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ABSTRACT. This work analyses the performance of three different population-based metaheuristic ap-

proaches applied to Fuzzy cognitive maps (FCM) learning in qualitative control of processes. Fuzzy cog-

nitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle

Swarm Optimization (PSO), Genetic Algorithm (GA) and an Ant Colony Optimization (ACO) are con-

sidered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis

within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two

industrial control process problems previously described in the literature are considered in this work.

Keywords: Fuzzy Cognitive Maps, Particle Swarm Optimization, Genetic Algorithm, process control,

statistical convergence analysis.

1 INTRODUCTION

Fuzzy Cognitive Maps are signed and directed graph, in which the involved variables are fuzzy
numbers. They were initially proposed by Kosko [1, 2, 3], as an extension of cognitive maps
proposed by Axelrod [4]. The graph nodes represent linguistic concepts modeled by fuzzy sets
and they are linked with other concepts through fuzzy connections. Each of these connections
has a numerical value (weight) taken from a fuzzy set, which models the relationship strength
among concepts. In addition, FCM can be considered a type of cognitive neuro-fuzzy network,
which is initially developed by the acquisition of expert knowledge, but can be trained by several
supervised and/or unsupervised techniques as reviewed in [5].

There are in the literature several models based on fuzzy cognitive maps developed and adapted
to a large range of applications, such as political decision [6], medical decision [7, 8], indus-
trial process control [9, 10], artificial life [11], social systems [12], corporative decision, policy
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mendonca@utfpr.edu.br
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analysis [13], among others. A good survey of recent applications is given by Papageorgiou e
Salmeron in [14].

A FCM construction can be done in the following manner:

• Identification of concepts and its interconnections determining the nature (positive, nega-
tive or null) of the causal relationships between concepts.

• Initial data acquisition by the expert opinions and/or by an equation analysis when the
mathematical system model is known.

• Submitting data from expert opinions to a fuzzy system which output represents the FCM
weights.

• Weight adaptation and optimization of the initially proposed FCM, adjusting its response
to the desired output.

• Validation of the adjusted FCM.

However, when the experts are not able to express the causal relationships or they substantially
diverge in opinion about it, computer methods for learning FCMs may be necessary.

Particularly, this paper focuses on the FCM learning using three different population based meta-
heuristics: particle swarm optimization (PSO), genetic algorithm (GA) and a continuous ant
colony optimization version based on the ACOR proposed by [15]. A statistical convergence
analysis of these three algorithms is proposed. Two process control problems described in [9]
and [10] are considered in this work.

The rest of the paper has the following organization: Section 2 briefly describes the FCM model-
ing and the control processes. Section 3 considers the PSO, GA and ACO approaching for FCM
learning, while Section 4 shows the simulation results. Lastly, Section 5 points out the main
conclusions.

2 FCM MODELING IN CONTROL PROCESSES

In FCMs, concepts (nodes) are utilized to represent different aspects and behavior of the sys-
tem. The system dynamics are simulated by the interaction of concepts. The concept Ci , i =
1, 2, . . . , N is characterized by a value Ai ∈ [0, 1].
Concepts are interconnected concerning the underlying causal relationships amongst factors,
characteristics, and components that constitute the system. Each interconnection between two
concepts, Ci and C j , has a weight, Wi, j , which is numerically represented to the strength of
the causal relationships between Ci and C j . The sign of Wi, j indicates whether the concept Ci

causes the concept C j or vice versa. Hence,
⎧⎪⎨
⎪⎩

Wi, j > 0, positive causality
Wi, j < 0, negative causality

Wi, j = 0, no relation

Pesquisa Operacional, Vol. 33(3), 2013
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The number of concepts and the initial weights of the FCM are determined by human knowledge

and experience. The numerical values, Ai , of each concept is a transformation of the fuzzy values
assigned by the experts. The FCM converges to a steady state (limit cycle) according to the
scheme proposed in [3]:

Ai (k + 1) = f

⎛
⎜⎜⎝Ai (k) +

N∑
j=1
j �=i

W ji A j (k)

⎞
⎟⎟⎠ , (1)

where k is the interaction index and f (·) is the sigmoid function

f (x) = 1

1 + e−λx
, (2)

that guarantees the values Ai ∈ [0, 1]. λ > 0 is a parameter that determines its steepness in the
area around zero. In this work, λ = 1.

Applications of FCM are found in many fields of science, such as artificial life [11], social

systems [12], modeling and decision make in corporative environments, in rapid access high-
ways [13], in medical field [8], among others. In this paper, two FCM models for process control
problems, described in [9] and [10], are considered.

2.1 First Process Control (PROC1)

A simple chemical process frequently considered in literature [9, 16, 17], is initially selected for
illustrating the need of FCM learning.

