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Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving 
significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal 
distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four 
examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in 
some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
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INTRODUCTION

Classical univariate regression is the most used regression method 
in Analytical Chemistry. It is generally implemented by ordinary least 
squares (OLS) fitting using n points (xi,yi) to a response function, 
which is usually linear, and handling homoscedastic data.1 In this 
way, the amount of the unknown (x0) is estimated from one or more 
measurements of its response (y0). The algorithms for carrying out 
such analytical curve fitting have been well established in the litera-
ture. When working with heteroscedastic data, Analytical Chemistry 
uses a weighted linear regression.

However, a problem remains in the Analytical Chemistry com-
munity: error in the x-axis data. Classical linear regression, available 
in commercial software, assumes that x-variable errors are negligible, 
i.e., error-free.1,2

Analytical methods must typically be applicable over a wide 
range of concentrations. Therefore, a new analytical method is often 
compared with a standard method by the analysis of samples in which 
the analyte concentration may vary over several orders of magnitude. 
In this case, it is inappropriate to use the paired t-test because its 
validity rests on the assumption that any errors, either random or 
systematic, are independent of concentration.3

Over wide ranges of concentration, this assumption may no lon-
ger be true. A second problem for fitting analytical curves appears 
when certified reference materials having negligible error are not 
available.4  Therefore, besides the error derived from the signal, the 
error from the x-axis data must also be considered. In these cases, 
OLS should not be used and the literature suggests carrying out 
orthogonal distance regression (ODR).5,6 The aim of this work is to 
suggest how to handle such cases in which errors in both variables 
must be considered, and the question of whether ODR and OLS yield 
metrological differences is evaluated.

METHODOLOGY 

General

In general, it is assumed that only the response variable, y, is sub-
ject to error and that the predictor variable, x, is known with negligible 
error. However, there are situations for which the assumption that x 
is error-free is not justified. In these situations, regression methods 
are required that take the error of both variables into account. These 
methods are called errors-in-variables regression methods.6

In OLS analysis, the best fit is chosen to minimize the residual 

errors in the y direction, i.e., , for all points. 

However, for the ODR model, the sum of the squares of the x residual, 
A2 = (Xi – 

^
Xi)

2 and the y residual, B2 = (Yi – Ŷi)
2, are both minimized. 

This model results in choosing the line regression that minimizes 
the sum of the squares of the perpendicular (orthogonal) distances 
from the data points to the line because, geometrically, C2 = A2 + B2, 
as shown in Figure 1.7

If hi represents the true value of yi and xi the true value of xi with ei 
and di  representing the experimental errors in each, respectively, then

Figure 1. OLS versus ODR. Adapted from ref. 7
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	  and	 (1)
	 	 (2)

The model which describes the straight-line relationship between 
hi and xi is

	 .	 (3)

Consequently, the combination of Equation (3) with Equations 
(1) and (2) yields

	 ,	 (4)

where the last term includes the experimental errors. The fitted line 
is then the one for which the least sum of squares, dis, is obtained, 
and the method has thus been called orthogonal distance regression 
(ODR). This is equivalent to finding the first principal component of 
a data set consisting of two variables and n samples.6

ODR statistics

The maximum likelihood method is the most widely used method 
to solve regressions with errors in both axes; however, the literature 
quotes other methods.8-12 

The expression of the function of the likelihood method for n pairs 
of values (xi, yi) that includes a multidimensional model suitable for 
describing experimental data fluctuations is the multivariate normal:13

	 .	 (5)

Both variables are affected by random measurement errors: x 
variable, s2

xi
 = s2

ei
, and y variable, s2

yi
 = s2

di
. The parameters a and b 

are estimated by b0 and b1, respectively.
If it is considered that both variances of the variables are constant, 

s2
x = q and its known rate is λ. This ratio can be defined as follows: 

	 .	 (6)

Applying Equation (6) into Equation (5) yields the following:

,	 (7)

and its logarithm is given by

.	 (8)

Maximizing (8), the log likelihood function in relation to the 
disturbing parameters,14 ^µxi yields

	 .	 (9)

Substituting Equation (9) into Equation (8) results in the profiled 
log likelihood function that is only a function of a, b, and θ.

Deriving this new equation in relation to these three estimators 
and equalizing the derivatives to zero, which is the approach of 
Deming,8 estimates b1 (Equation 10) as

,	 (10)

where sy
2 and sx

2 are the variances of the y variable and the x variable, 
respectively, and cov(y,x) = (S(yi – –y )(xi – –x ))/(n – 1)  is the cova-
riance of y and x.

