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1. Introduction

Biodiesel is gaining importance due to its 
environmental and economic benefits (Leão et al., 
2011). It can replace diesel fuel without causing any 
harm to conventional diesel engines while reducing 
hazardous exhaust emissions (Van dyne  et  al., 
1996). Zhang et al. (2003) affirmed that biodiesel is 
biodegradable and non-toxic and that its combustion 
emission profile is environmentally friendly compared 
to petroleum-based diesel. Van dyne et al. (1996) 
and Severo et al. (2015) reported the economic and 
environmental benefits of replacing fossil fuels with 
biodiesel. Biodiesel is a renewable natural resource 
that can help Brazilian farmers. To promote regional 
development, the Brazilian Biodiesel Program (BBP) 
was launched in 2004. This program guarantees 

the purchase of a fixed amount of production from 
small farmers in poor communities. The ultimately 
goal of the program is to promote social inclusion 
and prosperity for these farmers by using their 
production in the Brazilian biodiesel supply chain 
(PNPB, 2013). The success of this program depends on 
a well-developed supply chain logistics that includes 
better planning and new facilities. It will also require 
investment in new grain crushing units, improved crop 
production, and a crop distribution system (Leão et al., 
2011). The importance of biodiesel has also been 
emphasized by Carraretto et al. (2004), Demirbas & 
Balat (2006), Haas et al. (2006), Leduc et al. (2009) 
and Sotoft et al. (2010).
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Many authors have worked on developing 
optimization models for the biodiesel supply chain. 
The mathematical formulation of the problem is 
difficult due to uncertainties in crop production. 
The stochastic optimization model was first introduced 
by Dantzig (1955), and several other authors, including 
Hoffman & Schniederjans (1994), Birge & Louveaux 
(1997), Jayaraman (1998), Haneveld & Vlerk, (1999), 
Beraldi et al. (2000), Riis & Andersen (2005), Falasca 
& Zobel (2011), Oliveira & Hamacher (2012) and 
Zhang et al. (2012), have developed optimization 
models that consider uncertainty. Lee (2014) and 
Xie  et  al. (2014) proposed two and multistage 
Mixed-Integer Linear Program (MILP) formulations 
to optimize the biodiesel supply chains.

This paper proposes a three-stage model to 
optimize the biodiesel supply chain. The objective is 
to minimize the costs associated with grain storage 
and transportation to the crushing plant. Usually, 
two-stage stochastic models are the most common 
models in the literature. Nagar & Jain (2008) 
affirmed that deterministic optimization models 
do not capture the truly dynamic behavior of most 
real-world applications; thus, by adding another 
decision stage, a model could be made more realistic. 
The results obtained using the three-stage model 
are compared with those of the two-stage model. 
Multistage models extend the two-stage stochastic 
programming models by allowing revised decisions 
in each time stage based on the uncertainty realized 
so far (Ahmed et al., 2003). For the problem shown 
in this paper, adding one extra decision stage allows 
the model to open or close facilities depending on 
how large the demand is. Such a flexibility gain was 
also highlighted by Nagar & Jain (2008), who noted 
that the advantage of the multistage programming 
approach is that we can revise parameters when 
more information regarding the demand scenarios 
becomes available. Thus, this paper yields a multistage 
stochastic approach applied to a castor-based 
biodiesel supply chain. The study helps resolve an 
issue that matters to Brazil as a whole, i.e., the 
search for cleaner fuels. In this sense, it is essential 
to structure the castor-based biodiesel chain because 
a gain in efficiency regarding the production of 
this fuel increases the profit margin of the chain 
as a whole. This paper also offers a contribution 
to the field of social responsibility by helping the 
company in question purchase the produce of small 
farmers, thereby reducing the logistics costs of an 
operation that often has little transportation scale. 
For this reason, the strategic positioning of facilities 
to help consolidate this production constitutes an 
important solution.

The rest of the paper is organized as follows. 
Section 2 provides the mathematical models, section 
3 presents the problem statement, section 4 details 
the case study, section 5 show the main results and 
discussion and section 6 presents the conclusions.

2. Mathematical models

2.1. Two-stage models

The two-stage stochastic formulation can be 
stated as follows:
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Where Q (x, ξ ) is the optimum value for the second 
stage problem.
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x ∈ ℜn is the first-stage decision variables vector. 
C ∈ ℜn, b ∈ ℜn and A ∈ ℜmxn are data associated with 
the first-stage problem, y ∈ ℜm is the second‑stage 
variable vector and ξ = (q,T,W,h) contains data for 
the second-stage problem, which can be random 
variables with known probability distributions.

