ESTUDOS ESPECTROSCÓPICOS E ESTRUTURAIS DOS POLÍMEROS DE COORDENAÇÃO 2D, [Tb(DPA)(HDPA)] E [Gd(DPA)(HDPA)]

Marcelo O. Rodrigues, Antonio M. Brito-Silva e Severino Alves Júnior*

Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50590-470 Recife - PE, Brasil Carlos A. De Simone

Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió – AL, Brasil Adriano Antunes S. Araújo, Pedro Henrique V. de Carvalho, Sílvia Caroline G. Santos, Kennedy Alexandre S. Aragão, Ricardo O. Freire e Maria Eliane Mesquita

Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristóvão - SE, Brasil

Recebido em 2/12/07; aceito em 1/9/08; publicado na web em 2/2/09

STRUCTURAL AND SPECTROSCOPIC STUDIES OF THE 2D COORDINATION POLYMERS, [[Tb(DPA)(HDPA)] AND [[Gd(DPA)(HDPA)]. This paper presents the synthesis of the coordination polymers [[Ln(DPA)(HDPA)] (DPA=2,6pyridinedicarboxylate; Ln= Tb and Gd), their structural and spectroscopic properties. The structural study reveals that the [[Ln(DPA) (HDPA)] has a single Ln⁺³ ion coordinated with two H₂DPA ligands in tridentade coordination mode, while two others H₂DPA establish a *syn*-bridge with a symmetry-related Ln³⁺, forming a two-dimensional structure. The spectroscopic studies show that [[Tb(DPA)(HDPA)] compound has high quantum yield ($q_x \approx 50.0\%$), due to the large contribution of radiative decay rate. Moreover triplet level is localized sufficiently over the emitter level 5D_4 of the Tb³⁺ ion, avoiding a retrotransference process between these states.

Keywords: lanthanides; coordination polymers; luminescence.

INTRODUÇÃO

Nos últimos anos um aumento significativo nas pesquisas relacionadas aos polímeros de coordenação, como uma interface entre a química sintética e a ciência de materiais, tem desempenhado papel importante na amplificação de parâmetros para predição, controle estrutural e funcional dos sólidos cristalinos.¹ Estudos nesta área promovem um amplo campo interdisciplinar em rápida e constante ascensão, com vasta abrangência para o desenvolvimento de pesquisas. Além disso, estes compostos apresentam promissoras aplicações em diversos setores industriais estratégicos, nas quais se incluem catálise,^{2.3} nanotecnologia,⁴ armazenamento de gases,^{5.6} sistemas óptico-eletrônicos,⁷ adsorção^{8,9} dentre outros.

A maioria dos trabalhos recém publicados é referente ao emprego de metais de transição na construção de redes de coordenação,¹⁰⁻¹² enquanto os sistemas com lantanídeos são muito menos estudados.¹²⁻¹⁴ Os lantanídeos possuem propriedades espectroscópicas peculiares, como tempo de vida longo e bandas de emissão finas e bem definidas.¹⁵Esses referidos aspectos tornam os compostos com íons lantanídeos excelentes para o uso como dispositivos moleculares conversores de luz (DMLC),¹⁶ com possíveis aplicações em diversificadas áreas,¹⁷ tais como dispositivos eletroluminescentes (DOELs),¹⁸ marcadores na determinação direta de analitos orgânicos¹⁹ e ácidos nucléicos,²⁰ como sondas luminescentes em imuno-diagnóstico²¹ e incorporadas em matrizes sólidas para aplicações ópticas.²²

Uma série de ligantes tem sido utilizada na síntese de novos polímeros de coordenação, dentre os quais os policarboxilatos aromáticos são particularmente interessantes devido à robustez química e propriedades fotofísicas.²³ Por exemplo, o ácido 2,6-dipicolínico (H₂DPA) tem sido amplamente empregado na síntese de compostos com lantanídeos com potenciais aplicações em imuno-ensaios.²⁴

Além disso, o H₂DPA desempenha papel interessante na construção de polímeros de coordenação, pois pode funcionar como ponte entre os centros metálicos e adotar diversos modos de coordenação.^{25,26} É importante enfatizar que, apesar de existirem vários relatos de polímeros de coordenação com íons lantanídeos e o H₂DPA, investigações detalhadas das propriedades luminescentes desses compostos são escassas.²⁷ Nessa perspectiva, este trabalho apresenta um estudo dos aspectos estruturais e espectroscópicos dos polímeros de coordenação 2D _m[Tb(DPA)(HDPA)] e _m[Gd(DPA)(HDPA)].

PARTE EXPERIMENTAL

Reagentes

Os óxidos de lantanídeos 99,99% e o ácido 2,6-dipicolínico (H_2DPA) foram obtidos da Aldrich e utilizados sem prévio tratamento. Os nitratos de térbio e gadolínio foram preparados através da reação dos respectivos óxidos com ácido nítrico, como descrito na literatura.²⁸

Síntese das redes de coordenação [Tb(DPA)(HDPA)] e [Gd(DPA)(HDPA)]

Os polímeros de coordenação foram preparados a partir da mistura de 0,70 mmol do ligante H_2DPA , 0,35 mmol do $Ln(NO_3)_36H_2O$ (Ln= Gd³⁺ e Tb³⁺) e 4,0 mL de água deionizada. Essa mistura foi selada em um reator de aço inox revestido de Teflon com 8,0 mL de capacidade e submetida a uma temperatura de 145 °C por 72 h sendo, em seguida, resfriada à temperatura ambiente com taxa de 1 °C/min. Os cristais incolores resultantes foram lavados com água deionizada e acetona e apresentaram rendimentos de aproximadamente 60% em relação ao lantanídeo.

