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ABSTRACT. In this work we consider a region S ⊂ R
n given by a finite number of nonlinear smooth

convex inequalities and having nonempty interior. We assume a point x0 is given, which is close in certain

norm to the analytic center of S, and that a new nonlinear smooth convex inequality is added to those

defining S (perturbed region). It is constructively shown how to obtain a shift of the right-hand side of this

inequality such that the point x0 is still close (in the same norm) to the analytic center of this shifted region.

Starting from this point and using the theoretical results shown, we develop a heuristic that allows us to

obtain the approximate analytic center of the perturbed region. Then, we present a procedure to solve the

problem of nonlinear feasibility. The procedure was implemented and we performed some numerical tests

for the quadratic (random) case.

Keywords: interior point, analytic center, convex optimization.

1 INTRODUCTION

In Linear Programming (LP), as well as in other areas of optimization, it is desirable to have
the possibility of making the post-optimality processing the most efficient way. In particular, if
the LP is solved and right after that the original data are altered, one wants to restart the process
to find the solution for the new problem from the obtained solution for the original LP. It is
thought that in many occasions, to obtain a new solution using the latest information requires
less computational effort than to start the process from scratch.

It is widely known that this kind of hot start can be successfully carried out by the Simplex
method and its variants for certain perturbations in the data. An important particular case, for its
applications, is the addition of a new constraint. Adding a constraint to a LP is equivalent to the
addition of a variable in the associated dual problem. If this variable is zero, then the optimal
dual solution is feasible for the new problem and then we can start the Dual-Simplex method from
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this solution to solve the new problem. This often reduces the number of iterations required to
resolve the perturbed problem. This idea has an important application in Cutting Planes Methods
(CPMs) for Integer Linear Programming (ILP).

In an ILP problem, we want to optimize a linear functional in several variables, subject to lin-
ear constraints and such that some or all variables take on integer values, that is, a problem of
ILP is a LP problem where some or all variables must be integers. This complication takes the
seemingly simple LP problem into a problem of combinatorial nature, whose solution can be dif-
ficult to achieve. Many ILP problems, such as the traveling salesman problem, are NP-complete.
Traditionally, such problems are solved using heuristics like local search, “Simulated annealing”,
genetic algorithms, ant colony, etc., thus obtaining good solutions, and that in some cases can be
optimal. However, these techniques do not have the ability to check the optimality the obtained
solutions.

On the other hand, classical methods such as “branch and bound”, cutting planes and its hybrids
(such as “branch and cut”) use bounds for the optimal value (iteratively updated) to check the
optimality of the obtained solution or at least to inform its proximity to the optimal value. Among
these techniques, it is interesting the CPM, which is a generic term for optimization methods
which iteratively refine a feasible set or objective function by means of linear inequalities, known
as cuts. Such procedure are popularly used to find integer solutions to Mixed Integer Linear
Programming (MILP) problems, as well as to solve general, not necessarily differentiable convex
optimization problems. By considering certain assumptions of the problem, we can prove the
convergence of the CPM, what does not mean a reasonable computational behavior. In certain
occasions, the time required is so large that in practice it is impossible to obtain a solution.
Despite these difficulties, the CPMs still are the best behaved methods in solving specialized
problems. In these applications, the Simplex method is used to solve the relaxed LP generated
by CPM.

Thirty years after the revolutionary step by N. Karmarkar [11] in the area of optimization, when
he introduced a polynomial interior point algorithm with computational efficiency for the solving
LP problems, it was natural that some research arose on the application of interior point algo-
rithms in solving post-optimality problems, in particular in solving the LP arising from a relaxed
CPM to solve the ILP. One of the early works in this direction was presented in [1, 13, 14],
where it is described a CPM for ILP that uses as a subroutine a variant of Karmarkar’s projective
algorithm. In each iteration, it is solved the dual problem associated with the relaxed LP using
the Karmarkar-variant. As mentioned earlier, when adding a new constraint to the original LP,
we easily obtain a dual-feasible solution. The problem is that this solution is not interior. It is
obtained by making at least one variable zero. Using heuristics and LP information, the authors
provide a direction from which it is possible to obtain an interior solution to restart the projective
algorithm or the Karmarkar-variant.