Kaut & Wallace (2007) affirmed that except for 
very simple cases, this model cannot be solved with 
continuous distributions; thus, solving methods 
requires discrete distributions. Moreover, the 
cardinality of the support of the discrete distributions 
is limited by both the available computing power 
and the complexity of the decision model. Hence, 
in most practical applications, the distributions of 
the stochastic parameters must be approximated by 
using discrete distributions with a limited number 
of outcomes. The discretization is usually called a 
scenario tree or an event tree.

We assume, then, that each ξk,k = 1,...,ω have 
probabilities pk,k= 1,...,ω. So, expected value E [Q (x, ξ ) 
can be rewriten as:
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Considering the discrete model, we can rewrite 
as follows:
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Where Q (x, ξ ) is the optimum value of second stage 
problem for each ω = 1, ..., Ω
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The first stage is responsible for “here and now” 
decisions based on information that we have today. 
These decisions correspond to the vector x. In the 
second stage, when ξ  information is available, we 
make decisions regarding the values of vector y. 
In  the first stage, we minimize the costs cTx plus 
the expected value of the second-stage problem. 
The decisions made in the second-stage problem 
consist of a “course correction” in a situation in which 
we are able to change the decisions that are made 
before uncertainty is revealed. The constraints that 
ensure that the first-stage decisions depend only on 
information that is available to that point are called 
nonanticipativity constraints. In two-stage problems, 
this implies that the decision is independent of second 
stage realizations; thus, vector x is the same for all 
possible events that may occur in the second-stage 
problem (Birge & Louveaux, 1997).

Generally, stochastic models present a complexity 
that makes their resolution difficult. Ribas (2008) stated 
that it is common to opt for a deterministic model 
solution by using the average of random variables 
or solving a deterministic problem for each scenario. 
In this sense, Birge & Louveaux (1997) presented two 
indicators: the value of the Stochastic Solution (VSS) 
and Expected Value of Perfect Information (EVPI).

2.2. Multistage models

The linear multistage stochastic program is a 
stochastic sequential optimization where the objective 
function and constraints are linear (Casey & Sen, 
2005). In many different ways, authors have used the 
multistage stochastic program approach. For example, 
Nagar & Jain (2008) used a scenario-based approach 
to address the supply chain planning problem under 
an uncertain environment and stated that the use 
of a multistage approach can generate significant 
savings in such problems.

For Sahinidis (2004), although significant 
advances have been made regarding the stochastic 
two-stage model solution, multistage still features 
a significantly considerable computational challenge 
compared with deterministic models; thus, a better 
understanding of the problem is necessary for the 
successful implementation of solution algorithms.

According to Casey & Sen (2005), such models 
are typically presented in two ways:

•	 	MSP (Multistage Stochastic Programs)

•	 	SDP (Stochastic Dynamic programs)

Although the SDP can often be a suitable approach 
for some situations, realistic applications require a 
much larger quantity of variables than SDP can handle 
efficiently. For this reason, in real-world, large-scale 
applications, MSP offers a more suitable modeling 
tool. However, MSP has computational limitations, 
such as the discretization of stochastic processes 
representing the evolution of random data (Casey 
& Sen, 2005).

The multistage program with fixed recourse has the 
following form, as seen in Birge & Louveaux (1997):
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Where c is a ℜn1 vector, h is a ℜm1 vector, T is a 

ℜm-1 vector, W is a m x n matrix and ξ = (c,h,T,W).

3. Problem statement

The problem addresses designing an efficient 
biodiesel supply chain for castor seeds produced 
in Brazil. To realize the production of biodiesel, 
a well‑designed, economically viable supply chain 
must be developed. Castor seed storage warehouses 
should be located where larger trucks can collect great 
quantities of castor and deliver them to the crushing 
plant. Such cargo consolidation is important for 
consolidating small farmers’ fragmented production, 
which, in this particular case, would result in small 
trucks travelling great lengths with small quantities of 
castor. Warehouse location is also a difficult challenge, 
mainly because it is a large combinatory problem. 
In addition to the warehouse location issue, there are 
inherent characteristics of warehouses that can affect 
storage capacity and costs. There are two types of 
facilities: fixed bases and procurement points. Fixed 
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bases are perennial and have a greater storage 
capacity compared with the procurement point’s 
facilities. Fixed bases have higher operating costs 
due to their size and equipment. Moreover, fixed 
bases have a long-term agreement, which results in 
a higher rental cost. Procurement points are flexible 
and smaller facilities that can be moved from their 
current locations to a different one depending on 
a manager’s decisions. They  have lower storage 
capacity and are less costly. Thus, the decisions to 
be made include i) where warehouses should be 
located, ii) which type of warehouse (fixed bases 
or procurement points) is more efficient in that 
location, and iii) what amount of castor seed must 
be transported from farms to warehouses and from 
warehouses to the plant. Furthermore, uncertain 
production quantities add to problem complexity; 
thus, using a deterministic approach provides a 
supply chain design only for one specific scenario. 
Therefore, to increase accuracy, the mathematical 
model should consider uncertainties, which means 
that a fairly good solution for some scenarios will be 
given instead of an optimal solution that perfectly 
matches one single scenario. Uncertainties are 
mainly due to weather conditions, such as rainfall, 
that impact seed production.