Difração de raios-X de monocristal

As medidas de raios–X foram realizadas em um difratômetro Enraf-Nonius KappaCCD com detector de área. Os programas usados no estudo cristalográfico foram: determinação da célula unitária e coleta de dados-KappaCCD-Enraf-Nonius;²⁹ redução de dados-HKL Denzo e Scalepack;³⁰ coleta de dados-Colecione;³¹ solução de estrutura-SHELXS-86;³² refinamento-SHELXL-97.³³

Análise elementar

As análises elementares de C, H, e N foram realizadas em um equipamento CHNS-O Analyzer Flash (112 Series EA Thermo Finningan).

Espectroscopia de absorção na região do infravermelho

Os espectros de absorção na região do infravermelho foram obtidos em pastilhas de KBr entre 4000 e 400 cm⁻¹ em um espectro-fotômetro com transformada de Fourier, da Brucker, modelo IF66.

Termogravimetria/termogravimetria derivada (TG/DTG)

As curvas TG/DTG foram obtidas na faixa de temperatura entre 25 e 1200 °C, utilizando uma termo-balança modelo TGA 50 da marca Shimadzu, sob atmosfera dinâmica de nitrogênio (50 mL min⁻¹), razão de aquecimento de 10 °C min⁻¹, utilizando cadinho de platina contendo massa de amostra em torno de 3 mg. A calibração do instrumento foi verificada conforme norma ASTM (*The Americam Society for Testing and Materials*, 1993).

Espectroscopia de luminescência

Os espectros de emissão e excitação à temperatura ambiente e à 77 K foram realizados em um ISS PC1 Spectrofluorometer. O monocromador de excitação é equipado com uma lâmpada de xenônio com 300 W, a emissão é coletada em um monocromador com resolução de 0,1 nm equipado com uma fotomultiplicadora e as fendas de emissão e excitação usadas na aquisição dos dados foram de 0,5 nm. O rendimento quântico para a rede de coordenação [[Tb(DPA)(HDPA)] foi determinado como previamente descrito na literatura.^{27,34}

Tempo de vida dos estados excitados

O tempo de vida dos estados excitados foi realizado utilizando como fonte de excitação um laser de Nd:YAG (λ = 355 nm) com largura temporal de 7 ns e freqüência de 5 Hz, um osciloscópio 1012 modelo Tectronix TDS e um detector ET 2000.

RESULTADOS E DISCUSSÃO

A síntese hidrotermal proporcionou a formação de cristais das redes de coordenação [Tb(DPA)(HDPA)] e [Gd(DPA)(HDPA)] adequados para investigações cristalográficas. Os dados de análise elementar apresentaram os seguintes valores (calculado/experimental): $C_{14}H_7N_2O_8$ Tb, C: 34,38/33,90%; H: 1,24/1,23%; N: 5,73/5,60%; C $_{14}H_7N_2O_8$ Gd, C: 34,42/34,25%; H: 1,44/1,32%; N: 5,73/5,65%. É importante salientar que os polímeros sintetizados são isomorfos ao [Ho(dipc)(Hdipc)],³⁵ entretanto, os respectivos parâmetros estruturais não foram determinados. A unidade assimétrica do [Ln(DPA)(HDPA)] e todos os dados cristalográficos, medidas de intensidade, refinamentos e solução da estrutura são mostradas na Figura 1 e na Tabela 1, respectivamente.

Figura 1. Unidade assimétrica do _[Tb(DPA)(HDPA)]. Operações de simetria usadas para gerar átomos equivalentes: ': 1- x, -½ + y, ½ - z; '': 1 - x, ½ + y, ½ - z; '': 1, x, ½ - y, ½ + z; '': x, ½ - y, -½ + z; '': 1-x, -½ + y, ½ - z

Como os compostos são isomorfos, somente a estrutura do [Tb(DPA)(HDPA)] será descrita em detalhes. Neste polímero de coordenação, o íon Tb3+ está coordenado a moléculas do ligante DPA formadas pelos seguintes átomos: DPA1= N(1)-C(1)-C(2)-C(3)-C(9)-C(10)-C(11)-C(12)-C(13)-C(14)-O(5)-O(6)-O(7)-O(8). Ambos os ligantes atuam como espécies tridentadas através dos átomos de nitrogênio dos anéis heterocíclicos e por dois átomos de oxigênio dos grupos carboxilatos, (N(1), O(1), O(3) e N(2), O(5), O(7)), respectivamente. A natureza polimérica deste composto compete às múltiplas ligações realizadas pela molécula do DPA2 que, por sua vez, também atua como um ligante bis-monodentado por meio dos átomos O(6) e O(8). Desta maneira, o ligante DPA2 funciona como ponte entre três centros metálicos distintos (Tb: x, y, z; Tb^{iv}: x, ¹/₂ y, $-\frac{1}{2}$ + z; Tb^v: 1-x, $-\frac{1}{2}$ + y, $\frac{1}{2}$ - z), gerando uma cadeia polimérica infinita em 2D ao longo do plano [100], Figura 2. Na Tabela 2 estão mostrado os comprimentos de ligação e os ângulos da primeira esfera de coordenação pertencente ao composto [Tb(DPA)(HDPA)].