Because both variables are affected by random measurement 
errors with the simplest case being s2

e = s2
d, an unbiased estimation 

of the regression coefficients can be obtained by minimizing Sdi
2, i.e., 

the sum of the squares of the perpendicular distances from the data 
points to the regression line, where the values of di are determined 
perpendicular to the estimated line.6

The expressions for b1 and b0 are

	 ,	 (11)

	 ,	 (12)

with
sx

2 = S(xi – –x )2,
sy

2 = S(yi – –y )2, and
cov(y,x) = S(xi – –x )(yi – –y ).

Confidence intervals

To test for bias, i.e., the equivalence of the compared methods, the 
95%-confidence intervals of the estimators from the linear equations, 
y = b0 + b1x, obtained after the orthogonal regression, were used to 
test whether the optimal estimators of b0 = 0 and b1 = 1 are included 
in the spanned confidence intervals (CI):15

 and  .	 (13)

The standard errors of estimators b0 and b1 are16

	   and	 (14)

	 ,	 (15)

where

	  ,	 (16)

	  ,	 (17)

	  ,	 (18)

where t is the Student t-factor with: p = 95%, f = n – 2, and sb0
  and 

sb1
 are the standard errors of the estimators b0 and b1.

The ideal values of b0 = 0 and b1 = 1 imply no bias between the 
compared methods, i.e., equivalence in the calibration results. A fail 
of the test for the axis intercept b0 implies a systematic bias, e.g., a 
bias caused by a wrong blank correction of one of the methods. If 
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the test fails for the slope b1, this implies a proportional bias. The 
combinations of the two errors can also appear.

OLS versus ODR

Mandel17 considers an approximate relationship between the 
ordinary least squares slope, b1(OLS), and the orthogonal distance 
regression slope, b1(ODR) as follows:

	  , 	  (19)

where s2
ex is the variance of a single x value (which involves replicate 

observations of the same x) and s2
x is the variance of the x variable.

Table 1 shows the relationship between s2
ex and the ratio 

 when a perfect system is considered, i.e., when s2
x 

is constant and equal to 1.

On the basis of Table 1, Figure 2 shows that  and 
 have a behavior that is close to linearity when the 

variance of a single x value is lower than that of the x variable, i.e., 
from 0.0 to 0.2.

When the  increases up to 0.5, the best regression seems to 
be quadratic, as shown in Figure 3, based on Table 1.

As  gets close to the unity,  grows rapidly 
to infinity, as shown in Figure 4, also based on Table 1.

EXPERIMENTAL

Four case studies using ODR are discussed in this work. In these 
examples, equal errors are considered in both variables.

In the first study, a catalytic fluorimetric method is compared 

with a photometric technique for the determination of the level of 
phytic acid in urine samples, and confidence intervals are calculated 
to evaluate the equivalence between the methods. The instrumentation 
is described by March.18 Moreover, an inadequate yet frequently used 
approach, the t-test, is also applied to the same set of data.

In the second study, the regression of an analytical curve using a 
certified reference material (CRM) to build the analytical curve for 
the determination of the copper content in water by Flame Atomic 
Absorption Spectrometry (FAAS) is carried out by both OLS and 
ODR approaches, and the results then are compared. The instrumen-
tation is described by Oliveira.19

The next study involves comparison of potentiometric stripping 
analysis (PSA) and atomic absorption spectroscopy (AAS) in deter-
mining lead in fruit juices and soft drinks. The instrumentation is 
described by Mannino.20

For the last study, ammonium ions derived from the mainstream 
smoke of a cigarette is trapped (retained), extracted, and analyzed 
by ion chromatography equipped with a conductivity detector.21 An 
analytical curve was built with reference materials (MR) instead of 
CRM. In this way, ODR is the most recommended regression.

RESULTS AND DISCUSSION 

All data were tested for normality assumption by the Shapiro–
Wilk test, homoscedastic behavior based on the Cochran test, inde-
pendence by the Durbin–Watson test, and for lack of fit by ANOVA.6

All calculations were conducted by Microsoft Excel.

Case study 1

The level of phytic acid in urine samples was determined by a 
catalytic fluorimetric (CF) method and the results were compared 
with those obtained using an established extraction photometric (EP) 
technique. The results, in mg/L, are the means of triplicate measure-
ments, as shown in Table 2.
ODR line: ŷ = –0.056 + 0.996x 
CI(b0) = –0.056 ± 0.090 (–0.147, 0.034) 
CI(b1) = 0.996 ± 0.040 (0.955, 1.036) 

Table 1. Relationship between  and 

0.00 1.00

0.01 1.01

0.10 1.11

0.20 1.25

0.25 1.33

0.33 1.50

0.50 2.00

0.70 3.33

0.90 10.0

Figure 2. Linear relationship between  and  

Figure 4.  tending to infinity

Figure 3. Quadratic regression between  and  
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On the basis of Equation (13), the confidence intervals include the 
optimal estimators for the slope b1 and intercept b0, which are one and 
zero, respectively, showing equivalence between the two methods. 