Figure 1 represents the process (PROC1) consisting of one tank and three valves that controls the

liquid level in the tank. Valves V1 and V2 fill the tank with different liquids. A chemical reaction
takes place into the tank producing a new liquid that leaves the recipient by valve V3. A sensor
(gauger) measures the specific gravity of the resultant mixture.

������

�� ��

�	

Figure 1 – PROC1: a chemical process control problem described in [9].

Pesquisa Operacional, Vol. 33(3), 2013
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When the value of the specific gravity, G, is in the range [Gmin, Gmax], the desired liquid has

been produced. The height of the liquid inside, H , must lie in the range [Hmin, Hmax]. The
controller has to keep G and H within their bounds, i.e.,

Hmin≤H≤Hmax; (3)

Gmin≤G≤Gmax. (4)

The group of experts defined a list of five concepts, Ci , i = 1, 2, . . . , 5, related to the main
physical quantities of the process, [9].

• Concept C1: volume of liquid inside the tank (depends on V1, V2, and, V3);

• Concept C2: state of V1 (closed, open or partially open);

• Concept C3: state of V2 (closed, open or partially open);

• Concept C4: state of V3 (closed, open or partially open);

• Concept C5: specific gravity of the produced mixture.

For this process, the fuzzy cognitive map in Figure 2 can be abstracted [9].
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Figure 2 – Fuzzy Cognitive Map proposed in [9] for the chemical process control problem.

The experts also had a consensus regarding the range of the weights between concepts, as
presented in Equations (5) to (12).

−0.50 ≤ W1,2 ≤ −0.30; (5)

−0.40 ≤ W1,3 ≤ −0.20; (6)

0.20 ≤ W1,5 ≤ 0.40; (7)

0.30 ≤ W2,1 ≤ 0.40; (8)

0.40 ≤ W3,1 ≤ 0.50; (9)

Pesquisa Operacional, Vol. 33(3), 2013
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−1.0 ≤ W4,1 ≤ −0.80; (10)

0.50 ≤ W5,2 ≤ 0.70; (11)

0.20 ≤ W5,4 ≤ 0.40. (12)

For this problem the following weight matrix is obtained:

W =

⎡
⎢⎢⎢⎢⎢⎣

0 W1,2 W1,3 0 W1,5

W2,1 0 0 0 0

W3,1 0 0 0 0
W4,1 0 0 0 0

0 W5,2 0 W5,4 0

⎤
⎥⎥⎥⎥⎥⎦

. (13)

According to [9], all the experts agreed on range of values for W2,1, W3,1, and W4,1, and most of

them agreed on the same range for W1,2 and W1,3. However, regarding the weights W1,5, W5,2,
and W5,4, their opinions varied significantly.

Finally, the group of experts determined that the values output concepts, C1 and C5, which are
crucial for the system operation, must lie, respectively, in the following regions:

0.68 ≤ A1 ≤ 0.70; (14)

0.78 ≤ A5 ≤ 0.85. (15)

2.2 Second Process Control (PROC2)

In [10] a system consisting of two identical tanks with an input and an output valve each one,
with the output valve of the first tank being the input valve of the second (PROC2), as illustrated
in Figure 3.

�
�

�
�

	
�

�
�

�
�

�����

Figure 3 – PROC2: a chemical process control problem described in [10].

The objective is to control the volume of liquid within the limits determined by the height
Hmin and Hmax and the temperature of the liquid in both tanks within the limits Tmin and Tmax,
such that

T 1
min≤T 1≤T 1

max; (16)

Pesquisa Operacional, Vol. 33(3), 2013
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T 2
min≤T 2≤T 2

max; (17)

H 1
min≤H 1≤H 1

max; (18)

H 2
min≤H 2≤H 2

max. (19)

The temperature of the liquid in tank 1 is increased by a heater. A thermostat continuously senses
the temperature in tank 1, turning the heater on or off. There is also a temperature sensor in tank

2. When T2 decreases, the valve V2 is open and hot liquid comes into tank 2.

Based on this process, a FCM is constructed with eight concepts:

• Concept C1: volume of liquid inside the tank 1 (depends on V1 and V2);

• Concept C2: volume of liquid inside the tank 2 (depends on V1 and V2);

• Concept C3: state of V1 (closed, open or partially open);

• Concept C4: state of V2 (closed, open or partially open);

• Concept C5: state of V3 (closed, open or partially open);

• Concept C6: Temperature of the liquid in tank 1;

• Concept C7: Temperature of the liquid in tank 2;

• Concept C8: Operation of the heater.

According to [10], the fuzzy cognitive map in Figure 4 can be constructed.