Another way to address the problem of restarting the algorithm when we add a constraint is to use
algorithms that work with points that do not necessarily are feasible (see [12, 16]). This method-
ology achieves both the feasibility and optimality. The problem is that by adding a constraint
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to the feasibility region, the iterations of the algorithm tend to move towards the center of the
feasible region, thus recovering feasibility but moving away from optimal.

So far one of the best methods that uses interior point in the solution of the relaxed LP in a CPM
is the method based on the concept of analytic center. The analytic center for a feasible region
is single interior point farthest from the border. Briefly, a CPM can be thought of as a column
generation method applied to the dual problem of the relaxed LP. In [18] a polynomial algorithm
is proposed with column generation based on interior point and applied to Linear Feasibility
Problem (LFP). The LFP is equivalent to a LP problem. In [6] it is presented a polynomial
algorithm for column generation, which uses the analytic center and solves the nonlinear convex
feasibility problem.

In general, the problem to be solved when using interior point in a CPM is that when adding a
new constraint, the current solution is no longer interior, and therefore it is not possible to reset
the methodology. In this case, one needs some technique or heuristic that allows the “interior
recovery” of the current solution. In this work we present a heuristic to recover the analytic
center of a region defined by a finite number of nonlinear inequalities, as soon as we add a new
inequality to region. This heuristic is based on the extension of the theoretical results developed
in [5].

In the next section we present the theoretical work and it is where the problem to be considered
is defined. In the sequence, we present the extended results, as well as the implemented heuristic
and its application in solving the nonlinear feasibility problem. Finally, we present the numerical
results and the conclusions.

2 THEORETICAL FOUNDATIONS

We consider a region S ⊂ Rn given by S = {x ∈ Rn : fi (x) � 0; i = 1, . . . , m}where fi (x) are
convex functions from R

n to R with continuous second order derivatives in int (S) (the interior
of S). We will assume that int (S) is nonempty and bounded. The logarithmic barrier function

associated to S is given for P(x) = −∑m
i=1 ln(− fi (x)) and the gradient and the Hessian matrix

of P(x) at x are, respectively:

g = g(x) = ∇P(x) =
m∑

i=1

∇ fi (x)

− fi (x)
, (1)

H = H (x) = ∇2 P(x) =
m∑

i=1

[
∇2 fi (x)

− fi (x)
+ ∇ fi (x)∇ fi (x)�

fi (x)2

]
, (2)

where H induces the relative norm ‖x‖H =
√

x�H x for all x ∈ Rn . We suppose that the
Hessian matrices Hi of all constraint functions fi (x) fulfils a Relative Lipschitz Condition, i.e.,

∃M � 0 : ∀w ∈ Rn, ∀y ∈ int (S), ∀h with ‖h‖Hi(y) � 0.5/
(

1+ M1/3
)

(3)∣∣∣w� (Hi(y + h)− Hi(y)) w

∣∣∣ � M‖h‖Hi(y)w
�Hi(y)w. (4)

Pesquisa Operacional, Vol. 35(1), 2015



�

�

“main” — 2015/4/28 — 13:03 — page 110 — #4
�

�

�

�

�

�

110 A NONLINEAR FEASIBILITY PROBLEM HEURISTIC

Thus, for each i, the logarithmic barrier function − ln(− fi (x)) is self-concordant [15]. Also,

the logarithmic barrier function P(x) associated to S is a self-concordant function (as the sum
of self-concordant functions is again a self-concordant function) with the Hessian matrix be-
ing positive-definite on its domain int (S), and strictly convex. P(x) penalizes points near the

boundary of S.

Note that P(x) has a unique minimizer xc ∈ int (S), which is called analytic center of S, see
e.g. [10], i.e., xc = arg min{P(x) : x ∈ int (S)}. The proximity of x ∈ int (S) to xc is defined by
δ(x) = ∥∥H−1(x)g(x)

∥∥
H =

√
g�H−1g, i.e., the norm (induced by H) of the Newton direction

for P at x , or the scaled gradient vector. Then, x will be considered near xc (or ε-approximate
center) if δ(x) < ε for some ε ∈ (0, 1). Clearly, δ(x) = 0 if and only if x = xc.