The proposed model to support the decision‑making 
process is based on a three-stage stochastic 
MILP. The real-life biodiesel case study presented 
in this paper can be classified as a network 
location‑allocation model that is represented by 
directed graphs. The nodes of the graph represent 

i) producing cities, ii) cities that are candidates to 
have warehouses and iii) the city in which the plant 
is located. To model this problem as a multistage 
stochastic MILP, the proposed logistics network 
was created with two distinct sets of arcs: primary 
and secondary flow arcs. Primary flow arcs are 
those that connect farmers to the warehouses, 
and secondary flow arcs connect the warehouses 
to the crushing plant. This model minimizes the 
transportation costs, costs involved in loading 
and unloading trucks with castor seeds and costs 
associated with the installation of castor seed 
warehouses. The composition of these three costs 
form the objective function of the problem. The 
proposed mathematical model ultimately aims to 
find i) the warehouse locations and their types, 
ii) the quantity of castor seed flow between cities, 
and iii) the quantity of castor seeds flow between 
warehouses and crushing plants. Data used in this 
paper can be seen in the Appendix A.

3.1. Two-stage approach

In both two- and multistage models, we consider 
a horizon of three time periods, with each period 
corresponding to a year in which the operation 
of two consecutive harvests is planned. Period 
t = 0 represents an earlier period, where allocation 
decisions are made before harvesting.

Once built, these facilities will be used in the 
next harvest, i.e., farmers in period t will use the 
facilities built in t - 1.

Notations:

Sets and indexes
f ∈ F 	 Distance range

i,j,l ∈ L 	 Cities

k ∈ K 	 Facility type

p ∈ P 	 Product

t ∈ T 	 Time period

ξ ∈ Ω 	 Scenarios

Subsets
BF ⊂ L 	 Cities that can be selected to have a fixed base

PC ⊂ L 	 Cities that can be selected to have a procurement point

U ⊂ L 	 City where the power plant is located



A three-stage stochastic optimization … biodiesel supply chain. Production, 26(3), 501-515, jul./set. 2016
505

Senna, P. et al.

Parameters
CCi 	 Loading costs (BRL /ton)

CIi,k 	 Installation costs (BRL)

CMAi,k 	 Maximum facility capacity (ton)

COR 	 Correction factor for secondary transport

CTPp 	 Primary transport costs (BRL/ton.km)

CTSf,p 	 Secondary transport costs (BRL/ton)

DIi,j 	 Cities distance (km)

LD 	 Distance limit (km)

LFf 	 Range limits (km)

PRξ 	 Scenario probability

PRO ξ
i,p,t 	 Production (ton)

Variables
xp ξ

i,j,p,t 	 Amount of castor transported by primary transportation

xs ξ
i,j,p,t 	 Amount of castor transported by secondary transportation

ini,k,t 	 Assembled/Built facility

inli,k,t 	 Auxiliary facility variable

Objective function

 Min Z pin ptr pca= + + 	 (1)

( ), , , , , , ,i k t i k i k t i k tpin CI in inl= ∑ − 	 (2)

, , , , , , , , , , , , , , , , , , ,i j p f t i j p i j p t i j p f t i j f p i j p tptr PR DI CTP xp PR DI CTS xsξ ξ ξ ξ
ξ ξ= ∑ + ∑ 	 (3)

, , , , , , , , , , , , , , i j p t i i j p t i j p t i i j p tpca PR CC xp COR PR CC xsξ ξ ξ ξ
ξ ξ=∑ + ∑ 	 (4)

Constraints

, , 1   ,     k i k tin i L t T∑ ≤ ∀ ∈ ∀ ∈ 	 (5)

, , , , , , , 1  ,  ,   ,    j p i j p t k i k i k txs CMA in i j L t Tξ
−∑ ≤ ∑ ∀ ∈ ∀ ∈ ∀ ξ ∈Ω 	 (6)

( ) { }( )| , , , , , , , , , , ,    ,   0 ,    i i U i p t i u t i u p t i u p tPRO xp xs p P t Tξ ξ ξ
ξ∉∑ ≤ ∑ + ∀ ∈ ∀ ∈ − ∀ ξ ∈Ω 	 (7)

( ) ( ), , , , , , , , , , , , , ,   , , ,   ,   ,    i i j p t i j p t j p t l j l p t j l p txp xs PRO xp xs i j l L p P t Tξ ξ ξ ξ ξ∑ + + ≤ ∑ + ∀ ∈ ∀ ∈ ∀ ∈ ∀ ξ ∈Ω 	 (8)

, , 0   ,     i t k PCinl i L t T∈ = ∀ ∈ ∀ ∈ 	 (9)
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The auxiliary variable inli,k,t is such that installation 
costs are charged only in the period in which the 
installation is built. In the two-stage model, ini,k,t is a 
first-stage decision that remains with no change for the 
second stage. Variables xp ξ

i,j,p,t  (primary transportation) 
and xs ξ

i,j,p,t  (secondary transportation) are second-stage 
variables and only exist in t = 1 and t = 2.