It is assumed in this paper only causal constraints in the weights between concepts, where weights

W4,1 and W5,2 are ∈ (−1, 0] and the others have positive causality. The weight matrix for
PROC2 is given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 W1,3 W1,4 0 0 0 0

0 0 0 W2,4 W2,5 0 0 0
W3,1 0 0 0 0 0 0 0
W4,1 W4,2 0 0 0 0 W4,7 0

0 W5,2 0 0 0 0 0 0

0 0 W6,3 0 0 0 0 W6,8

0 0 0 W7,4 0 0 0 0
0 0 0 0 0 W8,6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Finally, it is assumed in this paper that the values output concepts, C1, C2, C6 and C7, which are
crucial for the system operation, must lie, respectively, in the following regions:

0.64 ≤ A1 ≤ 0.69; (21)

0.48 ≤ A2 ≤ 0.52; (22)

Pesquisa Operacional, Vol. 33(3), 2013
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0.63 ≤ A6 ≤ 0.67; (23)

0.63 ≤ A7 ≤ 0.67. (24)

Two significant weaknesses of FCMs are its critical dependence on the experts opinions and its
potential convergence to undesired states. In order to handle these impairments, learning pro-

cedures can be incorporated, increasing the efficiency of FCMs and avoiding convergence to
undesired steady states [18].
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Figure 4 – Fuzzy Cognitive Map proposed in [10] for the chemical process control problem.

3 METAHEURISTIC FCM LEARNING

In [5] a very interesting survey on FCM learning is provided. The FCM weights optimization
(FCM learning) can be classified into three different methods.

1. Hebbian learning based algorithm;

2. Metaheuristic optimization techniques, including genetic algorithm, particle swarm opti-
mization, differential evolution, ant colony optimization (these four are population based
algorithms), simulated annealing, etc;

3. Hybrid approaches.

In the Hebbian based methodologies, the FCM weights are iteratively adapted based on a law
which depends on the concepts behavior [11], [19], requiring the experts’ knowledge for initial
weight values. Dickerson and Kosko in [11] proposed the Differential Hebbian Learning (DHL)

algorithm, which is a classic example . On the other hand, metaheuristic techniques tries to find
a proper W matrix by minimizing a cost function based on the error among the desired values
of the output concepts and the current output concepts’ values (27). The experts’ knowledge

is not totally necessary, except for the causality constraints, due to the physical restrictions1.

1For instance, a valve cannot be negatively open.

Pesquisa Operacional, Vol. 33(3), 2013
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These techniques are optimization tools and generally are computationally complex. Examples

of hybrid approaching considering Hebbian learning and Metaheuristic optimization techniques
can be found in [20], [21].

According to [22], metaheuristic search methods represent methodologies that can be used in
designing underlying heuristics to solve specific optimization problems. PSO, GA and ACO are

inside a specific class named population-based metaheuristics.

There are several works in the literature dealing with metaheuristic optimization learning. Most
of them are population-based algorithms. For instance, in [9] the PSO algorithm with constriction
factor is adopted; in [23] it is presented a FCM learning based on a Tabu Search (TS) and GA

combination; in [24] a variation of GA named RCGA (real codec-G.A.) is proposed; in [25] a
comparison between GA and Simulated Annealing (SA) is done; in [16] the authors presented a
GA based algorithm named Extended Great Deluge Algorithm.

The purpose of the learning is to determine the values of the FCM weights that will produce a

desired behavior of the system, which are characterized by the M output concept values that lie
within desired bounds determined by the experts. Hence, the main goal is to obtain a connection
matrix

W = [
Wi, j

]
, i, j = 1, 2, . . . , N , (25)

that leads the FCM to a steady state with output concept values within the specified region. Note
that, with this notation, and defining A = [A1 · · · AN ]�, and W = W� + I, with {·}� meaning

transposition and I identity matrix, Equation (1) can be compactly written as

A(k + 1) = f
(
W · A(k)

)
. (26)

After the updating procedure in (26), the following cost function is considered for obtaining the
optimum matrix W [9]:

F(W) =
M∑

i=1

H
(

min
(

Ai
out

)
− Ai

out

) ∣∣∣min
(

Ai
out

)
− Ai

out

∣∣∣ +

M∑
i=1

H
(

Ai
out − max

(
Ai

out

)) ∣∣∣max
(

Ai
out

)
− Ai

out

∣∣∣ , (27)

where H (·) is the Heaviside function, and Ai
out, i = 1, . . . , M , represents the value of the ith

output concept. Figure 5 shows a flowchart of the FCM learning by using metaheuristic search

methods.

