
Quim. Nova, Vol. 43, No. 7, 974-976, 2020http://dx.doi.org/10.21577/0100-4042.20170555

*e-mail: norbertokv@ufc.br

A UNIFIED FORMULA FOR HYDROCARBONS WITH APPLICATIONS TO FUNCTIONAL GROUPS

Higo B. Nogueiraa, Norberto de Kássio V. Monteirob,*,  and Pedro de Lima-Netob

aDepartamento de Física, Universidade Federal do Ceará, 60440-900 Fortaleza – CE, Brasil 
bDepartamento de Química, Universidade Federal do Ceará, 60020-181 Fortaleza – CE, Brasil

Recebido em 17/02/2020; aceito em 15/04/2020; publicado na web em 29/05/2020

Was supposed a numerical relationship between atoms of Hydrogen and Carbon in a hydrocarbon, assumption valid for all types of 
chains. In the proposed equation, variables such as number and types of carbon bonds are present, as well as the possible cycles. It 
was shown that the equation reduces to the known “general formulas” when applied to the type of chain in question. There is also 
a generalization of the equation to include elements of the group 16 (6A) of the Periodic Table, expanding its application to the 
molecules containing functional groups of this elements (we used functional groups containing oxygen as examples). This application 
generates an equation for each functional group, in an effort to study them algebraically; this effort points to the objective of the 
article, which is to provide algebraic foundations for the countable properties in chemical bonding. Finally, possible generalizations 
of the equation were mentioned, pointing out ways to be followed by those who are interested in this new subject. Even though it was 
done as a pure science research, it is easy to ignore non-interesting variables and introduce new interesting ones.
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INTRODUCTION

The Hydrocarbons have a variety of shapes and possible 
combinations. Even though it is a bielementar molecule, it can present 
some complexity due to the properties of its constituent elements, in 
particular to the number of carbon bonds.

This wide range of possibilities has made the scientists look for 
patterns in the relationship between carbon and hydrogen atoms, even 
writing some general molecular formulas for certain types of chains. 
For example, for an straight-chain alkane CxHy, we have the relation:1 

 y = 2x + 2 (1)

There has been also discovered that chains with different 
properties may contain the same ratio between these two elements. 
When two or more hydrocarbons have the same general molecular 
formula, such as alkynes and alkadienes, we can say that they are 
isomers in this sense. This symmetry of some relationships for 
different types of chains helps to decrease the total number of general 
formulas. About this number, we propose the first equation.

Whereas H is the number of known hydrocarbons types, Ni is the 
number of formulas that have the same amount i of isomers (as defined 
above), then the number of existing formulas, L, will be given by:

  (2)

We can analyze its validity by checking tow limiting cases. If there 
were no two, or more, isomeric compounds, i would always be 1 and 
we would have L = H. At the other limiting case, all hydrocarbons 
can be considered isomers (as possessing the same formula), thus 
i = H and Ni = 1,

 
L = H – 1(H – 1) (3)

Therefore,

 L = 1 (4)

Here I present the result of (4), which is a single equation that 
encompasses all molecules composed of carbon and hydrogen, 
regardless of the shape of their chains.

UNIFIED EQUATION

The construction of this relationship occurred in an empirical way, 
in which several tests have revealed the usefulness and relevance of 
specific quantities. First, those quantities will be defined and then the 
conjecture will be presented.

The type of bond between two carbons will be represented by the 
letter m, so that: for a single bond, m = 1; for a double bond, m = 2, and 
so on. The equation also presents a summation in which the letter m 
appears both as number and index. As an index, m is attached to Km 
which represents how many times the bonding or order m appears. 
For example, the K2 for an alkene would be 1; K2 = 1 (alkene). This 
because the double bond (m = 2) occurs one time (K2 = 1). Now, we 
will formalize it.

Definition 1: m is the bonding order between two carbons and 
can assume four values

 m = (1,2,3,4) (5)

Definition 2: Km is the number of times the bonding order m 
appears in the chain.

Definition 3: n is the number of cycles in the chain.
Conjecture: Being CxHy any hydrocarbon. The number x of 

carbon atoms is related to the number y of hydrogen atoms by means 
of the following equation:

  (6)

Before expanding the equation above, we must to assert its limits 
of applicability. But first, we want to address the new educational 
tool the equation can be. It may be presented before the main 
classifications of hydrocarbons, and therefore may help with this. 
The student who is already familiar with the simple terms in the 
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equation (such as Km or x) is more likely to retain the hydrocarbon’s 
types and nomenclatures. Furthermore, it would be a more formal 
way to describe the chain properties. 

As a exemple, the teacher could ask what conditions are necessary 
for a chain to be aromatic. The most general answer would come in 
terms of the equations and would be n ≥ 1, x ≥ 6, and K2 ≥ 3. As if 
asking about the conditions for the compound to be of the alkane 
type: K1 other than zero and K2 = K3 = K4 = 0 and so on.

Even though it is complete by itself, there is an optional setting 
that will be shown in the next section.

DIMENSIONALITY CONSTANT

As presented in (6), describes only two-dimensional structures. 
It means that, if we choose any set of carbon atoms bonded to each 
other, we will not find closed, volumetric pieces. In the structure 
form, think of carbon atoms as being vertices and their bindings as 
being sides of geometric objects. If there is an object, so defined, with 
non-zero volume, we say that the chain is three-dimensional, D = 3. 
If not, it is a two-dimensional one, D = 2.

Taking this into account, it is possible to define the dimensionality 
constant C as follows

 C = 2D – 2 (7)

The two possible solutions are:

 C = (2,4) (8)

Equation (2.2) then takes its more general form, adjustable and 
applicable to all conditions:

  (9)

For the purposes of this work, we used the hydrocarbon equation 
in its two-dimensional form, C = 2, as shown in the previous section.