In this work we suppose a point x0 ∈ int (S) is given such that δ = δ(x0) < ε for some ε ∈ (0, 1),
and also, that it is given f0(x), a convex function from R

n to R with continuous second order

derivative in int (S), such that the inequality f0(x) � 0 generates a new region S0 from S:

S0 = {x ∈ Rn : f0(x) � 0; fi (x) � 0; i = 1, . . . , m}. (5)

We are interested in finding a “shift” γ ∗ of the right-hand side of the new inequality which gener-

ates a new region where x0 is still close, in the same norm, to the corresponding analytic center.
This question is conceptually equivalent to the following problem: given an ε-approximate cen-
ter x0 of the region S and f0(x) � γ ∗, find an upper bound for δ, depending on f0, ε and γ ∗, to

preserve x0 to be δ-approximate center of the region

S∗ = {x ∈ Rn : f0(x) � γ ∗; fi (x) � 0; i = 1, . . . , m}.

We present results (bounds for γ ∗) to preserve centrality after a new constraint f0(x) � γ ∗
is added to S. More accurately, given an ε-approximate center x0 of the region S, an upper
bound for γ ∗ depending on f0 and ε, is derived to preserve x0 to be an

√
ε-approximate center

of the S∗.

3 RESULTS

With analytic center theory in mind, given γ ∈ R and q � m a positive integer, we start our
search for such a region by adding the inequality f0(x) � γ repeated q times to those defining
S, that is, we set:

Sq,γ = {x ∈ Rn : f0(x) � γ (q-times) fi (x) � 0; i = 1, . . . , m}. (6)

Note that the integer q acts as a weight in computing the associated barrier function. Indeed:
Pq (x, γ ) = −q ln[γ − f0(x)]+P(x). Also, it is a known fact that we only claim that P1(x, 0) =
P(x, 0) = − ln[− f0(x)] + P(x). The notation Sq,γ is used throughout to emphasize that the
logarithmic barrier function being considered for the region has the inequality with right-hand
side γ repeated q times.

Pesquisa Operacional, Vol. 35(1), 2015
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The analytic center of Sq,γ is xq
c (γ ) = arg min{Pq (x, γ ) : x ∈ in(Sq,γ )}. As done previously,

the proximity measure to xq
c (γ ), given x ∈ int (Sq,γ ), needs the gradient and the Hessian matrix

of Pq (x, γ ) (with respect to x), which are:

gq(x, γ ) = ∇x Pq(x, γ ) = q∇ f0(x)

γ − f0(x)
+ g(x), (7)

Hq(x, γ ) = ∇2
x Pq(x, γ ) = q∇2 f0(x)

γ − f0(x)
+ q∇ f0(x)∇ f0(x)�

[γ − f0(x)]2
+ H (x). (8)

If no confusion is possible, we will write, for the sake of shortness, gq and Hq instead of gq(x, γ )

and Hq(x, γ ). Hq is positive-definite for x ∈ int (Sq,γ ), and the proximity of x to xq
c (γ ) is given

by δq(x, γ ) =
∥∥∥H−1

q (x, γ )gq(x, γ )

∥∥∥
H
=
√

g�q H−1
q gq . The following lemma shows the relation

between δ(x0) and δq(x0, γ ), for γ > f0(x0).

From now on, given two square matrices A and B, by A � B we mean that B − A is positive
semidefinite.

Lemma 3.1. Given γ > f0(x0), d0 = ∇ f0(x0), Q0 = ∇2 f0(x0), θ = d�0 H−1(x0)d0 =
d�0 H−1

0 d0, α = d�0 H−1
0 g(x0) = d�0 H−1

0 g0 and β0 = β0(γ ) = 1
γ− f0(x0)

. Then

δ2
q(x0, γ ) � δ2(x0)+ q2θβ2

0 + 2qαβ0

1+ qθβ2
0

. (9)

Proof. From (7) and (8) we have gq(x0, γ ) = g0 + qβ0d0, and Hq(x0, γ ) = qβ2
0 d0d�0 +

qβ0 Q0+H0. Also, H0+qβ2
0 d0d�0 � Hq(x0, γ ), so that by Corollary 7.7.4 of [9], H−1

q (x0, γ ) �(
H0 + qβ2

0 d0d�0
)−1

. As a consequence, it holds that:

δ2
q(x

0, γ ) = g�q (x0, γ )H−1
q gq(x0, γ )

� g�q (x0, γ )
[
H0 + qβ2

0 d0d�0
]−1

gq(x0, γ )

= (g0 + qβ0d0)
�
(

H−1
0 −

qβ2
0 H−1

0 d0d�0 H−1
0

1+ qθβ2
0

)
(g0 + qβ0d0)

= δ2(x0)+ qθβ2
0 + 2qαβ0 − qα2β2

0

1+ qθβ2
0

� δ2(x0)+ qθβ2
0 + 2qαβ0

1+ qθβ2
0

.