3.1 Particle Swarm Optimization

The PSO principle is based on the movement of a population (swarm) of individuals (parti-

cles) randomly distributed in the search space, each one with its own position and velocity. The

Pesquisa Operacional, Vol. 33(3), 2013
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Figure 5 – Flowchart Fuzzy Cognitive Map learning using metaheuristic search methods.

position of a particle is modified by the application of velocity in order to reach a better per-
formance [26, 27]. In PSO, each particle is treated as a point in a W -dimensional space2 and

represents a vector-candidate. The ith particle position at instant t is represented as

xi(t) = [
xi,1(t) xi,2(t) · · · xi,W (t)

]
. (28)

In this paper, each xi,1(t) represents one of the Wi, j in the t th iteration. Each particle retains
a memory of the best position it ever encountered. The best position among all particles until

the t th iteration (best global position) is represented by xbest
g , while the best position of the ith

particle is represented as xbest
i . As proposed in [28], the particles are manipulated according to

the following equations:

vi(t + 1) = ω · vi (t) + φ1 · U1
i

(
xbest

g (t) − xi (t)
)

+ φ2 · U2
i

(
xbest

i (t) − xi (t)
)

(29)

xi(t + 1) = xi (t) + vi(t + 1), (30)

where φ1 and φ2 are two positive constants representing the individual and global acceleration
coefficients, respectively, U2

i and U2
i are diagonal matrices whose elements are random variables

uniformly distributed (u.d.) in the interval [0, 1], and ω is the inertial weight that plays the role

of balancing the global search (higher ω) and the local search (smaller ω).

A typical value for φ1 and φ2 is φ1 = φ2 = 2 [27]. Regarding the inertia weight, experimental
results suggest that it is preferable to initialize ω to a large value, and gradually decrease it.

2W is the number of FCM connections (relationships).

Pesquisa Operacional, Vol. 33(3), 2013
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The population P size is kept constant in all iterations. In order to obtain further diversification

for the search universe, a factor Vmax is added to the PSO model, which is responsible for limiting
the velocity in the range [±Vmax], allowing the algorithm to escape from a possible local solution.

Regarding the FCM, one ith vector-candidate, xi , is represented by a vector formed by W FCM
weights. It is important to point out that after each particle update, restrictions must be imposed

on Wi, j according to the experts opinion, before the cost function evaluation. Algorithm 1 in
Appendix describes the implemented PSO.

3.2 Genetic Algorithm

Genetic Algorithm is an optimization and search technique based on selection mechanism and
natural evolution, following Darwin’s theory of species’ evolution, which explains the history of
life through the action of physical processes and genetic operators in populations or species. GA
allows a population composed of many individuals to evolve under specified selection rules to a

state that maximizes the “fitness” (maximizes or minimizes a cost function). Such an algorithm
became popular through the work of John Holland in the early 1970s, and particularly his book
Adaptation in Natural and Artificial Systems (1975). The algorithm can be implemented in a

binary form or in a continuous (real-valued) form. This paper considers the latter case.

Initially, a set of P chromosomes (individuals) is randomly (uniformly distributed) defined,
where each chromosome, x consists of a vector of variables to be optimized, which, in this
case, is formed by FCM weights, respecting the constraints. Each variable is represented by a

continuous floating-point number. The P chromosomes are evaluated through a cost function.

T strongest chromosomes are selected for mating, generating the mating pool, using the roulette
wheel method, where the probability of choosing a given chromosome is proportional to its
fitness value. In this paper, each pairing generates two offspring with crossover. The weakest

T chromosomes are changed by the T offspring from T/2 pairing. The crossover procedure is
similar to the one presented in [29]. It begins by randomly selecting a variable in the first pair of
parents to be the crossover point

α = �u ·W� , (31)

where u is a random variable (r.v) u.d. in the interval [0, 1], and �·� is the upper integer operator.
A pair of parents is defined as

dad1 = [
xd,1 xd,2 · · · xd,α · · · xd,W

]
mom1 = [

xm,1 xm,2 · · · xm,α · · · xm,W
]
.

(32)

Then the selected variables are combined to form new variables that will appear in the offspring

xo,1 = xm,α − β
[
xm,α − xd,α

];
xo,2 = xd,α + β

[
xm,α − xd,α

]
.

(33)

Pesquisa Operacional, Vol. 33(3), 2013
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where β is also a r.v. u.d. in [0, 1]. Finally,

offspring1 =
[

xd
j,1 xd

j,2 xd
j,α−1 · · · xo

j,1 xm
j,α+1 · · · xm

j,W

]

offspring2 =
[

xm
j,1 xm

j,2 xm
j,α−1 · · · xo

j,2 xd
j,α+1 · · · xd

j,W

]
.

(34)

In order to allow escaping from possible local minima, a mutation operation is introduced in

the resultant population, except for the strongest one (elitism). It is assumed in this work
a Gaussian mutation. If the probability of mutations is given by Pm , there will be Nm =
�Pm · (P − 1) ·W� mutations uniformly chosen among (P−1) ·W variables. If xi,w is chosen,
with w = 1, 2, . . . , W , than, after Gaussian mutation, it is substituted by

x ′
i,w = xi,w +N

(
0, σ 2

m

)
, (35)

where N (
0, σ 2

m

)
represents a normal r.v. with zero mean and variance σ 2

m .