Figura 2. Rede polimérica do [Tb(DPA)(HDPA)] ao longo do plano [100]

A esfera de coordenação apresentada pelo Tb³⁺ (Tabela 2) possui número de coordenação 8 e pode ser descrita como antiprisma quadrado distorcido, além disso, a maioria dos compostos formados por lantanídeos e o H₂DPA apresentam número de coordenação 9.^{27,35} Outro aspecto interessante é que a condição da síntese do referido composto impõe a um dos ligantes a permanência sob a forma monoprotonada, HDPA^{-1,} a fim de manter a eletroneutralidade da rede de coordenação. O respectivo átomo de hidrogênio, H(1), foi localizado ligado ao oxigênio O(1) pela síntese de Fourier. Como conseqüência da ligação H(1)—O(1), a distância interatômica de C(1)—O(1), 1,345 Å, apresenta significativa diferença quando comparada às outras ligações C—O, cuja a média equivale a 1,244 Å.

Tabela 1. Dad	los cristalográficos	e refinamento	estrutural de	os polímeros	de coordenação	_∞ [Ln(DPA)(HDPA)]
---------------	----------------------	---------------	---------------	--------------	----------------	------------------------------

Fórmula empírica	$C_{14} H_7 N_2 O_8 Tb$	C ₁₄ H ₆ Gd N ₂ O ₈
Peso molecular	490,13	487,46
Temperatura	293(2) K	293(2) K
Comprimento de onda dos raios-x (K_{α} Mo)	0,71073 Á	0,71073 Á
Sistema cristalino e grupo espacial	monoclínico, P2 ₁ /c	monoclínico, P2 ₁ /c
Dimensões da cela unitária	a = 12,2466(4); b = 8,3800(3); c = 13,4939(3) Å; β = 102.36(2)°	a = 12,2790(4) ; b = 8,3880(3); c = 13,5380 (3) Å ; β = 102,41(2)°
Z (número de moléculas por cela)	4	4
Volume	1352,70(7) Å ³	1361,78(7) Å ³
Densidade calculada	2,402 mg/m ³	2,378 mg/m ³
Coeficiente de absorção	5,282 mm ⁻¹	4,924 mm ⁻¹
F(000)	932	928
Dimensão do cristal	0,373 x 0,281 x 0,234 mm	0,224 x 0,189 x 0,18 mm
Intervalo de θ para a coleta de dados	2,88 a 24,99°	2,88 a 27,49°
Limites dos índices de Miller	-14≤h≤12, -9≤k≤9, -15≤l≤15	-15≤h≤12, -9≤k≤10, -17≤l≤17
Reflexões coletadas/únicas	5241 / 2017 [R(int) = 0,0363]	8847 / 2841 [R(int) = 0,0284]
Completância para $\theta = 24,99$	84,9%	91,2%
Correção da absorção	Gaussian	Gaussian
Min. e max. Transmissão	0,199 e 0,321	0,214 e 0,432
Método de refinamento	Matriz de mínimos quadrados completa em F ²	Matriz de mínimos quadrados completa em F ²
Dados / restrições / parâmetros	2017 / 0 / 226	2841 / 0 / 226
Concordância sobre F ²	1,105	1,123
Índices R para os dados [I>2σ(I)]	$R_1 = 0.0255, wR_2 = 0.0655$	$R_1 = 0.0210, wR_2 = 0.0526$
Índices R para todos os dados	R ₁ =0,0260, wR ₂ =0,0660	$R_1 = 0,0220, wR_2 = 0,0528$
Alturas de picos residuais	0.904 e -0.828 e.Å ⁻³	0.644 e -0.981 e.Á ⁻³

Tabela 2. Distâncias interatômicas (Å) e ângulos (°) referentes à primeira esfera de coordenação do [[Tb(DPA)(HDPA)]]

Tb-O(1)	2,526(2)	O(6) ^{<i>ii</i>} -Tb-N(2)	84,31(9)
Tb-O(3)	2,341(3)	O(8) ⁱⁱⁱ -Tb-N(2)	141,34(9)
Tb-O(5)	2,412(2)	O(3)-Tb-N(2)	136,55(8)
Tb-O(6) ^{<i>ii</i>}	2,281(2)	O(7)-Tb-N(2)	63,78(9)
Tb-O(7)	2,388(3)	O(6) ^{<i>ii</i>} -Tb-N(1)	144,09(12)
Tb-O(8) ⁱⁱⁱ	2,323(3)	O(8) ⁱⁱⁱ -Tb-N(1)	79,79(10)
Tb-N(1)	2,510(3)	O(3)-Tb-N(1)	65,55(9)
Tb-N(2)	2,484(3)	O(7)-Tb-N(1)	77,94(10)
O(6) ^{<i>ii</i>} -Tb-O(8) ^{<i>iii</i>}	95,00(9)	O(5)-Tb-N(1)	132,06(9)
O(6) ^{<i>ii</i>} -Tb-O(3)	78,54(9)	N(2)-Tb-N(1)	121,55(9)
O(8) ⁱⁱⁱ -Tb-O(3)	80,23(9)	O(6) ^{<i>ii</i>} -Tb-O(1)	153,64(9)
O(6) ^{<i>ii</i>} -Tb-O(7)	95,05(10)	O(8) ⁱⁱⁱ -Tb-O(1)	92,29(9)
O(8) ⁱⁱⁱ -Tb-O(7)	153,88(11)	O(3)-Tb-O(1)	127,72(8)
O(3)-Tb-O(7)	78,26(8)	O(7)-Tb-O(1)	89,29(9)
O(6) ^{<i>ii</i>} -Tb-O(5)	79,61(9)	O(5)-Tb-O(1)	77,43(8)
O(8) ⁱⁱⁱ -Tb-O(5)	76,97(9)	N(2)-Tb-O(1)	74,34(8)
O(3)-Tb-O(5)	146,69(8)	N(1)-Tb-O(1)	62,21(9)
O(7)-Tb-O(5)	128,63(8)		