The objective function (1) is the sum of the 
costs that we want to minimize. This particular case 
comprises three parts: installation costs (2), shipping 
(3) and truck loading (4). In this model, installation 
costs are first-stage costs, whereas transport and 
loading are second-stage costs.

Regarding installation costs, the difference 
ini,k,t – inli,k,t is used to ensure that the network will 
only incur the cost of installation at the exact time 
when the facility is installed. Constraints (10) and 
(11) ensure that this occurs and are explained below. 
In (4), the COR parameter indicates a correction factor. 
The costs of unloading cargo in the plant are not in 
the scope of the company analyzed for this paper. 
The company pays only for loading the trucks in 
the warehouses; thus, this parameter represents this 
correction. (5) limits to one the number of facilities 
that can be installed in a specific city, i.e., the model 
will not be able to install both the fixed base and the 
procurement point. (6) ensures that the maximum 
capacity of each facility will be respected. This equation 
is also responsible for ensuring that the available 
storage capacity depends on the installation of a 
warehouse in the previous period. (7) is a flow balance 
constraint that ensures that the total production 
shipped to the facilities must be equal to the small 
farmers’ total production, i.e., the sum of primary 
and secondary transportation must equal each city’s 
production. (8) guarantees that the amount of castor 
seeds produced and delivered to the plant are equal. 
(9) sets the value of inli,k,t ∈ PC . For fixed bases, inli,k,t 
= 0 in the installation period, and inli,k,t = 1 in every 
other period. (10) also regards inli,k,t

 and says that it 
must have the same value as ini,k,t installed in t-1. 

(11) fixes first-stage decisions to all periods, i.e., the 
facilities positioned in t-1 are kept in t. (12) and 
(13) ensure that ini,k,t and inli,k,t are binary. (14) and 
(15) guarantee that xp ξ

i,j,p,t  and xs ξ
i,j,p,t  are real and 

non-negative.

3.2. Multistage approach

This multistage formulation (shown in Figure 1) 
is a straightforward extension of the two-stage 
scenario formulation.

Note that t = 1 represents first-stage decisions, 
t = 2 represents second-stage decisions and t = 3 
represents third-stage decisions.

, , , 1,    ,    ,     i t k BF i t k BFinl in i L t T k BF∈ − ∈= ∀ ∈ ∀ ∈ ∀ ∈ 	 (10)

, , , 1,    ,    ,     i t k i t kinl in i L t T k K−≥ ∀ ∈ ∀ ∈ ∀ ∈ 	 (11)

{ }, , 0;1i k tin ∈ 	 (12)

{ }, , 0;1i k tinl ∈ 	 (13)

, , ,    i j p txpξ +∈ R 	 (14)

, , ,    i j p txsξ +∈ R 	 (15)

Figure 1. Generic three stage model. Source: elaborated by the 
authors (2016) based on Messina & Mitra (1997).
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All parameters used are the same as those 
seen, with the exception of xp ξ

i,j,p and xs ξ
i,j,p, which 

now do not need the index t. Instead of t, the 
scenario tree precedence is established by the 
parameter PE ξ. Table 1 shows the example used 
in our computations.

The uncertainty regarding future events in 
multistage stochastic programming is modeled 
through scenarios ξ, and decisions, as in real life, 
are made at certain points in time t, denominated as 
stages. The first stage consists of finding warehouse 
locations to be used at t = 1 and t = 2. Thus, decisions 
such as where warehouses should be located are 
made at t = 0. Decisions regarding the quantity of 

Notations:

Sets and indexes
f ∈ F 	 Distance range

i,j,l ∈ L 	 Cities

k ∈ K 	 Facility type

p ∈ P 	 Product

ξ ∈ Ω 	 Scenarios

Subsets

BF ⊂ L	 Cities that can be selected to have a fixed base

PC ⊂ L	 Cities that can be selected to have a procurement point

U ⊂ L 	 City where the power plant is located

Parameters
CCi 	 Loading costs (BRL /ton)

CIi,k 	 Installation costs (BRL)

CMAi,k 	 Maximum facility capacity (ton)

COR 	 Correction factor for secondary transport

CTPp 	 Primary transport costs (BRL/ton.km)

CTSf,p 	 Secondary transport costs (BRL/ton)

DIi,j 	 Cities distance (km)

LD 	 Distance limit (km)

LFf 	 Range limits (km)

PRξ 	 Scenario probability

PEξ 	 Scenario precedence

PRO ξ
i,p P	 roduction (ton)

Variables

xp ξ
i,j,p 	 Amount of castor transported by primary transportation

xs ξ
i,j,p 	 Amount of castor transported by secondary transportation

in ξ
i,k  	 Assembled/Built facility

inl ξ
i,k 	 Auxiliary facility variable

Table 1. Example of precedence for a tree-stage tree.