After mutation, restrictions must be imposed on Wi, j according to the experts opinion, before
the cost function evaluation. Algorithm 2 in Appendix describes the implemented GA.

3.3 Ant Colony Optimization

The Ant Colony Optimization (ACO) metaheuristic was developed to solve optimization prob-
lems based on the behavior of ants [30]. These individuals are inserted into a highly structured

society, which performs tasks sometimes very complex, for example, the search for food. Dur-
ing the search for food, ants release a substance called pheromone, which helps in locating the
shortest paths from their nest through the food source [30]. The ACO came from this idea, being

originally used for solving combinatorial optimization problems.

The algorithm implemented in this work is a continuous version of ACO based on the ACOR
proposed in [15], where the memory represented by pheromone deposition is substituted by a
solutions file.

Initially, a solutions file is created with K candidate solutions, randomly generated. The number

of variables of each candidate solution is equal to W . Figure 6 illustrates the configuration of
the solutions file.

The solutions file is sorted according to the quality of each solution evaluated through the cost
function (fitness), given by (27). Next, for each vector of the solutions file (l = 1, . . . , K ),

a weight ωl is calculated according to the Gaussian function with unitary mean and standard
deviation σ = q K , such that:

ωl = 1

σ
√

2π
e
− (l−u )2

2σ2 = 1

q K
√

2π
e
− (l−1)2

2q2 K2 (36)

where q is an input parameter of the algorithm. If q is small, the best solutions evaluated will
preferably be chosen. On the other hand, if q is high, the choice becomes more uniform [15].

Pesquisa Operacional, Vol. 33(3), 2013
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1
S

l
S

Solutions File

11,
x

1 2,
x

1 3,
x

1,n
x

1,
x W

2,
x W

,l
x W

,K
x W

2 1,
x

2 2,
x

2 3,
x

2,n
x

1,l
x

2,l
x

3,l
x

,l n
x

1,K
x

2,K
x

3,K
x

,K n
x

2
S

K
S

Figure 6 – ACO solutions file.

A colony with M ants is adopted, which means that M of the K elements are taken from the
solution file to update the position. The roulette wheel method was adopted for choosing the

ants, based on a cumulative probability vector with probabilities given by:

pl = ωl

K∑
r=1

ωr

(37)

The next step consists of finding the standard deviation corresponding to each element of a solu-

tion vector. Assuming a position (with l = 1, . . . , K , n = 1, . . . ,W ) of the solution vector, the
standard deviation of this element is calculated as:

σl,n = ζ

K − 1

K∑
j=1
j �=l

∣∣x j,n − xl,n
∣∣ (38)

where ζ > 0, which is also an input parameter, has an effect similar to the evaporation rate of the

pheromone in the classical ACO. The convergence speed of the algorithm increases with ζ [15].
Thereupon, a Gaussian random variable with zero mean and standard deviation σ i

l is added to a
given element of a chosen ant, xl,n , so that new directions are generated for each one of the ants.

Algorithm 3 in Appendix describes the implemented ACO.

4 SIMULATION RESULTS

All simulations were taken considering 104 trials for PROC1 and PROC2. The input parameters
of the metaheuristic methods were empirically adjusted. For PSO, the first choices were φ1 =
φ2 = 2, ω = 1, Vmax = 0 and vi (0) = 0. For GA, T = 2 · round(P/4), Pm = 0.1 and
σm = 0.2 were initially chosen. For ACO, q = 0.1 and ζ = 0.85 were initially tested. However,
after the first tests, these parameters were adjusted as shown in Table 1.

Pesquisa Operacional, Vol. 33(3), 2013
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4.1 Process PROC1

The adopted values for the input parameters of PSO, GA and ACO are summarized on Table 1.
Four different scenarios for the process PROC1 were analyzed. The main performance results

for each scenario are described in the next subsections.

Table 1 – PSO, GA and ACO input parameters values for PROC1.

PSO

Population P = 10, 20
Acceleration Coefficients φ1 = 2, φ2 = 0.2

Inertial Weight ω = 1.2
Initial Velocity vi (0) = 0.1

Maximum Velocity Vmax = 2

GA

Population P = 10
Mating Pool T = 2 · round (P/4)

Rate of Mutation Pm = 0.2
Mutation Std. Deviation σm = 0.3

ACO

Number of Ants M = 10, M = 20

Size of the Solutions File K = M + 5
Parameter q q = 0.5

Parameter ζ ζ = 1.5

4.1.1 Scenario 1

This scenario considers all the constraints on the FCM weights shown in Equations (5) to (12).
As mentioned in [9] and also verified here, there is no solution in this case.