Operações de simetria usadas para gerar átomos equivalentes: $i: 1 - x, -\frac{1}{2} + y, \frac{1}{2} - z; ii: 1 - x, \frac{1}{2} + y, \frac{1}{2} - z; iii: x, \frac{1}{2} - y, \frac{1}{2} + z; iv: x, \frac{1}{2} - y, -\frac{1}{2} + z; iv: x, \frac{1}{2} - z; iii: x, \frac{1}{2} - z; iii: x, \frac{1}{2} - y, -\frac{1}{2} + z; iv: x, \frac{1}{2} - y, -\frac{1}{2} + z; iv: x, \frac{1}{2} - z; iii: x, \frac{1}{2} - z; iv: x, \frac$

Pela resolução estrutural foi observado que não existe interação direta entre os diferentes íons Tb^{3+} , pois o correspondente valor médio das distâncias Tb---Tb equivale a 6,55 Å. Os comprimentos das ligações Tb—O estão na faixa de 2,341(3) a 2,526(2) Å, já as ligações Tb—N estão na faixa de 2,484(3) a 2,510(3) Å. Usualmente, os comprimentos das ligações Ln—N são mais longos que as Ln—O em compostos com o mesmo ligante.³⁵⁻³⁹ Contudo, a ligaçõo Tb—O (1) apresenta um valor superior a todas as outras, devido à peculiar situação causada pela ligaçõe entre os átomos H(1) e o O(1).

Os espectros de absorção na região do infravermelho do ligante livre e dos polímeros de coordenação estão disponíveis no Material Suplementar. O espectro de infravermelho do H₂DPA mostra absorções na região entre 3100 e 2500 cm⁻¹, devido aos estiramentos da ligação H-O dos grupos carboxílicos. Este conjunto de sinais é característico das ligações de hidrogênio formadas pelas interações destes grupos (-COOH) e, por sua vez, estão sobrepondo às bandas dos estiramentos das ligações C-H.40 Nos espectros de [Tb(DPA) (HDPA)] e [Gd(DPA)(HDPA)] as respectivas bandas atribuídas às vibrações das ligações O-H presentes em um dos ligantes protonado estão situadas em 3440 e 3443 cm⁻¹. As bandas associadas aos estiramentos assimétricos dos grupos carboxilatos estão presentes nos espectros das redes com Tb³⁺ e Gd³⁺ em 1637, 1611 e 1638 e 1607 cm⁻¹, respectivamente. Da mesma forma, as bandas atribuídas aos estiramentos simétricos dos respectivos compostos estão situadas em 1411, 1392 e 1408 e 1392 cm⁻¹. Em comparação com o ligante livre foi constatado que os estiramentos assimétricos foram deslocados de 1700 cm⁻¹, enquanto os simétricos de 1331 e 1302 cm⁻¹ no ligante livre.⁴⁰ No espectro de IV da amostra [Tb(DPA)(HDPA)] e [Gd(DPA)(HDPA)] foram observadas bandas intensas localizadas em 1746 e 1742 cm-1. Estes estiramentos são característicos da dupla ligação do grupo carbonila (C=O) e são atribuídos às ligações C(1)—O(2) das respectivas amostras. Conforme observado nos dados cristalográficos, o menor comprimento destas ligações contribui para o deslocamento das respectivas bandas para regiões de maiores energias. A coordenação através dos átomos de nitrogênio pode ser evidenciada através da mudanca na intensidade das vibrações em 1574 cm⁻¹ atribuídas ao anel aromático.35

As curvas de TG/DTG (Figura 3) das redes de coordenação [Tb(DPA)(HDPA)] e [Gd(DPA)(HDPA)] mostram similaridades quanto ao perfil termo-analítico das curvas. O primeiro evento de decomposição térmica associado aos compostos [Tb(DPA)(HDPA)] e [Gd(DPA)(HDPA)] acontece nas faixas de 285 a 690 °C e de 280 a 685 °C, com perdas de massa equivalentes a 52,3 e 49,7%, respectivamente. Esta etapa é característica da degradação dos ligantes orgânicos. Os estágios de eliminação de material carbonáceo em ambas as redes de coordenação com Tb³⁺ e Gd³⁺ são iniciados próximo

Figura 3. Curvas TG e DTG dos polímeros de coordenação. [Tb(DPA) (HDPA] e [Gd(DPA)(HDPA]

a 680 °C e terminam em aproximadamente 970 °C. Os resíduos das decomposições apresentam massas relativas de 40,8% (Calculado: 39,8%) e 38,9% (Calculado: 37,2%) e são referentes às espécies químicas $\frac{1}{4}$ Tb₄O₇ e $\frac{1}{2}$ Gd₂O₃, respectivamente.

O espectro de emissão da rede de coordenação [Gd(DPA)] (HDPA)] à 77 K, após excitação em 280 nm está mostrado na Figura 4. O nível tripleto foi estimado a partir da zero-fonon, localizado no inicio da banda de emissão, 362 nm (27548 cm⁻¹).⁴¹

Figura 4. Espectro de emissão do polímero de coordenação [Gd(DPA) (HDPA)] à 77 K, após a excitação em 280 nm

O espectro de excitação do composto $_{\infty}$ [Tb(DPA)(HDPA)], adquirido a temperatura ambiente, monitorando a transição mais intensa ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (545 nm) apresenta uma larga banda centrada em 280 nm referente à transição $\pi \rightarrow \pi^{*}$ do ligante. Esta banda evidencia que a fotossensibilização através do processo indireto (via ligante) é responsável pela luminescência do material. O espectro de emissão da rede de coordenação mostra a seqüência típica das transições ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J= 6–2) inerente ao íon Tb³⁺, sendo a transição ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$, com 55,6% do total, a responsável pela intensa coloração verde apresentada pelo composto. Também pôde ser observada a ausência da transição ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ normalmente monitorada em 437 nm. Este tipo de comportamento indica que o rápido processo de relaxação referente à transição ${}^{5}D_{3} \rightarrow {}^{5}D_{4}$ é induzido pelas elevadas freqüências vibracionais características do ligante.^{42,43} Os espectros de excitação e emissão do [Tb(DPA)(HDPA)] são mostrados na Figura 5.

