ELETRODO ÍON-SELETIVO PARA DETERMINAÇÃO POTENCIOMÉTRICA DE ALUMÍNIO(III) EM MEIO DE FLUORETO

Evandro Piccin e Orlando Fatibello-Filho*

Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, CP 676, 13560-970 São Carlos - SP

Luiz Antonio Ramos

Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos - SP

Recebido em 13/11/03; aceito em 26/3/04; publicado na web em 27/07/04

ION-SELECTIVE ELECTRODE FOR POTENTIOMETRIC DETERMINATION OF ALUMINIUM(III) IN FLUORIDE MEDIUM. The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)_n³⁻ⁿ anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10^{-4} to 1.0 x 10^{-2} mol L⁻¹, a detection limit of 4.0 x 10^{-5} mol L⁻¹, a slope of -54.3±0.2mV dec⁻¹ and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)₄ species. Application of this electrode for the aluminium(III) determination in stomach antiacid samples is reported.

Keywords: aluminium(III) determination; ion-selective electrode; potentiometry.

INTRODUCÃO

O alumínio é o terceiro elemento mais abundante na crosta terrestre e sua presença em vegetais, na água e em rochas é facilmente verificada. Em vista disso, cerca de 10 a 100 mg desse elemento são ingeridas diariamente pelo ser humano. Embora essa quantidade pareça alta, nem toda ela atinge a corrente sangüínea, pois uma pequena parte é reabsorvida pelos rins¹. Sua concentração média no sangue está em torno de 7 μ g L¹1.

Compostos de alumínio(III) são empregados em formulações farmacêuticas, principalmente para auxiliar no controle de distúrbios gastrointestinais. Ademais, possuem efeito antiinflamatório, atividade antibacterial e reguladora do metabolismo de lipídios (colesterol e triglicérides) no organismo. Entretanto, o uso excessivo de formulações contendo alumínio(III) pode trazer conseqüências negativas ao sistema ósseo, pela influência que o mesmo pode causar ao metabolismo do cálcio e do fosfato. Além disso, estudos comprovaram um acúmulo considerável de alumínio no cérebro de pacientes com mal de Alzheimer².

Essas atividades biológicas do alumínio acarretam a necessidade do desenvolvimento de métodos precisos, simples, rápidos e de baixo custo para sua determinação, que é comumente realizada por espectrofotometria^{3,4}, absorção⁵ e emissão atômica⁶, fluorimetria⁷ e voltametria⁸. Quase não se observa o emprego de eletrodos íon-seletivos para a determinação de alumínio(III)^{9,10}.

A química de complexos metálicos tem contribuído para o desenvolvimento de eletrodos íon-seletivos, visando a determinação potenciométrica de cátions metálicos polivalentes^{11,12}. No presente trabalho, desenvolveu-se um eletrodo potenciométrico, sensível a alumínio(III) em meio de fluoreto, pelo recobrimento de um tarugo de grafite com o par iônico formado entre o cátion tricaprililmetilamônio (Aliquat 336S) e o ânion Al(F)_n³⁻ⁿ em matriz de PVC e o plastificante dibutilftalato (DBF). O par iônico foi obtido extraindose o(s) complexo(s) fluoraluminato(III) da solução aquosa com o extrator aniônico Aliquat 336S dissolvido em clorofórmio.

Estudou-se o efeito da composição da membrana (par iônico, plastificante e PVC), da concentração do íon fluoreto no meio e de interferentes em potencial sobre sua resposta. Após otimização do eletrodo, esse foi empregado com sucesso na determinação de alumínio(III) em diversos medicamentos.

PARTE EXPERIMENTAL

Equipamentos

As medidas potenciométricas foram feitas a 25,0±0,2 °C em banho termostatizado. Utilizou-se um pHmetro da Micronal, mod B374, com precisão de 0,1 mV e um eletrodo de referência de Ag/AgCl, modelo R684 da Analion, com dupla junção.

As adições das soluções de referência à célula potenciométrica, para obtenção das curvas analíticas e análises das amostras, foram feitas com o auxílio de bureta de pistão da Metrohm, modelo E274.

Utilizou-se um espectrômetro de absorção atômica com chama modelo AA 12/1475 da Varian, nas determinações dos teores de alumínio nas amostras, para comparação com os teores de alumínio obtidos empregando-se o método proposto.