ξ Precedence

1 0

2 0

3 0

1.1 1

1.2 1

1.3 1

2.1 2

2.2 2

2.3 2

3.1 3

3.2 3

3.3 3
Source: elaborated by the authors (2016).
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castor seed flow among cities are made in periods 
t = 1 and t = 2. The calculated flow is affected by 
the warehouse locations defined at t = 0. Moreover, 
this model allows some of the decisions made at 
period t = 0 to be changed. Depending on the 
performance of the first harvest, which is known 
after period t = 0, some procurement points can 
be disassembled.

The variable in ξ
i,k ∈ PC  is used for both t = 0 and 

t = 1 stages. In this case, the model can choose to 
review procurement point assembly decisions. Variable 
in ξ

i,k ∈ BF  is the decision variable, which remains 
unchanged from the first stage to the third stage. 
Variables xp ξ

i,j,p and xs ξ
i,j,p  are second- and third-stage 

variables, respectively. The mathematical model can 
be stated as follows:

Objective function

 Min Z pin ptr pca= + + 	 (16)

( ), , , , , i k i k i k i kpin CI in inlξ ξ
ξ= ∑ − 	 (17)

, , , , , , , , , , , , , , ,i j p f i j p i j p i j p f i j f p i j pptr PR DI CTP xp PR DI CTS xsξ ξ ξ ξ
ξ ξ= ∑ + ∑ 	 (18)

, , , , , , , , , , i j p i i j p i j p i i j ppca PR CC xp COR PR CC xsξ ξ ξ ξ
ξ ξ=∑ + ∑ 	 (19)

The objective function (16) is compounded by 
three distinct costs, which are defined by terms 
(17), (18) and (19). Term (17) shows the warehouse 
installation cost, term (18) is the transportation 
costs, and term (19) is the loading/unloading 
truck operation cost. Installation costs occur at 

the first and second stages, whereas transportation 
and loading/unloading costs occur at the second 
and third stages. The term  in ξ

i,k – inl ξi,k, as in the 
two-stage model, is created to guarantee that 
the installation cost occurs only when a facility 
is installed.

, 1   ,    k i kin i Lξ ξ∑ ≤ ∀ ∈ ∀ ∈Ω 	 (20)

, , , , ,  ,  ,     PE
j p i j p k i k i kxs CMA in i j L

ξξ∑ ≤ ∑ ∀ ∈ ∀ ξ ∈Ω 	 (21)

( ) ( ), , , , , , , , ,   , ,  ,   ,    i i j p i j p j p l j l p j l pxp xs PRO xp xs i j l L p Pξ ξ ξ ξ ξ∑ + + ≤ ∑ + ∀ ∈ ∀ ∈ ∀ ξ ∈Ω 	 (22)

( ) { }| , , , , , , , ,   ,   ( 0  )i i U i p i u i u p i u pPRO xp xs p Pξ ξ ξ
ξ∉∑ ≤ ∑ + ∀ ∈ ∀ ξ ∈ Ω − 	 (23)

,  0,   ,     i k PCinl i Lξ
∈ = ∀ ∈ ∀ ξ ∈Ω 	 (24)

î

,, ,   ,     PE
i k BFi k BFinl in i Lξ

∈∈ = ∀ ∈ ∀ ξ ∈Ω 	 (25)

{ }, 0;1 ,    ,    ,    i kin i L k Kξ ∈ ∀ ∈ ∀ ξ ∈Ω ∀ ∈ 	 (26)

{ }, 0;1 ,   ,    ,    i kinl i L k Kξ ∈ ∀ ∈ ∀ ξ ∈Ω ∀ ∈ 	 (27)

, ,    ,  ,  ,    ,    i j pxp i j L p Pξ +∈ ∀ ∈ ∀ ξ ∈Ω ∀ ∈R 	 (28)