Figura 5. Espectro de excitação do [Tb(DPA)(HDPA)] monitorando a transição ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ em 545 nm e espectro de emissão do [Tb(DPA)(HDPA)] excitado à 280 nm, ambos obtidos à 300 K

A curva de decaimento do estado excitado ${}^{5}D_{q}$ obtida à temperatura ambiente pelo monitoramento da transição ${}^{5}D_{q} \rightarrow {}^{7}F_{5}$, está mostrada na Figura 6. O elevado valor de tempo de vida, $\tau=1,1$ ms, encontrado para a rede de coordenação [Tb(DPA)(HDPA)] pode ser justificado pela ausência de moléculas de água na esfera de coordenação e do arranjo estrutural rígido que restringe os modos vibracionais do ligante.⁴⁴ Como conseqüência, o rendimento quântico encontrado para a rede de coordenação [Tb(DPA)(HDPA)] é de 49,8%.

Figura 6. Curva de decaimento do estado excitado ${}^{5}D_{4}$ do íon Tb³⁺ no polímero de coordenação _[Tb(DPA)(HDPA)] à 300 K

O processo de retro-transferência de energia é um dos principais mecanismos de supressão da luminescência de complexos de Tb^{3+,45} Verificando a energia dos níveis tripleto em diversos ligantes, Lavta *et al.*⁴⁴ concluíram que a retro-transferência de energia poderia ser observada quando a diferença entre o estado ${}^{5}D_{4}$ do Tb³⁺ (20400 cm⁻¹) e o mais baixo nível de energia tripleto intrínseco aos ligantes é inferior a 1850 cm⁻¹. A respectiva diferença energética, ΔE , entre o nível tripleto do ligante (27548 cm⁻¹) e o estado emissor ${}^{5}D_{4}$ do Tb³⁺ é de 7148 cm⁻¹. Dentro desta perspectiva, ficaria caracterizado que o processo de retro-transferência não possui significativa importância em relação ao composto [Tb(DPA)(HDPA)], visto que o nível de energia sugerido ao nível tripleto do ligante está localizado muito acima do nível emissor do Tb³⁺. Na Figura 7 apresenta-se o diagrama de energia proposto para a rede de coordenação [Tb(DPA)(HDPA)].

Figura 7. Diagrama de energia para o [Tb(DPA)(HDPA)], mostrando os mais prováveis canais de transferência de energia intramolecular

CONCLUSÃO

Das peculiaridades associadas à estrutura do polímero de coordenação [Tb(DPA)(HDPA)], pode-se destacar que a formação da rede de coordenação sem a presença de moléculas de água ligadas diretamente ao metal favorece as propriedades luminescentes do composto. O elevado rendimento quântico observado para o [[Tb(DPA)] (HDPA)] poderia ser justificado por fatores estruturais associados à ausência de moléculas supressoras (H₂O) coordenadas ao metal e pela rígida estrutura que reduz os efeitos vibracionais do ligante. Além disso, o nível tripleto estimado para o ligante tende a favorecer o processo de transferência de energia, pois a posição privilegiada em relação ao nível emissor ${}^{5}D_{4}$ do íon Tb³⁺ inibiria o processo de retro-transferência entre esses estados.

MATERIAL SUPLEMENTAR

Os espectros de absorção na região do infravermelho e os dados cristalográficos dos [Gd(DPA)(HDPA)] estão disponíveis em http://quimicanova.sbq.org.br, na forma de arquivo PDF, com acesso livre.

AGRADECIMETOS

Ao CNPq, CAPES e a RENAMI pelo suporte financeiro.