(10)

�

The following theorem shows how we can choose γ to make x0 close to the analytic center of

Sq,γ .

Pesquisa Operacional, Vol. 35(1), 2015
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Theorem 3.2. Let d0 = ∇ f0(x0), θ = d�0 H−1
0 d0 > 0, α = d�0 H−1

0 g0, ε ∈ (0, 1), and

ρ = (√
α2 + θε(1 − ε) − α

)
/(qθ). Then for γ 0 � f0(x0) + 1/ρ, if δ(x0) < ε then

δq(x0, γ 0) <
√

ε.

Proof. By Lemma 3.1, δ2
q(x0, γ ) � δ2(x0) + qθβ2

0+2qαβ0

1+qθβ2
0

(where β0 = 1/(γ 0 − f0(x0)).

If the numerator of the fraction is negative, we conclude that δ2
q(x0, γ 0) � δ2(x0) < ε2 < ε,

and we are done. If it is nonnegative, use the facts that the denominator is greater than 1, and

γ 0 − f0(x
0) � qθ√

α2 + θε(1 − ε)− α

to get β0 = 1
γ 0− f0(x0)

�
√

α2+θε(1−ε)−α

qθ
= ρ. On the other hand, δ2

q(x0, γ 0) < δ2(x0) +
q2θβ2

0 + 2qαβ0 = δ2(x0)+ qβ0(qθβ0 + 2α) � δ2(x0)+ qρ(qθρ + 2α) = δ2(x0)+ ε(1− ε) <

ε2 + ε(1− ε) = ε. �

This guarantees that the point x0 is close to the analytic center of Sq,γ 0 . Nevertheless, this is
not the desired region, since the constraint involving the constraint function f0(·) appears with
weight q > 1 in the associated logarithmic barrier function, and we can show that x0 is close

to the analytic center of such a region but with q = 1. Recall that the constraint f0(x) � 0 was
added to S just once.

The following result helps to show that, in general, if a point x is close to the analytic center of
Sq,γ , then there exists a “representative” of γ , say γ ∗, such that x is close to the analytic center

of S1,γ ∗ .

Theorem 3.3. Given γ ∈ R, x ∈ int (Sq,γ ), then for γ ∗ = γ
q +

(
1+ 1

q

)
f0(x), we have

δ1(x, γ ∗) � δq(x, γ ). (11)

Proof. Let β = β(x, γ ) = 1
γ− f0(x)

, β∗ = β∗(x, γ ∗) = 1
γ ∗− f0(x)

, d = d(x) = ∇ f0(x),

Q = Q(x) = ∇2 f0(x). Clearly β∗ = qβ. Also, g1 = ∇x P1(x, γ ∗) = ∇ f0 (x)
γ ∗− f0(x) + g(x) =

qβd + g = gq . Now,

H1 = ∇2
x P(x, γ ∗) = ∇ f0(x)∇ f0(x)�

[γ ∗ − f0(x)]2 +
Q

γ ∗ − f0(x)
+ H

= q2β2∇ f0(x)∇ f0(x)� + qβQ + H

= Hq + (q2 − q)β2dd� � Hq ,

(12)

as q > 1. Therefore, using as before, Corollary 7.7.4 of [9], H−1
1 � H−1

q , and δ2
1(x, γ ∗) =

g�1 H−1
1 g1 = g�q H−1

1 gq � g�q H−1
q gq = δ2

q(x, γ ); or δ1(x, γ ∗) < δq(x, γ ). �

Corollary 3.4. x0 is close to the analytic center of S1,γ 0∗ , where γ 0∗ = γ 0

q +
(

1− 1
q

)
f0(x0),

and γ 0 � f0(x0)+ 1
ρ

(see Theorems 3.2 and 3.3). It is clear that S1,γ 0∗ is the desired region.