, , ,    , ,  ,  ,    ,    i j p txs i j L p Pξ +∈ ∀ ∈ ∀ ξ ∈Ω ∀ ∈R 	 (29)
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Constraint (20) limits to one the number of facilities 
that can be installed in each city. Constraint (21) 
defines warehouse storage capacity and ensures 
that castor seed transportation is executed only if 
a warehouse has been previously installed. In (22), 
a flow balance constraint indicates that the total 
production transported to warehouses must be 
equal to the total production of the producers. 
Constraint (23) guarantees that the amounts of 
castor seeds produced and delivered to a plant are 
equal (another flow balance constraint). In (24), a 
constraint sets the value for inl ξi,k ∈ PC. This variable 
is set equal to 0 due to procurement costs, which 
occur at each period. (25) is a nonanticipativity 
constraint that ensures that any decision made for 
the fixed bases in period t -1 remains unchanged in 
period t. When we split the scenarios, we may have 
lost the nonanticipativity of the decisions because 
such decisions would now include knowledge of the 
outcomes up to the end of the horizon. To enforce 
nonanticipativity, we add constraints explicitly in 
the formulation (Birge & Louveaux, 1997). These 
nonanticipativity constraints are the only constraints 
linking the separate scenarios. Without them, the 
problem would decompose into a separate problem 
for each ξ, maintaining the structure of that problem 
(Birge & Louveaux, 1997). (26)-(29) are similar to 
the two-stage model.

4. Case study

The case study involves an area located in a 
poor and semi-arid region in Brazil that is primarily 
populated by small farmers. Many of these farmers 
produce castor seeds. The Brazilian government has 
set this region of the country as one of its priorities 
to improve the quality of life by promoting prosperity. 
To achieve these goals, the Brazilian government has 
focused on including diligently these small farmers 
in the Brazilian Biodiesel Program (BBP). According 
to Leão et al. (2011), the majority of the people who 
live in this area have poor education levels compared 
with other areas in Brazil. This population also has 
low income, lacks a basic sewer infrastructure, and 
does not have access to a decent healthcare system. 
Brazil’s semi-arid region covers eight of the nine 
states in the Northeast region and includes the 

northern Minas Gerais state, representing an area 
of approximately 1.0 million square kilometers.

Castor seed was selected as one of the main oilseed 
sources for biodiesel production due to its inherent 
properties, such as hardiness, capability to survive in 
severe weather conditions, and good adaptation to 
intercropping (Leão et al., 2011). Furthermore, the 
castor seed production techniques are well known 
and widespread among farmers in the region, which 
also contributed to castor seed being selected as an 
important source for the PNPB (Leão et al., 2011). 
These small farmers live in rural areas, usually far 
from medium and large cities. Therefore, to sell their 
castor seed production, the farmers are obligated 
to transport their production to different locations 
where a fixed base or procurement point can be 
found. Thus, the central issue concerns finding 
suitable locations for these facilities to then ship 
the whole production to the plant. The challenge 
involves minimizing both the installation of facilities 
and the transportation costs.

The production level varies according to the 
weather conditions, i.e., the amount of rainfall. 
There is always uncertainty associated with the 
production. Rainfall may largely affect the whole 
logistics network efficiency, which may have to be 
redesigned depending on the production levels. At this 
point, some important questions emerge, e.g., how 
will the logistics network be designed/redesigned, 
considering such uncertainty? The stochastic modeling 
approach can therefore support the design of the 
Brazilian biodiesel supply chain.

5. Results and discussion

This section shows the main results found for 
the two- and multistage models and the scenario 
generation considerations. All calculations were 
conducted using a system that generated scenarios 
via a VBA (Visual Basic for Applications) script. VBA 
routines also connected the generated scenarios to a 
database stored in MS Access. Then, the data were 
automatically sent to AIMMS for the mathematical 
model, and the results were compiled in MS Excel. 
Figure 2 shows our system.

Figure 2. Computational system created. Source: elaborated by the authors (2016).
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5.1. Scenario generation

A crucial part of any stochastic program study is 
generating scenarios that fairly represent uncertainties 
to obtain accurate results. The importance of 
this subject has been noted by Date et al. (2008), 
Falasca & Zobel (2011), and Balibek & Koksalan 
(2012). The  issue of representing uncertainties 
through quantitative models is complex and well 
known (Hoyland & Wallace, 2001). One of the 
main challenges is to collect data from the limited 
available production data set. The lack of historical 
production data for each candidate city was an issue. 
To overcome it, the proposed approach utilized 
the percentage of national production deviations, 
which includes outputs for several counties in Brazil 
(Companhia Nacional de Abastecimento, 2012). 
The percentage deviations are plotted in Figure 3 
(Y-Axis). There are 35 periods (X-Axis). The first 
period is the difference in crop production between 
1976-77 and 1978-79, the second period is the 
difference between 1980-81 and 1982-83, and 
so on. Figure 2 shows the percentage deviations.

Given the limited amount of data available with 
respect to the castor crops, it would be more reliable 
to use a discretization method that can select three 
appropriate points to represent the distribution of 
the percentage deviations. Therefore, the next step 
is to plot a cumulative distribution histogram, as 
shown in Figure 4.