INCLUSION OF THE CHALCOGENS

Among the elements that can be added to (6), those of the group 
16 are the ones that adapt more naturally. Even so, details about their 
interactions in the molecule do not appear explicitly in the expression.

Analogously to Section Unified Equation, we will start with 
some relevant definitions and then the equation will be introduced.

Definition 4: α is the bonding order between a chalcogen and a 
carbon; it can assume the values 1 and 2.

Definition 5: Rα Is the number of times that the link of order α 
appears in the chain.

Conjecture: in a molecule CxHyVz, where V is any element of the 
group 16, the number of carbons and hydrogens are related according 
to the following equation:

  (10)

The similarity between the summation terms is notorious and 
suggests that the inclusion of other families would occur through the 
use of other similar terms. Unfortunately, this is not true. However, 
it is possible to insert the number of atoms z, but it happens with 
some damage to the beauty and simplicity of the expression. This 
decline in aesthetics happens, among other reasons, by the addition of 

arbitrary variables. Nevertheless, in the next section we will suggest 
this relationship.

THE NUMBER z

The number z does not appear explicitly in (6), but it can be 
inserted by hand. For this, we need another definition and a conjecture

Definition 6: ω is the number of heteroatoms of element V in 
the chain.

Conjecture: the number z is given by

  (11)

Here it is important to say that the bonds of the heteroatoms 
ω do not count as Rα. By isolating R2 in the expression above, it is 
possible to obtain

 R2 = z – R1 – ω (12)

Replacing this value into (10), it is possible to get as result:

  (13)

Equations (10) and (13) are equivalent and produce the 
same results. Choosing between these two equations is a matter 
of convenience. We will demonstrate the use of both in section 
Application to Functional Groups.

REDUCING THE UNIFIED EQUATION FOR KNOWN 
GENERAL FORMULAS

As aforementioned, there are already well-known general 
formulas for the most common hydrocarbons. Even though there is no 
formal proof for (6), we can show that it is reduced to such formulas 
when applied to the respective particular cases. In the following 
subsections we will do this check for some types of chains and show 
the reader how to do it in any other cases of interest.

Alkanes

Alkanes are defined as open-chain and saturated, branched or 
normal molecules.2 By conveying this information to the equation, 
we obtain:

  (14)

Then,

 y = 2x + 2 (15)

which is the general formula for alkanes.

Alkadienes and alkynes

Alkadienes and alkynes are general molecular formula isomers, 
they have the same proportion between Carbon and Hydrogen atoms. 
The alkadienes are characterized by having two carbon-to-carbon 
double bonds, while the alkynes have one triple bond. Both are 
acyclic. Let’s see how the equation behaves in both cases.
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For alkadienes:

  (16)

and for alkynes:

  (17)

The two equations above generate the same formula, notably the 
general molecular formula for alkadienes and alkynes.3

 y = 2x – 2 (18)

Cycloalkanes

Cycloalkanes are compounds that have one cycle and a certain 
number of single bonds. Thus, we find its general formula:3

  (19)

thus,

 y = 2x – 2 (20)

APPLICATION TO FUNCTIONAL GROUPS

Now it is possible to see which form the relations assume when 
one more element is introduced. We will do it for some functional 
groups containing oxygen, using (10) and (13).

Ether and phenol

These two functional groups generate the same equation, 
surprisingly the hydrocarbon equation. First, we will do the assembly 
for the Ether and then for the Phenol. In both processes the Eq. (13) 
will be used:

  (21)

also,

  (22)

The two expressions above are reduced to the known Equation 
(3.3)

  (23)

Ketone and aldehyde

Ketone and aldehyde also generate the same final equation, in 
this particular case even the intermediate equations are the same. The 
following assembly is used for the two functions

  (24)

and again, we get one single result:

  (25)

GENERALIZATION AND PERSPECTIVES

With a unified formula for hydrocarbons at hand, we can postulate 
even bigger ones. Thus, we will have two fronts of generalization: 
the inclusion of a third element (in section 4 we included chalcogens, 
albeit in a rudimentary way); and the exchange of hydrogen and 
oxygen for any two elements, making the equation valid for any 
molecule composed of two elements.

In the first case, we have a pragmatic interest in studying 
algebraically the functional groups that would be described by the 
generalized equation. The second case represents a more formal, 
abstract, but not less important interest. Understanding how the 
equation would work and what form it would take for any two 
elements constitutes a fundamental step to postulate an equation for 
any molecule composed of three elements, which in turn encompasses 
cases of greater interest and applicability.

Following this line of reasoning to its end, we can conjecture the 
existence of an equation that describes any molecule, regardless of 
the quantity or types of elements.

An important and parallel step to the others is the parameterization 
of the formulas by the bonding energies, causing their solutions to be 
dictated by the expected and initial values of the system’s energy. Other 
parameterizations may also be possible and useful for different cases.

CONCLUSIONS

Equation (6) is a formula containing many other formulas by 
itself. It synthesizes a variety of particular, previously dispersed 
relationships. It can also be programmed and can provide any kind of 
information of interest to the researcher; and it is simple enough to be 
learned and used by high school students. From it, we can generate 
more powerful equations through the inclusion of entire families 
of elements. The equation itself is a non-trivial piece of truth; the 
interested researcher might add particularities of his study field to 
the equation, in order to make it applicable. 

It also represents an effort of language, by turning words into 
numbers. This effort must be followed and broadened as indicated 
by the three path suggestions pointed out in the previous section. The 
intention of this study is to establish and provide ways to produce 
equations such that anyone can solve problems by them. In a way 
that, to understand the state and the evolution of a system, it will be 
enough to solve one equation.
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