4.1.2 Scenario 2

In this scenario, the constraints on the FCM weights W1,5, W5,2, and W5,4 have been relaxed,

since the experts’ opinions have varied significantly. In this case the values of these weights were
allowed to assume any value in the interval [0, 1] in order to keep the causality of relationships.
Tables 2, 3 and 4 present the obtained simulation results for PSO, GA and ACO, respectively.

As can be observed, in the Scenario 2, GA has a better performance than PSO and ACO, achiev-

ing convergence without failure with P = M = 10. Both PSO and ACO have presented few
errors when P = M = 10, being PSO somewhat better than ACO, and no convergence errors
in 104 independent experiments when P = M = 20. Figures 7 and 8 present the mean FCM

concepts convergence in the Scenario 2 under 104 trials. Considering the best case simulated for
each algorithm (GA with P = 10, PSO with P = 20 and ACO with M = 20), PSO presented
the fastest average convergence, being ACO with M = 20 the second fastest.
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Table 2 – PSO simulation results for Scenario 2, PROC1.

PSO with P = 10

Amax 0.6882 0.8058 0.6203 0.8389 0.8186

Amin 0.6477 0.7297 0.5749 0.6590 0.7800
Aaverage 0.6840 0.7911 0.6178 0.6713 0.8148

Number of Failures: 49
Probability of Success: 0.9951

PSO with P = 20

Amax 0.6882 0.8051 0.6183 0.6967 0.8186

Amin 0.6800 0.7297 0.5750 0.6590 0.7801
Aaverage 0.6838 0.7926 0.6178 0.6730 0.8139

Number of Failures: 0
Probability of Success: 1.0

Table 3 – GA simulation results for Scenario 2, PROC1.

GA with P = 10

Amax 0.6882 0.8051 0.6183 0.6964 0.8186

Amin 0.6800 0.7297 0.5749 0.6590 0.7800
Aaverage 0.6833 0.7726 0.6123 0.6605 0.8059

Number of Failures: 0
Probability of Success: 1.0

Table 4 – ACO simulation results for Scenario 2, PROC1.

ACO with M = 10

Amax 0.6882 0.8054 0.6192 0.6960 0.8186
Amin 0.6659 0.6050 0.5749 0.6590 0.7800

Aaverage 0.6828 0.7898 0.6088 0.6616 0.8102

Number of Failures: 61

Probability of Success: 0.9939

ACO with M = 20

Amax 0.6882 0.8051 0.6183 0.6965 0.8186

Amin 0.6800 0.7299 0.5749 0.6590 0.7800

Aaverage 0.6830 0.7893 0.6088 0.6611 0.8102

Number of Failures: 0

Probability of Success: 1.0

Pesquisa Operacional, Vol. 33(3), 2013
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Figure 7 – Mean convergence for (a) PSO, (b) GA and (c) ACO in PROC1, Scenario 2 with P = M = 10.
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Figure 8 – Mean convergence for (a) PSO and (b) ACO in PROC1, Scenario 2 with P = M = 20.

4.1.3 Scenario 3

In this Scenario, all the weights constrains were relaxed, but the causalities were kept, i.e., the
value of the weights were fixed in the interval [0, 1] or in the interval [−1, 0), according to
the causality determined by the experts. Table 5 presents the obtained results. As can be seen,

P = M = 10 was enough for achieving 100% of convergence in all schemes. Figure 9 presents
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the mean convergence of the concepts in 104 independent experiments. In this scenario, the mean

convergence speeds were very similar in all cases.

Table 5 – GA, PSO and ACO simulation results for Scenario 3, PROC1.

PSO with P = 10

Amax 0.7000 0.8404 0.6590 0.8404 0.8206
Amin 0.6800 0.4339 0.4339 0.6590 0.7800

Aaverage 0.6907 0.6886 0.6112 0.7333 0.8080

Number of Failures: 0

Probability of Success: 1.0

GA with P = 10

Amax 0.7000 0.8404 0.6590 0.8404 0.8206
Amin 0.6800 0.4339 0.4339 0.6590 0.7800

Aaverage 0.6906 0.6496 0.5914 0.7139 0.8027

Number of Failures: 0

Probability of Success: 1.0

ACO with M = 10

Amax 0.7000 0.8404 0.6590 0.8404 0.8206

Amin 0.6800 0.4339 0.4339 0.6590 0.7800

Aaverage 0.6901 0.6502 0.5821 0.7202 0.8095

Number of Failures: 0

Probability of Success: 1.0

4.1.4 Scenario 4

In this situation, the causality and the strength of the causality were totally relaxed. The algo-
rithms were able to determine proper weights for the connection matrix with P = 10. Table 6

presents the obtained statistical results, while Figure 10 presents the mean convergence of the
concepts in 104 independent experiments. As in Scenario 3, the three schemes presented similar
mean convergence speed.