According to Hoyland & Wallace (2001), one 
method of generating scenarios consists of finding 

a simple discrete approximation. The approximation 
works as the initial input to the model. Keefer 
& Bodily (1983) proposed an extension of the 
Swanson‑Megill method. The authors suggested an 
Extended Swanson‑Megill, where the 10%, 50% and 
90% percentiles are weighted by the probabilities 
0.3, 0.4 and 0.3, resulting in corresponding values 
of -59.38%, -2.78% and 104.39%.

5.2. Two-stage results and discussion

The S2OS model was built on the AIMMS 
3.14 platform and has a total of 5,488 constraints and 
28,204 variables, with a solution time of approximately 
5 seconds using an Intel Core i5 – 421OU CPU 2.4 GHz 
with 4.0 GB of RAM memory. The solver used was 
CPLEX 12.5. Thus, this problem is not considered 
a problem that would generate computational 
problems, and we can conclude that a real-world 
two-stage model of such an instance can be quickly 
solved and provide sufficiently fast solutions for 
decisions made on a daily basis.

We measure the quality of the stochastic two-stage 
optimization model (S2SO model) solution using 
VSS. which consists of the difference between the 
expected result of using the expected value solution 
(EEV), which was 9,156,309.01 (BRL), and the 
Recourse Problem (RP), which was 8,628,002.77 
(BRL). Thus, we find a Value of Stochastic Solution: 
VSS = EEV - RP = 605,547.46. We can affirm that the 
decision makers would have savings of 605,547.46, 

Figure 3. Percentage deviations of crop production in successive years. Source: elaborated by the authors (2016).
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representing 6.61% of EEV, when uncertainty is 
incorporated into the model. In terms of facilities, 
it means positioning a facility at t - 1 in the city of 
Independência (CE), which is responsible for various 
flow changes in the region. EVPI is calculated using 
WS (Wait-and-see), which in practice indicates 
the possibility to calculate the optimization with 
the absolute certainty of occurrence of a specific 
production scenario. The value found for WS was 
8,550,761.55; thus, |WS - RP | = 77,241.22, being 
0.90% of RP. This low value means that for this 
specific scenario tree, there is not much financial 
gain in using perfect information.

5.3 Multistage results and discussion

This section presents the main findings based on 
the proposed multistage model for small farmers. 
The three-stage model was built on the AIMMS 
3.14 platform. It has 4,529 constraints and a total of 
19,246 variables. The computation time required to 
solve the case study on a typical desktop computer 
was less than 10 seconds using the CPLEX 12.5 
solver, using an Intel Core i5 – 421OU CPU 2.4 GHz 
with 4.0 GB of RAM memory. The solver used was 
CPLEX 12.5. As for the two-stage model, this problem 
also cannot be considered a great instance problem 

that could generate computational problems, and we 
can conclude that a real-world three-stage model 
of such an instance can also be quickly solved and 
provide sufficiently fast solutions for the decisions 
made on a daily basis.

The results obtained using the Stochastic 3 Stage 
Optimization (S3SO) model are compared with those 
of the S2SO approach. The optimal cost obtained 
by S3SO was 7,700,019 (BRL). The optimal cost 
obtained by S2SO was 8,628,002 (BRL), resulting 
in a savings of 927,983 (BRL). Table 2 shows where 
the procurement points and fixed base facilities 
should be located and their quantities, as calculated 
using S3SO and S2SO.

The difference between the optimal solutions 
obtained using S2SO and S3SO represents the cost 
savings by adding flexibility to the supply chain 
network design. The capability of disassembling 
facilities among periods and scenarios modeled 
in S3SO improves the supply chain efficiency and 
reduces cost. S3SO computes the optimal biodiesel 
supply chain design before and after uncertainty 
realizations. It allows the revision and redesign 
of the whole supply chain when needed. As an 
example of such flexibility, in both the S2SO and 
S3SO models, the candidate city Juru (PB) was 
selected at t = 0 to have a facility. However, when 

Figure 4. Histogram of percentage deviations. Source: elaborated by the authors (2016).
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A gain of 10.75% is obtained when S3SO is 
applied to the Brazilian biodiesel supply chain 
design. This gain is obtained due to the flexibility 
in S3SO. It represents a huge impact on the rural 
area in Brazil, where a reduction in costs can 
benefit several small farmers and the whole Brazilian 
biodiesel supply chain program (Programa Nacional 
de Produção de Biodiesel, 2013). Table 2 summarizes 
the main results.

Table 3 shows the summary of the main indicators:

using the S3SO model, at t = 1, the facility in 
Juru (PB) was disassembled. S2SO does not have 
this capability; therefore, Juru (PB) continued to 
have an unnecessary facility at t = 1. Nagar & Jain 
(2008) used a measure of performance called Gain 
of Added Flexibility (GAF), which was applied in this 
work to measure the difference between the S2SO 
and S3SO results. The GAF is simply calculated by 
using the costs obtained using S2SO and S3SO as 
follows: GAF = S2SO - S3SO = R$927,983, which 
is 10.75% of the S2SO solution.

