SM – 
Section C) is shown below:

Non-linear reactions

The Lotka17 and Brusselator12 non-linear chemical reaction sys-
tems were studied with the stochastic method, as is described below:

Lotka system

The Lotka system is described by three reactants: one parameter 
(A) with a constant concentration and two variables (X and Y) as 
chemical intermediaries: X+Y→2Y; A+X→2X; Y→P with kinetic 
constants q1, q2, and q3, respectively. These reactions are described by 
the following ODE’s: d[X]/dt=q2 AX–q1 XY and d[Y]/dt=q1 XY–q3Y. 
This system implicitly considers a constant flux, since A and P are 
substances with a constant concentration.

The deterministic solutions X(t) and Y(t) of the Lotka system for 
q1 = 0.5, q2 = 0.6, and q3 = 0.7, A=4, X0=1, and Y0=1.5, as obtained 
by the Runge-Kutta method, are shown in Figure 2, where X0 and Y0 
are the initial conditions. The stochastic solutions, considering the 
procedures of Section 3.1 and Section 3.2, are also shown in Figure 
2 for A=10000/10000=1 with mA=4 (A=4), X0=10000/10000=1, and 
Y0=10000/10000=1 with accY = 5000/10000=0.5 (Y0=1.5) and with 
the same q’s as above.

The occurrence of a limit cycle in the space of configuration (X 
vs. Y) is shown in Figure 3 for the two methods:

This simple stochastic method describes the Lotka system very 
well when compared to a deterministic one. The absolute values 
of the parameters and variables and the oscillations are correctly 
described. The “dissipative” aspect as shown in the limit cycle is 
due to the finiteness of the system. That aspect could be interpreted 
mathematically as a numerical error for a deterministic map appro-
ximation.19 A Fortran code program for Lotka system is shown in 
SM – Section D.

Figure 1. Flowchart of the stochastic method for an A+X→Y reaction

Figure 2. Concentrations X(t) and Y(t) as a function of time for the Lotka 
system using q1 = 0.5, q2 = 0.6, and q3 = 0.7, from a deterministic method 
(gray lines) with A=4, X0=1, and Y0=1.5, and from the stochastic solution 
(black lines), with NA=10000 (mA=4), NX=10000, NY=15000, and N=10000
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Brusselator system

Other non-linear coupled chemical reactions were studied and 
were contemplated by using the Brusselator system, which has a 
trimolecular reaction (or bimolecular autocatalysis). Its chemical 
reactions are: A→X; B+X→Y+D; 2X+Y→3X; and X→E, with unitary 
kinetic constants, i.e., q1 = q2 = q3= q4 = 1. This system is described by 
four reactants: two parameters (A and B) with a constant concentration 
and two variables (X and Y) as chemical intermediaries. These chemi-
cal equations are described by the following ODEs: d[X]/dt= A–(B+1)
X+X2Y and d[Y]/dt=BX–X2Y. This system has important differences 
on stability behavior when in comparison to the Lotka one.12

The deterministic solutions X(t) and Y(t) of the Brusselator sys-
tem for A=0.5, B=1.4, X0=1, Y0=1, and tr=0.15 (the trace of stability 
matrix)12, are shown in Figure 4. The stochastic X(t) and Y(t) ones 
for A=5000/10000=0.5, B=7000/10000=0.7 with mB=2, i.e., B=1.4 
and X0=Y0=10000/10000=1 are also shown in Figure 4.

The occurrence of a limit cycle in the space of configuration (X 
vs. Y) is shown in Figure 5 for both methods:

The PSM describes the Brusselator system very well when 
compared to the deterministic method. The absolute values of the 
parameters and variables and the oscillations are correctly described 
by the Lotka and Brusselator systems. However, the response of the 
stochastic method is slow when in comparison to the deterministic 
one, if the derivatives dX/dt and dY/dt have large values. For example, 

the sharp oscillations are not reproduced by the Brusselator stochastic 
model with A=5000/10000=0.5, B=8000/10000=0.8 with mB=3, i.e., 
B=2.4 and X0=Y0=10000/10000=1 for the stochastic method when in 
comparison to A=0.5, B=2.4, X0=1, Y0=1, and tr=1.15 for the deter-
ministic one. These deterministic and stochastic solutions X(t) and 
Y(t) of the Brusselator system are shown in Figure 6.