Pesquisa Operacional, Vol. 35(1), 2015
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Corollary 3.5. If γ 0∗ � 0, then δ1(x0, 0) � √ε.

Proof. Let γ 1 = 1
q 0+

(
1− 1

q

)
f0(x0) =

(
1− 1

q

)
f0(x0). By hypothesis,

γ 1 � 1

q
γ 0∗ +

(
1− 1

q

)
f0(x

0) = γ 0, (13)

and therefore γ 1 � f0(x0) + 1
ρ

. By Theorem 3.2, we have δq(x0, γ 1) <
√

ε. Note that γ 1

is defined is such a way that its representative regarding x0 is zero, and that by Theorem 3.3,
δ1(x0, 0) � δq(x0, γ 1). Combining these two inequalities we obtain δ1(x0, 0) � √ε. �

4 APPLICATIONS (NONLINEAR FEASIBILITY PROBLEM)

4.1 Heuristic

Form the literature of mathematical programming, we know that methods of cutting planes [1],
using analytic center as testing points, need some clever strategy to “restart” the method of cen-
ters, which is used to solve the corresponding partial or relaxed problem (see [2, 3, 4, 7, 17]).

Such restarting consists in finding a new point close to the analytic center of a convex perturbed
region, right after adding a new constraint. That is, suppose we have a point x0 ∈ int (S) such
that δ(x0) < ε, for some ε ∈ (0, 1). Suppose also that a new convex function f0(x) is given,
along with its second order continuous derivatives, defined in int (S), and such the inequality

f0(x) � 0 generates a new region

S0 = {x ∈ Rn : f0(x) � 0, fi (x) � 0, i = 1, . . . , m}, (14)

where x0 /∈ int (S0). The problem of restarting in a cutting plane strategy consists in determining

a new point close to the analytic center of S0. Below we present a heuristic to solve this problem
using the results of the previous section.

First of all, as Theorem 3.2 indicates, x0 is close to the analytic center of Sq,γ 0 , for γ 0 =
f0(x0) + 1

ρ
; moreover, δq(x0, γ 0) <

√
ε. Also, by Theorem 3.3, x0 is close to the analytic

center of S1,γ 0∗ , for γ 0∗ = 1
q γ 0 +

(
1− 1

q

)
f0(x0), so that δ1(x0, γ 0) <

√
ε.

Now, if γ 0∗ � 0, then by Corollary 3.5 we have the desired point. Otherwise, that is, if γ 0∗ > 0
we can initiate the strategy of reducing the value of γ 0 and, simultaneously, change the value
of γ 0∗, trying to make it close to zero. To accomplish this, we will use an algorithm in two

phases. The first one is a method of an incomplete method of centers (Algorithm 1), where
(y, z) ∈ Rn+1, f : Rn+1 → R and τ represents tolerance to the proximity of the analytic center
(at the numerical tests, we used τ = 0.1). We want to reduce (not optimize) γ , starting with the

value of γ 0, until that the representative of γ ∗ becomes negative. The second one is a process
of bisection to “approach zero”, where in each iteration we do a centralization, just like in the
method of centers.

Pesquisa Operacional, Vol. 35(1), 2015
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Algorithm 1: Centering (y, z, f )

Obtain the gradient g and hessian H f of f (x) in y and z;

Solve the linear system H f p = −g;

Obtain the proximity: σ ← ‖p‖H ;

while σ > τ do

α← arg min { f (y + αp) : y + αp ∈ S}
y← y + α p

Obtain the gradient g and hessian H f of f (x) in y and z;

Solve the linear system H f p = −g;

Obtain the proximity: σ ← ‖p‖H ;

Remember that the barrier logarithmic function associated to the region Sq,γ 0 is given by

Pq
(
x, γ 0

) = −q ln
(
γ 0 − f0(x)

) + P(x) and corresponds to the auxiliary function used in a
method of centers to solve the problem

max − f0(x)

s.t. fi (x) � 0, i = 1, . . . , m
(15)