REFERÊNCIAS

- 1. Grant, A. B.; Marc, A. K.; Robin, D. R.; *J. Alloys Compd.* 2002, 344, 123.
- Jung, S. S.; Dongmok, W.; Hyoyoung, L.; Sung, I. M. J.; Jinho, O.; Young, J. J.; Kimoon, K.; *Nature* 2000, 404, 982.
- 3. Lin, W.; J. Solid State Chem. 2005, 178, 2486.
- 4. Ward, D. M.; Science 2003, 300, 1104.
- Garberoglio, G.; Skoulidas, A. I.; Johnson, K. J.; J. Phys. Chem. B 2005, 109, 13094.
- Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côté, A. P.; Kim, J.; Yaghi, O. M.; J. Am. Chem. Soc. 2005, 127, 7110.
- 7. Bettencourt-Dias, A.; Inorg. Chem. 2005, 44, 2734.
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'keeffe, M.; Yaghi, O. M.; *Science* 2002, 469.
- 9. Lee, J.Y.; Li, J.; Jagiell, J.; J. Solid State Chem. 2005, 178, 2527.
- 10. Kuc, A.; Enyashin, A.; Seifert, G.; J. Phys. Chem. B 2007, 111, 8179.
- Hermes, S.; Schröchrter, M. K.; Schimid, R.; Khodeir, L.; Muhler, M.; Tissler A.; Fischer R. W.; Fischer R. A.; *Angew. Chem., Int. Ed.* 2005, 44, 6237.
- 12. Zang, S.; Su, Y.; Li, Y.; Ni, Z.; Meng, Q.; Inorg. Chem. 2006, 45, 174.
- Li, Z.; Zhu, G.; Guo, X.; Zhao, X.; Jin, Z.; Qiu, S.; *Inorg. Chem.* 2007, 46, 5174.
- Cao, R.; Sun, D.; Liang, Y.; Hong, M.; Tatsumi, K.; Shi, Q.; *Inorg. Chem.* 2002, 41, 2087.
- de Sá, G. F.; Malta, O. L.; de Mello Donegá, C.; Simas, A. M.; Longo, R. L.; Santa-Cruz, P. A.; da Silva Jr., E. F.; *Coord. Chem. Rev.* 2000, *196*, 165.
- 16. Lenh, J. M.; Angew. Chem., Int. Ed. 1990, 29, 1304.
- Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.; J. Am. Chem Soc. 2004, 126, 15394.
- 18. Bettencourt-Dias, A.; Dalton Trans. 2007, 9, 2229.
- 19. Ocaña J. A.; Barragán, F. J.; Callejón M.; Talanta 2004, 63, 691.
- Yegorova, A.; Karasyov, A.; Duerkop, A.; Ukrainets, I.; Antonovich, V.; Spectrochim. Acta, Part A 2005, 61, 109.
- Soukka, T.; Antonen, K.; Härmä, H.; Pelkkikangas, A. M.; Huhtinen, P.; Lövgren, T.; Clin. Chim. Acta 2003, 328, 45.
- Soares-Santos, P. C. R.; Nogueira, H. I. S.; Paz, F. A. A.; Ferreira, R. A. S.; Carlos, L. D.; Klinowski, J., Trindade, T.; *J. Alloys Compd.* 2004, 374, 344.
- Wang, F. Q.; Zheng, X. J.; Wan, Y. H.; Sun, C. Y.; Wang, Z. S.; Wang, K. Z.; Jin, L. P.; *Inorg. Chem.* 2007, 46, 2956.
- 24. Richardson, F. S.; Chem. Rev. 1982, 83, 541.

- Zhao, B.; Yi, L.; Dai, Y.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.; *Inorg. Chem.* 2005, 44, 911.
- Brayshaw, P. A.; Hall, A. K.; Harrison, W. T. A.; Harrowfield, J. M.; Pearce, D.; Shand, T. M.; Skelton, B. W.; Whitaker, C. R.; White, A. H.; *J. Eur. Inorg. Chem.* 2005, 1127.
- Rodrigues, M. O.; da Costa Junior, N. B.; de Simone, C. A.; Araújo, A. A. S.; Brito-Silva, A. M.; Paz, F. A. A.; de Mesquita, M. E.; Júnior, S. A.; Freire, R. O.; *J. Phys. Chem. B* **2008**, *112*, 4204.
- Choppin, G. R.; Bünzli, J. C. G.; Lanthanides Probes in Life, Chemical and Earth Sciences—Theory and Practice, Elsevier: Amsterdan, 1989.
- Enraf-Nonius Difractometer Kappa, CCD Nonius BV; Delft: The Netherlands, 1999.
- Otwinowski, Z.; Minor, W. Em *Methods in Enzymology;* Carter Jr. C. W.; Sweet, R. M., eds.; Academic Press: New York, 1997, vol. 276, p. 307.
- Enraf-Nonius; Collect, Nonius BV, Delft: The Netherlands, 1997-2000.
- 32. Sheldrick, G. M.; *SHELXS-97 Program for Crystal Structure Resolution*, Universidade de Göttingen, Alemanha, 1997.
- 33. Sheldrick, G. M.; SHELXL-97 Program for Crystal Structure Resolution,

Universidade de Göttingen, Alemanha, 1997.

- 34. Malta, O. L.; Brito, H. F.; Menezes, J. F. S.; Gonçalves e Silva, F. R.; de Mello Donegá, C.; Alves Jr, S.; *Chem. Phys. Lett.* **1998**, 282, 233.
- Fernandes, A.; Jaud, J.; Dexpert-Ghys, J.; Brouca-Cabarrecq, C.; Polyhedron 2001, 20, 2385.
- Tedeschi, C.; Picard, C.; Azéma, J.; Donnadieu, B.; Tisnès, P.; New. J. Chem. 2000, 24, 735.
- 37. Gosh, S. K.; Bharadwaj, P. K.; Inorg. Chem. 2005, 44, 3156.
- 38. Gosh, S. K.; Bharadwaj, P. K.; Inorg. Chem. 2003, 42, 8250.
- 39. Prasad, T. K.; Rajasekharan, M. V.; Cryst. Growth Des. 2006, 6, 488.
- Gonzalez-Baró, A. C.; Castellano E. E.; Piro O. E.; Parajón-Costa B. S.; Polyhedron 2005, 24, 49.
- Alves Junior, S.; de Almeida, F. V.; de Sá, G. F.; de Mello Donegá, C.; *J. Lumin.* 1997, 72, 478.
- Mesquita, M. E.; Júnior, S. A.; Oliveira, F. C.; Freire, R. O.; Júnior, N. B. C.; Sá, G. F.; *Inorg. Chem. Commun.* 2002, *5*, 292.
- 43. Chrysochoos, J.; J. Chem. Phys. 1978, 69, 5545.
- Latva, M.; Takalo, H.; Mukkala, V. L.; Matachescu, C.; Rodríguez-Ubis, J. C.; Kankare, J.; *J. Lumin.* 1997, 75, 149.
- 45. Lima, P. P.; Oscar, M. L.; Alves-Jr., S.; Quim. Nova 2005, 28, 805.