4.2 Process PROC2

For this process the value of the weights were fixed in the interval [0, 1] or in the interval [−1, 0),
according to the causality determined by the experts. The adopted input simulation parameters
for PSO, GA and ACO algorithms were the same considered in PROC1, except for the number

of ants in ACO that was enough for M = 10.

Table 7 summarizes the simulation results, while Figure 11 presents the mean convergence of the
concepts value considering 104 independent experiments. As can be seen, P = 10 was enough
for achieving convergence rate of 100% in GA and in ACO. With P = 10, PSO presented

Pesquisa Operacional, Vol. 33(3), 2013



�

�

“main” — 2013/12/3 — 23:16 — page 459 — #17
�

�

�

�

�

�
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Figure 9 – Mean convergence for Scenario 3 in PROC1 considering (a) PSO, (b) GA and (c) ACO with

P = M = 10.

Table 6 – GA, PSO and ACO simulation results for Scenario 4, PROC1.

PSO with P = 10

Amax 0.7000 0.9199 0.8206 0.8404 0.8206

Amin 0.6800 0.2129 0.4339 0.3952 0.7800
Aaverage 0.6901 0.6908 0.6767 0.6777 0.8101

Number of Failures: 0

Probability of Success: 1.0

GA with P = 10

Amax 0.7000 0.9192 0.8206 0.8404 0.8206
Amin 0.6800 0.2130 0.4339 0.3952 0.7800

Aaverage 0.6905 0.6154 0.6371 0.6306 0.8030

Number of Failures: 0
Probability of Success: 1.0

ACO with M = 10

Amax 0.7000 0.9199 0.8206 0.8404 0.8207

Amin 0.6800 0.2129 0.4338 0.3952 0.7800
Aaverage 0.6902 0.5880 0.6215 0.6120 0.8113

Number of Failures: 0

Probability of Success: 1.0
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Figure 10 – Mean convergence for Scenario 4 in PROC1 considering (a) PSO, (b) GA and (c) ACO with
P = M = 10.

30 failures and probability of success equal to 0.9970. However, with P = 20, PSO was able
to achieve 100% of success. For this process, PSO has a faster average convergence than GA
and ACO.

Table 8 shows the mean execution time in 50 iterations for each algorithm in all considered

configuration. A computer with CPU Intel Core i7-2675QM @ 2.20GHz and 6GB of RAM was
considered. As can be seen, the way the algorithms were implemented, PSO has a execution time
shorter than GA and ACO, being ACO the slowest scheme.

5 CONCLUSIONS

Fuzzy cognitive maps have being considered with great interest in a large range of applica-
tions. Learning methods may be necessary for obtaining proper values for the weight matrix and
reducing the dependence on the experts’ knowledge.

Within this context, this paper presented a comparison of three heuristic search approaches,
PSO, GA and ACO, applied to FCM weight optimization in two processes control. In all the
considered cases, GA presented a performance in terms of probability of success better or equal
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Table 7 – GA, PSO and ACO simulation results for PROC2.

PSO with P = 10

Amax 0.7040 0.6590 0.9029 0.9407 0.8134 0.7234 0.6700 0.8153
Amin 0.6400 0.4130 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590

Aaverage 0.6592 0.5006 0.7079 0.7221 0.6809 0.6593 0.6592 0.6850

Number of Failures: 30

Probability of Success: 0.9970

PSO with P = 20

Amax 0.6800 0.5200 0.9040 0.9411 0.7869 0.6700 0.6700 0.8154

Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6594 0.5002 0.7116 0.7267 0.6813 0.6594 0.6593 0.6865

Number of Failures: 0
Probability of Success: 1.0

GA with P = 10

Amax 0.6800 0.5200 0.9038 0.9409 0.7870 0.6700 0.6700 0.8153

Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6596 0.5014 0.7500 0.7717 0.7055 0.6596 0.6596 0.7082

Number of Failures: 0
Probability of Success: 1.0

ACO with M = 10

Amax 0.6800 0.5200 0.9049 0.9415 0.7870 0.6700 0.6700 0.8154
Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590

Aaverage 0.6595 0.4997 0.7674 0.7938 0.7045 0.6604 0.6604 0.7170

Number of Failures: 0

Probability of Success: 1.0

Table 8 – Execution time.