Table 2. Main results.

City Facility

S3SO S2SO

Period and Scenarios Period

t=0 t=1 t=0 t=1

0 1 2 3

Boa Viagem (CE) Procurement Point 1

Caracol (PI) Procurement Point 1 1 1 1 1 1

Catunda (CE) Procurement Point 1 1 1 1 1 1

Independência (CE) Procurement Point 1 1 1 1

Itatira (CE) Procurement Point 1 1 1 1 1 1

Juru (PB) Procurement Point 1 1 1

Matias Cardoso (MG) Fixed Base 1 1 1 1 1 1

Mombaça (CE) Procurement Point 1 1 1

Mossoró (RN) Procurement Point 1

Nova Redenção (BA) Fixed Base 1 1 1 1 1 1

Ouricuri (PE) Procurement Point 1 1 1 1 1 1

Pedra Branca (CE) Procurement Point 1 1 1 1 1 1

Pilão Arcado (BA) Procurement Point 1 1 1

Porteirinha (MG) Procurement Point 1 1 1 1 1 1

Quixadá (CE) Fixed Base 1 1 1 1 1 1

Remígio (PB) Procurement Point 1 1 1 1 1 1

Santa Cruz (RN) Procurement Point 1 1 1 1 1 1

São Francisco (MG) Procurement Point 1 1 1 1

Serra do Ramalho (BA) Fixed Base 1 1 1 1 1 1

Serra Talhada (PE) Procurement Point 1 1 1 1 1 1

Tamboril (CE) Procurement Point 1

Tauá (CE) Fixed Base 1 1 1 1 1 1

Irecê (BA) Fixed Base 1 1 1 1 1 1

S3SO
Total Procurement Points 13 9 14 17

Total Fixed Bases 6 6 6 6

S2SO
Total Procurement Points 11 12

Total Fixed Bases 6 6
Source: elaborated by the authors (2016).

Table 3. Summary of main indicators.

Model Objective Function Indicator Absolute Value Dif (%) Value

EEV R$ 605,55 VSS R$ 605.547 VSS/EEV 6.61%

WS R$ 8,550,761 EVPI R$ 77.241 EVPI/SO2S 0.90%

SO2S R$ 9,156,309 GAF R$ 927,983 GAF/SO2S 10.75%

SO3S R$ 7,700,019
Source: elaborated by the authors (2016).
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6. Conclusions

This paper addressed a real-life problem that 
is central to developing a sustainable program for 
biodiesel use and production in Brazil. Moreover, the 
Brazilian government seeks to promote prosperity 
among small farmers by including their production 
in the biodiesel supply chain. Several models can be 
found in the literature that minimize the total cost 
of the supply chain. As found in the work of Nagar 
& Jain (2008), the proposed multi-stage model is 
compared with the standard two-stage model by 
examining the difference between the objective 
values of two solutions. Nagar and Jain considered 
a percentage savings of 5.43% to be good savings; 
thus, our 10.75% percentage savings can also be 
considered good savings.

To generate the scenarios, we used the discretization 
method Extended Swanson-Megill. The performance 
of the stochastic programming model depends directly 
on the scenario tree that is generated to represent 
uncertainty. There were not sufficient data to assess 
the real probability distribution of castor.

The real world problem had a small instance 
that considered real-life optimization models. 
Nevertheless, a natural extension of this paper could 
consider increasing the instance and applying solution 
methods such as the L-Shaped Method, which is a 
stochastic form of Benders Decomposition. Other 
approaches for uncertainty, such as Fuzzy sets and 
Robust optimization, could be tested and compared.
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Table 4A. Estimated production.

States Production (μ ton)

BA 748.69

CE 2,235.79

MG 545.65

PB 112.41

PE 796.71

PI 85.91

RN 112.72

Total 4,636.90

Appendix A. Data used in calculations.

Table 1A. Model nodes.

Elements Total

Cities 145

Plants 1

Possible Procurement points 26

Possible fixed bases 9

Table 2A. Loading costs: multiplied by κ to preserve confidentiality.

Type of transportation Loading costs (κBRL/ton)

Primary 2

Secondary 1

Table 3A. Transportation costs: multiplied by σ to preserve confidentiality.

Type of transportation Cost range Transportation costs (σR$)

Primary Unique (cost/Km) 1

Secondary 1 (0-100km) 13.6

Secondary 2 (100-200km) 21.7

Secondary 3 (200-300km) 29.9

Secondary 4 (300-500km) 35.9

Secondary 5 (500-1000km) 77.2

Secondary 6 (1000-1500km) 127.7

Table 5A. Facility capacity.

Facility Capacity (ton)

Procurement point 4500

Fixed base 7500