ESTUDOS ESPECTROSCÓPICOS E ESTRUTURAIS DOS POLÍMEROS DE COORDENAÇÃO 2D, [Tb(DPA)(HDPA)] E [Gd(DPA)(HDPA)]

Marcelo O. Rodrigues, Antonio M. Brito-Silva e Severino Alves Júnior*

Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50590-470 Recife - PE, Brasil **Carlos A. De Simone**

Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió – AL, Brasil Adriano Antunes S. Araújo, Pedro Henrique V. de Carvalho, Sílvia Caroline G. Santos, Kennedy Alexandre S. Aragão, Ricardo O. Freire e Maria Eliane Mesquita

Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristóvão - SE, Brasil

Figura 1S. Espectro de absorção na região do infravermelho do ligante livre e das redes de coordenação [Tb(DPA)(HDPA)] [Gd(DPA)(HDPA)]

*e-mail: salvesjr@ufpe.br

Figura 2S. Unidade assimétrica da rede de coordenação [Gd(DPA)(HDPA)]. Carbono: cinza; Hidrogênio: branco; Nitrogênio: azul; Oxigênio: vermelho; Gadolínio: Amarelo

	X	У	Z	U(eq)
O(3)	2860(2)	5108(3)	1727(2)	19(1)
C(12)	3619(3)	-1028(4)	-804(2)	17(1)
O(2)	-346(2)	-364(3)	1107(3)	36(1)
C(13)	3415(3)	253(4)	-223(2)	13(1)
C(10)	4337(4)	-2477(4)	727(3)	16(1)
C(9)	4118(2)	-1138(4)	1254(2)	13(1)
C(7)	1967(3)	5884(4)	1627(3)	20(1)
C(11)	4052(4)	-2424(4)	-323(4)	21(1)
C(6)	906(3)	4913(4)	1431(3)	17(1)
C(1)	375(3)	618(4)	1282(3)	20(1)
C(2)	163(4)	2375(4)	1262(4)	19(1)
N(1)	1051(2)	3329(4)	1441(2)	15(1)
C(3)	-925(3)	2946(5)	1075(3)	27(1)
C(5)	-159(3)	5581(5)	1256(3)	24(1)
C(4)	-1086(3)	4578(5)	1079(3)	29(1)
O(5)	3900(2)	62(3)	2776(2)	16(1)
O(6)	5143(2)	-1909(4)	2879(2)	18(1)
O(7)	2689(3)	2771(3)	31(2)	22(1)
O(4)	1901(3)	7348(3)	1705(4)	46(1)
C(8)	4407(2)	-990(4)	2390(2)	12(1)
C(14)	2928(3)	1830(4)	-623(2)	14(1)
Tb	3027(1)	2327(1)	1819(1)	10(1)
N(2)	3640(2)	176(3)	794(2)	12(1)
O(1)	1474(2)	285(3)	1531(2)	21(1)
O(8)	2803(2)	2134(3)	-1547(2)	20(1)

Tabela 1S.	Coordenadas atômicas	$(A^2x \ 10^3)$ e parâmetros	s de vibração térmic	a isotrópicos do	"[Tb(DPA)(HDPA]
------------	----------------------	------------------------------	----------------------	------------------	-----------------

		,		
Tabela 2S. Parâmetros de	vibração térmica anisot	rópicos (Å ² x 10 ³) do p	oolímero de coordenação	[Tb(DPA)(HDPA]

U11	U22	U33	U23	U23	U13	U13
O(3)	21(1)	13(2)	25(10)	2(1)	5(1)	0(1)
C(12)	21(2)	22(2)	8(1)	0(1)	2(1)	1(1)
O(2)	22(2)	20(2)	65(2)	-2(1)	4(1)	-6(1)
C(13)	15(2)	16(2)	10(2)	3(1)	4(1)	-1(1)
C(10)	29(2)	10(2)	14(2)	4(1)	10(2)	5(1)
C(9)	13(1)	15(2)	12(2)	1(1)	4(1)	2(1)
C(7)	28(2)	11(2)	21(2)	2(1)	6(1)	1(2)
C(11)	25(2)	18(2)	20(3)	-5(1)	8(2)	2(1)
C(6)	20(2)	16(2)	16(2)	-1(1)	3(1)	4(2)
C(1)	18(2)	17(2)	24(2)	2(2)	2(1)	1(2)
C(2)	20(2)	14(2)	24(3)	0(1)	5(2)	1(1)
N(1)	16(1)	16(2)	13(1)	1(1)	4(1)	2(1)
C(3)	16(2)	26(2)	38(2)	7(2)	3(2)	0(2)
C(5)	29(2)	15(2)	27(2)	3(2)	6(2)	10(2)
C(4)	19(2)	30(2)	38(2)	7(2)	4(2)	9(2)
O(5)	20(1)	16(1)	10(1)	1(1)	3(1)	5(1)
O(6)	16(1)	23(1)	15(1)	4(1)	2(1)	5(1)
O(7)	35(2)	21(2)	11(2)	1(1)	7(1)	10(1)
O(4)	37(2)	11(2)	88(3)	-2(1)	9(2)	2(1)
C(8)	13(2)	10(2)	12(2)	3(1)	2(1)	-3(1)
C(14)	14(2)	15(2)	12(2)	-1(2)	4(1)	-2(1)
Tb	13(1)	9(1)	8(1)	0(1)	2(1)	0(1)
N(2)	14(1)	14(2)	10(1)	-1(1)	3(1)	1(1)
O(1)	16(1)	12(1)	36(2)	1(1)	5(1)	2(1)
O(8)	30(2)	20(1)	12(2)	3(1)	6(1)	2(1)