Reagentes e soluções

Todos os reagentes utilizados foram de qualidade analítica, e foram utilizados diretamente, sem purificações adicionais. As soluções foram preparadas com água purificada em sistema Milli-Q e armazenadas em recipientes plásticos previamente descontaminados com solução de ácido nítrico 0,2 mol L-1.

A solução estoque de Al(III) 0,50 mol L⁻¹, utilizada no preparo das soluções para a síntese do par iônico, otimização experimental e análise das amostras, foi preparada dissolvendo-se um padrão metálico (Aldrich) em ácido sulfúrico concentrado.

A solução estoque de F⁻ 1,0 mol L⁻¹ foi preparada a partir do sal NaF (Merck). As demais soluções de F⁻, nas concentrações de 0,05, 0,10 e 0,50 mol L⁻¹, foram preparadas pela diluição da solução estoque.

As soluções de cloreto de tricaprililmetilamônio (Aliquat 336S, CH₃N[(CH₂)₇CH₃I₃Cl) 0,10 mol L⁻¹ foram preparadas dissolvendose 1,010 g do composto (Aldrich) em 25 mL de clorofórmio.

Reagentes como tetraidrofurano (Merck), cloreto de polivinila (PVC) (Aldrich) e dibutilftalato (Analyticals) foram utilizados sem purificações adicionais.

Preparação do par iônico

Foram agitados durante 10 min em funil de separação, 25 mL de solução clorofórmica de cloreto de tricaprililmetilamônio (Aliquat 336S) 0,10 mol L⁻¹ com 25 mL de solução aquosa de Al³⁺ 0,10 mol L⁻¹ contendo fluoreto de sódio em diversas concentrações (0,2; 0,4; 0,6; 0,8 e 1,0 mol L⁻¹). Para cada uma dessas soluções, após a separação das fases, a fase orgânica contendo o par iônico formado entre o cátion tricaprililmetilamônio e o ânion Al(F)_n³⁻ⁿ foi seca com sulfato de sódio anidro e o clorofórmio evaporado em um rotaevaporador, obtendo-se assim o par iônico na forma sólida. O teor de Al³⁺ na fase aquosa (não extraído) foi determinado empregando-se o espectrômetro de absorção atômica, sendo o rendimento de extração calculado para cada concentração de fluoreto.

Preparação da membrana seletiva

Dissolveu-se o PVC em tetraidrofurano sob agitação, seguida da adição do plastificante dibutilftalato (DBF) e do par iônico, em composições percentuais m/m conhecidas.

Prepararam-se quatro membranas de composição percentual (m/m) fixa de PVC em 40%, variando-se as composições do par iônico e do plastificante DBF em: a) par iônico 5% e DBF 55%; b) par iônico 10% e DBF 50%; c) par iônico 15% e DBF 45%; d) par iônico 20% e DBF 40%.

Construção do eletrodo

O eletrodo, como mostrado na Figura 1, constitui-se de uma barra cilíndrica de grafite (2 cm de comprimento x 0,5 cm de diâmetro) recoberta pela membrana seletiva, fixo em um tubo de vidro preenchido com resina epóxi e com um fio de cobre para contato elétrico.

O recobrimento da grafite com a membrana seletiva foi feito mergulhando-se a mesma 5 vezes, em intervalos de 20 min, nas soluções de tetraidrofurano contendo o material ativo, preparado em diferentes composições m/m como descrito anteriormente.

Após total evaporação do solvente e conseqüente rigidez das membranas, os eletrodos foram ativados por 1 h em solução de Al(III) 0,01 mol L⁻¹ em meio de fluoreto de sódio 0,10 mol L⁻¹, antes de serem empregados.

A célula eletroquímica utilizada para as medidas de potencial foi

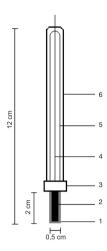


Figura 1. Esquema do eletrodo de grafite recoberto com membrana sensível a alumínio(III): 1) membrana seletiva; 2) barra cilíndrica de grafite; 3) anel de silicone; 4) contato elétrico (fio de cobre); 5) preenchimento de resina epóxi e 6) suporte de vidro

Preparação das amostras

O alumínio (III) foi determinado em amostras de antiácidos, na forma de drágeas, adquiridas em farmácias locais e comercializadas como Pepsamar[®] (Sanofi-Synthelabo Ltda, Rio de Janeiro - RJ), Superhisth[®] (Eurofarma Laboratórios Ltda, São Paulo - SP) e Engov[®] (DM Indústria Farmacêutica, Barueri - SP).