Therefore, the phase of reduction (Algorithm 2) can be initiated with the application of the in-
complete method of centers starting from x0 and the bound γ 0. We update the bound to γ 1 and
we obtain a new point x1, close to the analytic center of Sq,γ 1 . Then we evaluate γ 1∗, the rep-

resentative of γ 1, such that x1 is close to the analytic center of S1,γ 1∗ , and we check if γ 1∗ � 0
or, at least, if it is close enough to zero. In the first case, the reduction phase ends; in the second
one the heuristic stops (the desired point was achieved). If none of the previous conditions are

satisfied, then we do another iteration, starting from x1 and γ 1, and so on. This phase generates
sets

{
γ j
}
,
{
γ j∗} and

{
x j
}

such that each x j is located close to the analytic center of Sq,γ j and
Sq,γ j∗. Now, if the method of centers were fully applied, we would achieve the optimal value of
(15) in polynomial time. In this way, using an incomplete method of centers, we would achieve

in a polynomial time the condition γ k∗ < 0, for some k.

Algorithm 2: Reduction (γ L , yL, γ L)

while γ L > δ do

γ R ← γ L ; yR ← yL ; γ R ← γ L ;

γ L ← γ L + θ
[

f0(yL)− γ L
]
;

yL ← Centering
(

yL ,−γ L, Pq
(
x, γ L

))
;

γ L ← 1
q γ L +

(
1− 1

q

)
f0(yL);

Return γ L , yL , γ L , γ R, yR , γ R;

At the beginning of the second phase we know the iterates γ (k−1), x (k−1), γ (k−1)∗, and γ k, xk ,
γ k∗ such that γ k∗ < 0 < γ (k−1)∗. This suggests the possibility of beginning bisection (Algo-
rithm 3) over the interval

[
γ k, γ (k−1)

]
. For simplification, suppose that a left iterate γ L, x L , γ L∗

Pesquisa Operacional, Vol. 35(1), 2015
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and a right iterate γ R, x R, γ R∗ are given with the property that x L is close to the analytic center

of Sq,γ L and S1,γ L∗ , and that x R is close to the analytic center of Sq,γ R and S1,γ R∗ . Also, suppose
that γ L∗ < 0 < γ R∗. Regarding the parameters, we used q = 2n + 1 and δ represents tolerance
to the proximity of the right-hand side of the new added constraint (at the numerical tests, we

used δ = 0.1).

Algorithm 3: Bisection(γ L, yL , γ L , γ R, yR, γ R)

while γ L < −δ and γ R > δ do

γ M ← 1
2

(
γ L + γ R

)
;

yM ← Centering
(
yR,−γ M, Pq

(
x, γ M

))
;

γ M ← 1
q γ M +

(
1− 1

q

)
f0(yM );

if γ M < 0 then

γ L ← γ M ; yL ← yM ; γ L ← γ M ;

else

γ R ← γ M ; yR ← yM ; γ R ← γ M ;

if γ L � −δ then Return yL ;

if γ R � δ then Return yR ;

As usual in bisection, we evaluate the middle point of the interval
[
γ L, γ R

]
, that is, γ M =

γ L+γ R

2 . Then, from x R and γ M (as bound) we do a centralization to obtain the point x M , close

to the analytic center of Sq,γ M . Then we evaluate γ M∗ (the representative of γ M regarding x M ).
Clearly, if γ M∗ is close enough to zero, then the heuristic can stop. Otherwise, there are two
possibilities: either γ M∗ < 0, in which case

[
γ M , γ R

]
is a new interval to consider for bisection,

or γ M∗ > 0, in which case
[
γ L , γ M

]
is a new interval to consider.

Based on the previous procedures, we present the “Analytic Center Recovery Algorithm” –
ACRA (Algorithm 4). Such routine consists in finding a new point close to the analytic cen-
ter of a convex perturbed region, right after adding a new constraint.