Tabela 3S. Coordenadas atômicas (A²x 10⁴) e parâmetros de vibração térmica isotrópicos (A²x 10³) dos átomos de hidrogênio do polímero de coordenação $_{\infty}$ [Tb(DPA)(HDPA]

	Х	У	Z	U(eq)
H(12)	3468	-954	-1508	21
H(10)	4665	-3380	1066	20
H(11)	4150	-3318	-702	25
H(3)	-1531	2250	951	33
H(5)	-250	6683	1258	28
H(4)	-1805	5000	964	35
H(1)2	1530	-931	1527	32

Tabela 4S. Distâncias interatômicas (Å) e ângulos (°) referentes à primeira esfera de coordenação do [Gd(DPA)(HDPA)]

$Gd-O(7)^i$	2.290(4)
$Gd-O(8)^{ii}$	2.334(2)
Gd-O(1)	2.357(2)
Gd-O(3)	2.399(2)
Gd-O(4)	2.429(3)
Gd-N(1)	2.503(2)
Gd-N(2)	2.519(2)
Gd-O(2)	2.537(2)
O(7) ^{<i>i</i>} -Gd-O(8) ^{<i>ii</i>}	94.61(7)
$O(7)^{i}$ -Gd- $O(1)$	78.87(7)
O(8) ^{<i>ii</i>} -Gd-O(1)	79.92(7)
O(7) ^{<i>i</i>} -Gd-O(3)	95.19(8)
O(8) ^{<i>ii</i>} -Gd-O(3)	154.17(8)
O(1)-Gd-O(3)	78.63(7)
O(7) ^{<i>i</i>} -Gd-O(4)	79.72(7)
O(8) ^{<i>ii</i>} -Gd-O(4)	77.30(7)
O(1)-Gd-O(4)	147.16(6)
O(3)-Gd-O(4)	128.02(6)
$O(7)^{i}$ -Gd-N(1)	84.38(7)
O(8) ^{<i>ii</i>} -Gd-N(1)	141.36(7)
O(1)-Gd-N(1)	136.83(6)
O(3)-Gd-N(1)	63.54(7)
O(4)-Gd-N(1)	64.48(6)
$O(7)^{i}$ -Gd-N(2)	144.01(8)
O(8) ^{<i>ii</i>} -Gd-N(2)	79.82(7)
O(1)-Gd-N(2)	65.14(7)
O(3)-Gd-N(2)	78.21(7)
O(4)-Gd-N(2)	132.02(7)
N(1)-Gd-N(2)	121.72(7)
O(7) ^{<i>i</i>} -Gd-O(2)	153.71(7)
O(8) ^{<i>ii</i>} -Gd-O(2)	92.57(7)
O(1)-Gd-O(2)	127.33(6)
O(3)-Gd-O(2)	89.11(7)
O(4)-Gd-O(2)	77.27(6)
N(1)-Gd-O(2)	74.37(6)
N(2)-Gd-O(2)	62.23(7)

Operações de simetria usadas para gerar os átomos equivalentes: i -x, y+1/2, -z+1/2; ii x, -y+1/2, z-1/2; iii -x, y-1/2, -z+1/2; iv x, -y+1/2, z+1/2.

Tabela 5S.	Coordenadas atômicas (A ² x 10 ³) e parâmetros de vibração térmica isotrópicos do $_{\sim}$	[Gd (DPA)(HDPA)].

	X	У	Z	U(eq)
Gd(1)	1978(1)	2331(1)	3180(1)	10(1)
O(2)	3538(2)	287(2)	3471(2)	22(1)
N(1)	1362(2)	161(2)	4206(2)	13(1)
C(8)	602(2)	-997(3)	2611(2)	14(1)
O(3)	2313(2)	2760(2)	4972(2)	22(1)
C(9)	882(2)	-1146(3)	3747(2)	13(1)
C(14)	2074(2)	1825(4)	5619()	15(1)
C(2)	4847(3)	2385(4)	3737(2)	19(1)
C(6)	4113(2)	4918(3)	3572(2)	18(1)
C(12)	1377(2)	-1040(3)	5802(2)	18(1)
O(4)	1108(2)	41(2)	2227(1)	17(1)
C(13)	1585(2)	241(3)	5220(2)	14(1)
N(2)	3955(2)	3344(3)	3558(2)	16(1)
O(7)	-145(2)	-1906(2)	2128(1)	19(1)
C(1)	4640(2)	635(3)	3719(2)	21(1)
C(10)	656(3)	-2485(3)	4268(2)	17(1)
O(8)	2197(2)	2117(2)	6544(2)	21(1)
O(1)	2155(2)	5128(2)	3273(1)	20(1)
O(5)	5356(2)	-352(3)	3896(2)	37(1)
C(7)	3042(2)	5897(3)	3378(2)	21(1)
C(11)	954(3)	-2429(3)	5323(2)	20(1)
O(6)	3116(3)	7364(3)	3308(3)	47(1)
C(5)	5169(3)	5590(4)	3746(2)	26(1)
C(3)	5931(2)	2959(3)	3921(3)	28(1)
C(4)	6062(2)	4599(4)	3922(2)	29(1)

Tabela 6S. Coordenadas atômicas (A²x 10⁴) e parâmetros de vibração térmica isotrópicos (A²x 10³) dos átomos de hidrogênio do polímero de coordenação $_{\infty}$ [Gd(DPA)(HDPA]

	Х	у	Z	U(eq)
H(12)	1526	-964	6503	21
H(10)	326	-3385	3929	21
H(11)	848	-3323	5701	24
H(3)	6535	2236	4040	33
H(5)	5256	6691	3744	31
H(4)	6807	5024	4039	35
H(1)2	1530	-931	1527	32