Process Algorithm Population Time (ms)

PROC. 1 PSO P = 10 16.6
PROC. 1 PSO P = 20 30.4

PROC. 1 GA P = 10 21.6

PROC. 1 ACO M = 10, K = 15 45.4
PROC. 1 ACO M = 20, K = 25 94.9

PROC. 2 PSO P = 10 17.2

PROC. 2 PSO P = 20 33.0
PROC. 2 GA P = 10 22.9

PROC. 2 ACO M = 10, K = 15 52.8

Pesquisa Operacional, Vol. 33(3), 2013



�

�

“main” — 2013/12/3 — 23:16 — page 462 — #20
�

�

�

�

�

�

462 A COMPARATIVE ANALYSIS OF THREE METAHEURISTIC METHODS

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Iterations

C
o
n
ce
p
t
V
a
lu
es

 

 
C1
C2
C3
C4
C5
C6
C7
C8

(a)

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Generations

C
o
n
ce
p
t
V
a
lu
es

 

 
C1
C2
C3
C4
C5
C6
C7
C8

(b)

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Iterations

C
o
n
ce
p
t
V
a
lu
es

 

 
C1
C2
C3
C4
C5
C6
C7
C8

(c)

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Iterations

C
o
n
ce
p
t
V
a
lu
es

 

 
C1
C2
C3
C4
C5
C6
C7
C8

(d)

Figure 11 – Mean convergence in PROC2 for (a) PSO with P = 10, (b) GA with P = 10, (c) ACO with

M = 10 and (d) PSO with P = 20.

to the other two schemes, being ACO the second best technique in terms of probability of success

in the two considered processes (somewhat better than PSO).

Specially in scenario 2 of PROC 1, when there are several weight constraints, GA achieved 100%
of success in 104 independent experiments with a population of 10 chromosomes. PSO and ACO
needed P = 20 particles and M = 20 ants in the population in order to reach 100% of success.

In PROC2, both GA and ACO needed P = M = 10, while PSO presented only 30 failures in
104 independent experiments when P = 10, and no errors when P = 20.

In terms of execution time in 50 iterations and considering the input parameters adopted, ACO
presented the slowest time, being PSO the fastest algorithm. It is important to emphasize that no

code optimization techniques have been considered while implementing PSO, GA and ACO.

As future work, other optimization heuristics can be considered to have a broader comparison,
as Simulated Annealing (SA), Tabu Search, among others, as well as techniques based on Hebian
learning. Other more complex applications of FCM in different areas of research can also be

considered.
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APPENDIX

Algorithm 1 PSO FCM LEARNING
Input: P, G, ω, Vmax, vi(0), φ1, φ2, Vmax, Wmin, Wmax, Amin, Amax
Output: Wopt
Initialize first population (randomly generated) of weights ∈ [Wmin, Wmax];
Initial Evaluation through cost function (Equation (27));
Find best global and best individual positions (initialy, xbest

g = xbest
i );

while (t ≤ G or output concepts convergence):
a. update velocity vi (t + 1), i = 1, . . . ,P, through (29);
b. velocity limitation by Vmax;
c. update position xi(t + 1), i = 1, . . . ,P, through (30);
d. x (i.e., W) limitation ∈ [Wmin; Wmax];
e. Evaluation through cost function (Eq. (27));
f. Find best global (xbest

g ) and best individual positions (xbest
i );

end
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Wmin, Wmax: matrices of weights (particle positions) constraints;
Amin, Amax: matrices of concepts constraints;
Wopt : optimum weight matrix.
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Algorithm 2 GA FCM LEARNING
Input: P, G, T , Pm , σm , Wmin, Wmax, Amin, Amax
Output: Wopt
Initialize first population (randomly generated) of weights ∈ [Wmin, Wmax];
Initial Evaluation through cost function (Eq. (27));
while (t ≤ G or output concepts convergence):

a. Selection of T individuals: roulette wheel for selecting chromosomes;
b. Pairing and crossover (Eq. (31) to (34));
c. Gaussian Mutation (Eq. 35);
d. x (i.e., W) limitation ∈ [Wmin; Wmax];
d. Evaluation through cost function (Eq. (27));
e. Sort W and update best result;

end
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Wmin, Wmax: matrices of weights (particle positions) constraints;
Amin, Amax: matrices of concepts constraints;
Wopt : optimum weight matrix.

Algorithm 3 ACO FCM LEARNING
Input: M , K , q , ζ , G, Wmin, Wmax, Amin, Amax

Output: Wopt

Initialize solutions file (randomly generated) of weights ∈ [Wmin, Wmax];
Initial Evaluation through cost function (Eq. (27));

Sort solutions file according to the fitness;

Calculate ωl (Eq. (36)) and pl (Eq. (37));
while (t ≤ G or output concepts convergence):

a. Selection of M ants: roulette wheel according to pl ;
b. Calculate σl,n (Eq. (38));
c. Update ants position (xl,n ) adding a N (0, σl,n) variable to the previous position;
d. x (i.e., W) limitation ∈ [Wmin; Wmax];
d. Evaluation through cost function (Equation (27));
e. Sort W and update best result;

end
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Wmin, Wmax: matrices of weights (particle positions) constraints;
Amin, Amax: matrices of concepts constraints;
Wopt : optimum weight matrix.
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