Dez comprimidos de cada amostra foram macerados e uma massa acuradamente medida entre 500-600 mg foi transferida para um béquer de 50 mL contendo 5,0 mL de ácido sulfúrico 5,0 mol L¹¹. Aqueceu-se a mistura até completa digestão da amostra e, em seguida, adicionaram-se 10 mL de peróxido de hidrogênio concentrado (Synth) (oxidante) mantendo o aquecimento em ebulição por mais 10 min. Ajustou-se o pH da solução em 3,0, sendo em seguida transferida para um balão volumétrico de 500 mL e o volume completado com água destilada. Alíquotas dessa solução foram transferidas para balões volumétricos de 25 mL e o volume completado com solução de fluoreto de sódio 0,10 mol L¹¹.

RESULTADOS E DISCUSSÃO

Otimização do eletrodo

Inicialmente estudou-se o efeito da concentração de íons fluoreto (0,2; 0,4; 0,6; 0,8 e 1,0 mol L-¹) sobre a extração de Al³+ 0,1 mol L-¹ com solução de cloreto de tricaprililmetilamônio (Aliquat 336S) 0,10 mol L-¹ em clorofórmio. O rendimento da extração de alumínio(III) aumentou até a concentração de fluoreto 0,8 mol L-¹, mantendo-se constante para a solução de fluoreto 1,0 mol L-¹ (em torno de 99%). Sendo assim, selecionou-se a concentração de 0,8 mol L-¹ desse ânion para o preparo da solução do material ativo do eletrodo.

Em seguida, avaliou-se o desempenho analítico do eletrodo seletivo a alumínio(III), estudando-se o efeito da composição da membrana seletiva e da concentração de íons fluoreto na célula potenciométrica sobre o sinal analítico.

O efeito da composição da membrana seletiva sobre a resposta do

eletrodo foi estudado em quatro diferentes composições percentuais (m/m) do par iônico. Para isso, fixou-se a proporção de PVC em 40%, variando as composições do par iônico e do plastificante DBF em: a) par-iônico 5% e DBF 55%; b) par iônico 10% e DBF 50%; c) par iônico 15% e DBF 45%; d) par iônico 20% e DBF 40%. A Figura 2 apresenta as curvas analíticas obtidas com cada um dos eletrodos contendo as composições de 5, 10, 15 e 20% (m/m) do par iônico e na Tabela 1 são apresentados o intervalo linear de concentração de Al3+, os coeficientes angulares (mV/década), limites de detecção e coeficientes de correlação para cada uma das composições estudadas. A maior inclinação e melhor correlação linear foram obtidas empregando-se o eletrodo íon-seletivo de composição 15% (m/m) de par iônico, 45% (m/m) de DBF e 40% (m/m) de PVC, sendo assim selecionado para os estudos posteriores. Ademais, nessa composição o eletrodo apresentou maior estabilidade e menor tempo de resposta. Cabe também observar que a linearidade e os limites de detecção obtidos com cada um desses eletrodos não variaram significativamente.

O efeito da concentração de íons fluoreto sobre a resposta potenciométrica do eletrodo foi estudada em três diferentes concentrações: 0,050; 0,10 e 0,50 mol L⁻¹. Como mostrado na Figura 3 e na

Tabela 2, há um pequeno aumento da inclinação, dentro do limite de erros, das curvas analíticas com o aumento da concentração de íons fluoreto, sendo que os limites de detecção foram praticamente os mesmos nas concentrações de fluoreto de 0,050 e 0,10 mol L⁻¹. Cabe também observar que a maior linearidade foi alcançada na concentração de 0,10 mol L⁻¹ da solução de fluoreto de sódio. Embora na solução de NaF 0,50 mol L⁻¹ a curva analítica obtida apresentou um coeficiente angular ligeiramente superior ao coeficiente angular das demais curvas, o eletrodo apresentou menor tempo de vida e menor linearidade. O melhor compromisso entre estabilidade, linearidade e inclinação da reta (mV/década) foi obtido na concentração de 0,10 mol L⁻¹ de fluoreto, sendo essa então selecionada para a determinação dos teores de alumínio em medicamentos.

Os valores de inclinação, em mV/década, das curvas de potencial em função de –log[Al³+] para soluções de fluoreto estudadas (0,050; 0,10 e 0,50 mol L¹) foram, em média, –54,7±0,7 mV, indicando assim que o eletrodo íon-seletivo responde preferencialmente às espécies Al(F)₄ em solução. Na concentração de fluoreto selecionada (0,10 mol L¹), o eletrodo íon-seletivo apresentou uma inclinação de –54,3±0,2 mV/dec, como pode ser observado na Tabela 2.