Algorithm 4: ACRA(y, S)

Obtain the gradient g and hessian H of P(x) in y0;

Obtain ρ according to Theorem 3.2

γ L ← f0(x0)+ 1
ρ

; γ L ← 1
ρ
γ L +

(
1− 1

ρ

)
f0(x0);

if γ L � 0 then

y← y0;

else

yL ← y0;(
γ L, yL , γ L , γ R, yR, γ R

)← Reduction
(
γ L , yL, γ L

)
;

y← Bisection
(
γ L, yL , γ L , γ R, yR, γ R

)
;
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4.2 Nonlinear feasibility problem

Using ACRA heuristic we developed a procedure, called “Convex Feasibility Algorithm” – CFA,
to solve the non-linear problem of feasibility in smooth and convex regions (Algorithm 5). The
procedure is based on the known methodology of generation of columns (or inequalities) [8].
Our inicial problem is to find an interior point close to the analytic center of a given region
S = {x ∈ Rn : fi (x) � 0; i = 1, . . . , m} �= ∅. We are supposing that S is a smooth convex
region, that is, it satisfies the conditions described at the introduction of this work, so that we
can suppose that there exists a box in Rn , say T = {x ∈ Rn : � � x � u} containing S, where
�, u ∈ Rn and � j < u j . Therefore, our problem is to find an interior point close to the analytic
center of the region {x ∈ Rn : fi (x) � 0; i = 1, . . . , m, � � x � u}. The use of a box
containing S, far from complicating the problem, allows us to have an automatic inicialization of
the proposed procedure, as we will see below.

Algorithm 5: CFA

y0← 0;

for j = 1, . . . , m do

S j ← {x ∈ Rn : fi (x) � 0; i = 1, . . . , j and − e � x � e};
y j ← ACRA

(
y j−1, S j

)
;

To simplify, we can suppose that right after some translation and scaling in the variables, the
previous region can be written like {x ∈ Rn : fi (x) � 0; i = 1, . . . , m, and − e � x � e},
where e = (1, . . . , 1)�. In this way, we can initiate the procedure, starting from the exact analytic
center of the region B = {x ∈ Rn : −e � x � e}, which coincides with the geometric center
of S when given by x0 = 0. Then, starting with f1(x), we add this inequality to B and using the
proposed heuristic, we obtain a point x1, close to the analytic center of the new region. Now, we
repeat this process for x1 and so on, up to the end.

The procedure performs at most m times the ACRA routine, considering that once an inequality
is added, this one cannot be violated by any further iterate. At the end, we can withdraw the
constraints regarding the unitary box B and obtain the desired point, that is, a point close to the
analytic center of S, a key point when one has to work with a methodology of cutting planes
that uses like test point, points close to the analytic center of the generated regions during each
iteration.

However when working with nonlinear feasibility problem, we consider an implementation of
the heuristic that relax the bisection subroutine and we conform to the recovery of the feasibility
of the iterated, i.e., we do not try to approach the right-hand side of the added inequality but
rather a relaxation of it. In this strategy it is possible, however with little possibility, that the same
inequality be violated in different iterations, so preventing convergence. More research is needed
to try to determine if there are conditions that guarantee convergence. Aiming to understand
the behavior of computational modified heuristic some numerical tests were carried out with
promising results.
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5 NUMERICAL RESULTS

In this work, we have tried the heuristic with random problems, for the sake of readiness of
implementation.

5.1 Generation of random problems

The random convex feasibility problems are generated as follows. We want to generate a region
in the form

S = {y ∈ Rn : f1(y) < 0, . . . , fm (y) < 0 and − e < y < e}, (16)

where for each i = 1, . . . , m,

fi (y) = 1

2
y�Ai y + b�i y + ci , (17)

and where Ai is symmetric positive-definite.

We start by choosing a point y0 ∈ {y ∈ Rn : −e < y < e}, where we randomly obtain each

entry according to a uniform distribution in the interval (−1, 1).

Now, for each quadratic function fi , after randomly generating a symmetric positive-definite
matrix Ai , we generate a random direction vector d ∈ Rn , whose each entry is generated ac-
cording to a uniform distribution in (−1, 1). Then we normalize d using the Ai -norm, that is,

ui = d/ ‖d‖Ai
. Then we set

ci = 1

2
(y0 + αui)

�Ai (y0 + αui)+ b�i (y0 + αui)

= 1

2
α2 + α(Ai y0 + bi)

�ui +
[

1

2
y�0 Ai y0 + b�i y0

]
.