If the t-test3 was used, which is incorrect, the comparison of the 
methods would not be considered equivalent, because, to the 95% 
confidence level, the value of t calculated (3.59) is higher than the 
value of t critical (2.09).

Case study 2

Table 3 presents the concentrations and replicate measurements 
for the determination of copper in water by FAAS. Data regression 
shows that there is no difference between the ODR coefficients (see 
equations below) and those derived from OLS. As a CRM was used, 
s2

ex is negligible when it is compared to s2
x, so s2

ex /s2
x is very close to 

zero. Therefore, in this case, the error in the x-axis can be considered 
negligible in the regression of the analytical curve.

OLS line: ŷ = 0.0004 + 0.0784x 
ODR line: ŷ = 0.0004 + 0.0784x  
CI(b1ODR) = 0.0784 ± 0.0007 (0.0778, 0.0790) 

There is no significant difference between the two approaches 
when a certified reference material (CRM) is used to build the 
analytical curve. However, when a CRM is not available or it is too 
expensive, a reference sample cannot be used. Under these conditions, 
the x-axis error must be taken into account in the regression line. In 
these cases, the OLS line can be different from that derived from ODR.

For this example, from an examination of the value of sex, Table 4 
indicates that the ODR line must be considered rather than the OLS 
line using the Deming approach given in Equation (19). Standard de-
viations of a single x value higher than 0.030 mg/mL causes b1(ODR) 
to exceed the confidence interval (0.0778, 0.0790).

Case study 3

This case study compares a new potentiometric method (y 

variable) with a reference flameless AAS method (x variable) for 
the determination of Pb in fruit juices and soft drinks. The results, in  
mg/dm3, are based on three replicate determinations for AAS and five 
replicate determinations for PSA, as shown in Table 5.

ODR line: ŷ = –0.0030 + 0.9686x  
CI(b0) = –0.0030 ± 0.0154 (–0.0109, 0.0170) 
CI(b1) = 0.9686 ± 0.0828 (0.8933, 1.0489) 

On the basis of Equations 13, 14, and 15, the confidence intervals 
include the optimal estimators for the slope b1 and the intercept b0, 
which are one and zero, respectively, showing equivalence between 
the methods. 

By the t-test, the comparison of the methods is also considered 
equivalent because, to the 95% confidence level, the value of t cal-
culated (0.597) is higher than t critical (2.262).

Case study 4

Five reference materials are measured one time each, providing 
the results in Table 6. 

Considering the variance ratio between each MR and the x-axis as 
10%, the b1(ODR) coefficient can be estimated by b1(OLS) regression 
and calculated using Equation 19 as follows:

Table 6. Impact of the sex in b1(ODR) 

sex b1(ODR)

0.001 0.0784

0.005 0.0784

0.010 0.0785

0.020 0.0787

0.030 0.0790

0.040 0.0795

Table 5. Analytical curve data built with MR

Concentration (mg mL-1) Signal (mV s-1)

0.261 109

1.003 439

2.481 1096

5.000 2216

10.004 4441

Table 4. Comparison of results from PSA and AAS

AAS PSA

0.035 0.035

0.075 0.070

0.075 0.080

0.080 0.080

0.125 0.120

0.205 0.200

0.205 0.220

0.215 0.200

0.240 0.250

0.350 0.330

Table 3. Data from an analytical curve for the determination of copper content 
in waters by FAAS

Concentration, 
mg mL-1 Absorbance

0.10 0.0081 0.0079 0.0080

0.25 0.0206 0.0205 0.0202

0.50 0.0391 0.0394 0.0398

0.75 0.0596 0.0591 0.0590

1.00 0.0782 0.0790 0.0792

Table 2. Comparison of CF versus EP

EP CF EP CF

1.98 1.87 0.13 0.14

2.31 2.20 3.15 3.20

3.29 3.15 2.72 2.70

3.56 3.42 2.31 2.43

1.23 1.10 1.92 1.78

1.57 1.41 1.56 1.53

2.05 1.84 0.94 0.84

0.66 0.68 2.27 2.21

0.31 0.27 3.17 3.10

2.82 2.80 2.36 2.34
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	 b1(ODR) = 444.59

	 .

CONCLUSIONS 

From the studied examples, it was possible to observe that when 
the errors involving x-axis data can be considered metrologically 
negligible, one should apply the OLS. Otherwise, the ODR should 
be used. It should be emphasized that the difference between the 
ODR and OLS results significantly increases in proportion to diffe-
rent ratios of . Furthermore, classical comparison between the 
methods must be done by the ODR rather than the t-test owing to 
errors residing in both axes.

There is a need to evaluate the impact of error in the x-axis data 
before performing linear regression because the inadequate appli-
cation of regression may lead to substantially different conclusions.
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