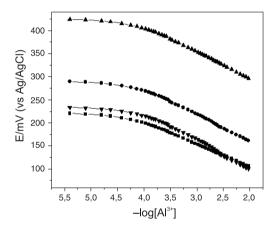
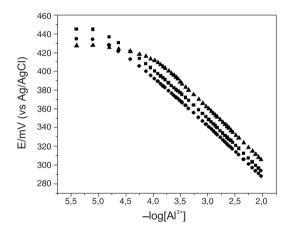



Figura 2. Efeito da composição da membrana seletiva sobre a resposta potenciométrica do eletrodo íon-seletivo a alumínio(III). Proporções (m/m) de par-iônico: \blacksquare , 5%; \bullet , 10%; \blacktriangle , 15% e \blacktriangledown , 20%. Solução de NaF 0,10 mol L^{-1}

Figura 3. Efeito da concentração de íons fluoreto sobre a resposta potenciométrica do eletrodo íon-seletivo a alumínio(III). Concentrações estudadas: \blacksquare , 0,050 mol L^{-1} ; \bullet , 0,10 mol L^{-1} e \blacktriangle , 0,50 mol L^{-1}

Tabela 1. Estudo do efeito da composição da membrana seletiva sobre a resposta potenciométrica do eletrodo íon-seletivo a alumínio(III)

Proporção de par-iônico (m/m)	Intervalo linear de concentração (mol L ⁻¹)	Inclinação (mV/década)	LD (mol L ⁻¹)	r
5%	1,7 x 10 ⁻⁴ – 1,0 x 10 ⁻²	$-45,1 \pm 0,2$	4,8 x 10 ⁻⁵	0,9995
10%	$1,6 \times 10^{-4} - 1,0 \times 10^{-2}$	-53.9 ± 0.3	5,9 x 10 ⁻⁵	0,9984
15%	$1,4 \times 10^{-4} - 1,0 \times 10^{-2}$	-54.3 ± 0.2	4,0 x 10 ⁻⁵	0,9995
20%	$1.9 \times 10^{-4} - 1.0 \times 10^{-2}$	-47.9 ± 0.6	7,4 x 10 ⁻⁵	0,9982

n = 3, LD = Limite de detecção

Tabela 2. Estudo do efeito da concentração de íons fluoreto sobre a resposta potenciométrica do eletrodo íon-seletivo a alumínio(III)

Concentração de F ⁻ (mol L ⁻¹)	Intervalo linear de concentração(mol L ⁻¹)	Inclinação (mV/década)	LD (mol L ⁻¹)	r
0,050	1,6 x 10 ⁻⁴ – 1,0 x 10 ⁻²	$-54,1 \pm 0,3$	5,1 x 10 ⁻⁵	0,9994
0,10	$1,4 \times 10^{-4} - 1,0 \times 10^{-2}$	-54.3 ± 0.2	4.0×10^{-5}	0,9995
0,50	2,1 x 10 ⁻⁴ 1,0 x 10 ⁻²	$-55,8 \pm 0,2$	6,8 x 10 ⁻⁵	0,9984

Estudo de interferentes em potencial

O efeito dos excipientes ácido ascórbico, ácido acetilsalicílico, maleato de clorfenamina, hidróxido de magnésio, carbonato de cálcio e cafeína nas concentrações encontradas nas formulações farmacêuticas não interferiram no procedimento proposto. Além desses compostos, foi estudado o efeito dos ânions: sulfato, oxalato, tiocianato, fosfato e citrato. Nenhum desses ânions em concentrações de 2:1 (ânion:alumínio(III)) causou alguma interferência na resposta potenciométrica. Dos seguintes cátions estudados: Na(I), K(I), Mg(II), Ca(II) e Fe(III) em concentrações equimolares com Al(III) em solução de fluoreto 0,10 mol L-1, apenas Fe(III) apresentou interferência significativa de +26%. Esse efeito já era previsto, uma vez que os ânions fluoreto complexam também os íons Fe(III), alterando assim parcialmente o equilíbrio de complexação do Al(III) com esse ânion.