A zoom of the concentrations X(t) and Y(t) for both methods 
and their respective deterministic derivatives are shown in Figure 7. 
The slow response to describe the maximum of the X variable and a 
minimum of the Y one, from the above example, is shown in detail 
in Figure 7. The slow response does not change by increasing the 
number of particles N. However, an irregular sharpness appears with 
a decrement of N. Similar features can be seen in Zhdanov’s work 
for the Brusselator system.8

The stochastic method can show a “slow” response to adjust to 
the sudden changes of variables, perhaps due to the discreteness of m. 
Another tentative was considered in order to minimize the discreteness 
of the variables of m. For example, at each step, the non-integer part 
of the relative excess e = r – m ≤ 1 was interpreted as an additional 
probability (sa). Such a consideration of sa was used in another addi-
tional random selection, avoiding the use of an accumulator. The 
responses of both exploratory tests are virtually identical.

Generic chemical reactions can be described by different techni-
ques such as the ODE approach (an infinitesimal description), or by a 
stochastic simulation (a discreteness description), which are the first 
principle procedures using a different nature. One can consider that the 

Figure 3. Limit Cycle for the Lotka system obtained from both methods. 
Similar comments are as in Figure 2

Figure 4. Concentrations X(t) and Y(t) as a function of time for the Brusselator 
system using q1 = q2 = q3= q4= 1 from the deterministic method (gray lines) 
with A=0.5, B=1.4, X0=1, and Y0=1 –– and from the stochastic one (black 
lines) with NA=5000, NB=7000 (mB=2), NX=10000, NY=10000, and N=10000

Figure 5. Limit Cycle for the Brusselator system from both methods. Similar 
comments as in Figure 4

Figure 6. Concentrations X(t) and Y(t) as a function of time for the Brusselator 
system using q1 = q2 = q3= q4= 1 from the deterministic method (gray lines) 
with A=0.5, B=2.4, X0=1, and Y0=1 –– and from the stochastic one (black 
lines), with NA=5000, NB=8000 (mB=3), NX=10000, NY=10000, and N=10000
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“slow” response of the stochastic method (see above), in comparison 
to the deterministic one, could be a best answer of the real chemical 
reactions, since the ODE approach is an infinitesimal description of 
chemical reactions, which essentially have a discrete nature.

These two non-linear systems are described correctly by the 
Practical Stochastic Method, which is simple, robust, auto-sufficient, 
and independent of a deterministic procedure. This stochastic model 
can achieve absolute values, which is very important, in order to 
describe non-linear reactions.

CONCLUSIONS

The PSM is an improvement over the simple Ehrenfest Urn model, 
which is based on the random selection of compartment positions, 
in order to describe the path of equilibrium in simple chemical 
reactions.4 This improved method adds some precise rules, with a 
simple implementation, to correctly describe the steady state route 
of non-linear chemical reactions.

The connection between the stochastic and deterministic methods 
was established in order to achieve a consistent stochastic one. For 
that, it was necessary to define two main concepts: a) the filling of the 
compartment, or by dilution; b) the rate of the reaction enhancement.

This simple stochastic method is an alternative to describe finite 
chemical kinetic reaction systems, where fluctuations are naturally 

Figure 7. [X] deterministic and stochastic (red solid lines) and d[X]/dt 
deterministic (red dashed line); [Y] deterministic and stochastic (blue solid 
lines) and d[Y]/dt deterministic (dashed blue line) for the Brusselator system. 
Similar comments as in Figure 6

obtained. This stochastic method is robust and is a consistent ap-
proach in possible applications for linear and non-linear chemical 
systems. The “Practical Stochastic Model for Chemical Kinetics” can 
manage absolute values, which is very important, when describing 
non-linear reactions.
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