Características analíticas e análise de amostras

O eletrodo íon-seletivo a alumínio apresentou um tempo de resposta de 100 e 65 s para soluções de alumínio (III) nas concentrações de 2,0 x 10^{-4} e 2,0 x 10^{-3} mol L^{-1} em solução de fluoreto 0,10 mol L^{-1} , respectivamente.

No estudo de adição e recuperação, recuperações variando de 98,3 a 102,8% de alumínio(III) em 3 amostras de antiácidos foram obtidas (n=6). Nesse estudo, adições de soluções de alumínio(III) nas concentrações de 1,5 x 10^{-4} , 5,0 x 10^{-4} e 1,0 x 10^{-3} mol L $^{-1}$ foram feitas em cada solução de amostra.

O eletrodo apresentou um desvio padrão relativo menor ou igual a 3,5% para soluções de alumínio(III) 1,5 x 10^{-4} , 1,0 x 10^{-3} e 5,0 x 10^{-3} mol L⁻¹ (n=6).

Empregando-se as melhores condições experimentais, determinou-se a concentração de alumínio(III) (mg g¹), pelo método de adição múltipla de padrões, nos produtos farmacêuticos Pepsamar®, Superhisth® e Engov®. A Tabela 3 apresenta os teores de alumínio(III) obtidos pelo procedimento proposto e aqueles obtidos por espectrometria de absorção atômica de chama. Os teores de alumínio(III) encontrados empregando-se o procedimento proposto e os encontrados empregando o procedimento FAAS foram concordantes a um nível de confiança de 95%, estando os erros relativos dentro de um intervalo de erros aceitável.

Tabela 3. Determinação de alumínio(III) em produtos farmacêuticos pelo método potenciométrico proposto e por FAAS

Amostras	Alumí	Erro Relativo %	
	FAAS	Potenciométrico	
Engov	$56,2 \pm 0,7$	$56,4 \pm 0,7$	+ 0,4
Pepsamar	127 ± 1	125 ± 2	- 1,6
Superhisth	$35,7 \pm 0,4$	$35,2 \pm 0,5$	- 1,4

n = 6

CONCLUSÕES

O procedimento analítico proposto tem como característica principal a simplicidade operacional e baixo custo. O eletrodo íon-seletivo usado na determinação de alumínio(III) é de configuração convencional e de fácil construção, responde com eficiência e rapidez, e apresenta boa repetibilidade (r.s.d. $<3,5\%,\ n=6)$. Ademais, apresenta faixa linear de resposta bastante ampla (1,4 x 10^{-4} a 1,0 x 10^{-2} mol L^{-1}), com limite de detecção de 4,0 x 10^{-5} mol L^{-1} . Dessa forma, a metodologia proposta poderá ser uma alternativa aos métodos de determinação de alumínio(III) em fármacos.

AGRADECIMENTOS

Os autores agradecem à CAPES pela bolsa de mestrado de E. Piccin.

REFERÊNCIAS

- 1. Pereira, M. S. S.; Reis, B. F.; Quim. Nova 2002, 25, 931.
- 2. Zareba, S.; Melke, J.; Pharm. Acta. Helv. 2000, 74, 361.
- Sombra, L.; Luconi, M.; Silva, M. F.; Olsina, R. A.; Fernandez, L.; Analyst 2001, 126, 1172.
- Honorato, R. S.; Carneiro, J. M. T.; Zagatto, E. A. G.; Anal. Chim. Acta 2001, 441, 309.
- 5. Kenduzler, E.; Turker, A. R.; Anal. Chim. Acta 2003, 480, 259.
- Quinonero, J.; Mongay, C.; de la Guardia, M.; *Microchem. J.* 1991, 43, 213.
- Al-Kindy, S. M. Z.; Suliman, F. O.; Salama, S.B.; Microchem. J. 2003, 74, 173.
- 8. Liu, J.; Wang, X.; Chen, G.; Gan, N.; Bi, S.; Analyst 2001, 126, 1404.
- Saleh, M. B.; Hassan, S. S. M.; Gaber, A. A. A.; Kream, N. A. A.; Anal. Chim. Acta 2001, 434, 247.
- Abbaspour, A.; Esmaeilbeig, A. R.; Jarrahpour, A. A.; Khajeh, B.; Kia, R.; Talanta 2002, 58, 397.
- 11. Teixeira, M. F. S.; Pinto, A. Z.; Fatibello-Filho, O.; Talanta 1997, 45, 249.
- Teixeira, M. F. S.; Bueno, P. R.; Fatibello-Filho, O.; Quim. Nova 1994, 17, 124.