(18)

Now, if we take bi = Ai (y0 − ui), then

ci = 1

2
α2 − α +

[
1

2
y�0 Ai y0 + b�i y0

]
. (19)

So, by randomly choosing α > 2, we obtain

ci >
1

2
y�0 Ai y0 + b�i y0. (20)

that is

0 >
1

2
y�0 Ai y0 + b�i y0 − ci . (21)

5.2 Results of random problems

We performed four sets of randomly-generated problems. Each set was labeled according to the
dimensions of its problems. They were 50× 50, 50× 100, 100× 50 and 100× 100, where the
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first number is n and the second number is the number m of constraints. The results are shown

at Tables 1, 2, 3 and 4, respectively, where we show firstly the results with the bisection routine
and secondly the results without the bisection routine. We can see that only 5 test problems are
shown at each test set. However, at each test set we had 30 problems and it is worth mentioning

that some of the tests were not successful, because the bisection routine achieved its maximum
number of iterations (100) and the test was aborted. Nevertheless, the conclusions can be clearly
drawn based on these 5 test problems.

Table 1 – Tests with and without the bisection routine for randomly-generated problems with size 50× 50.

The average running time was 2 min for the tests with bisection and 50s for those without bisection.

Problem FEA RED BIS NWT RED
FEA

BIS
FEA

NWT
RED+BIS Rel error

1 15 17 117 231 1.13 7.80 1.72 0.109795
2 8 10 72 130 1.25 9.00 1.58 0.180610

3 8 10 89 101 1.25 11.12 1.02 0.394144
4 13 14 110 222 1.07 8.46 1.79 0.120790

5 8 10 80 113 1.25 10.00 1.25 0.140823

1 12 13 0 52 1.08 0.00 4.00 0.042579

2 8 9 0 37 1.12 0.00 4.11 0.062241
3 6 7 0 29 1.16 0.00 4.14 0.385106

4 11 12 0 49 1.09 0.00 4.08 0.072579
5 6 7 0 29 1.16 0.00 4.14 0.362209

Table 2 – Tests with and without the bisection routine for randomly-generated problems with size 50×100.
The average running time was 9min for the tests with bisection and 3min for those without bisection.

Problem FEA RED BIS NWT RED
FEA

BIS
FEA

NWT
RED+BIS Rel error

1 11 13 124 166 1.18 11.27 1.21 0.066950

2 11 13 122 177 1.18 11.09 1.31 0.235775
3 16 17 137 239 1.06 8.56 1.55 0.056632

4 16 16 129 288 1.00 8.06 1.98 0.102728

5 9 11 88 143 1.22 9.77 1.44 0.194135

1 8 10 0 43 1.25 0.00 4.30 0.060965
2 9 10 0 45 1.11 0.00 4.50 0.038112

3 15 16 0 70 1.06 0.00 4.37 0.020806
4 14 14 0 64 1.00 0.00 4.57 0.040943

5 8 9 0 41 1.12 0.00 4.55 0.184487

In the following tables, FEA represents the number of times that ACRA was called. RED stands
for the total number of redutions, while BIS stands for the total number of bisections. Also,
NWT is the total number of iterations of Newton’s method. Finally, after each test, we obtained

the analytic center of the region using MATLAB’S unconstraind minimization routine fminunc
and compared it with what we obtained after CFA. In this way, the relative error is shown at the
last column.
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Table 3 – Tests with and without the bisection routine for randomly-generated problems with size 100×50.
The average running time was 7min for the tests with bisection and 2min for those without bisection.

Problem FEA RED BIS NWT RED
FEA

BIS
FEA

NWT
RED+BIS Rel error

1 10 12 136 127 1.20 13.60 0.85 0.161682

2 7 9 86 90 1.28 12.28 0.94 0.440358
3 9 11 119 109 1.22 13.22 0.83 0.168031

4 6 8 71 95 1.33 11.83 1.20 0.258039
5 15 15 145 273 1.00 9.66 1.70 0.052824

1 8 9 0 39 1.12 0.00 4.33 0.029781

2 5 6 0 25 1.20 0.00 4.16 0.442479

3 6 8 0 32 1.33 0.00 4.00 0.190755
4 6 7 0 29 1.16 0.00 4.14 0.220485

5 11 11 0 46 1.00 0.00 4.18 0.124300

Table 4 – Tests with and without the bisection routine for randomly-generated problems with size 100×100.
The average running time was 24min for the tests with bisection and 8min for those without bisection.

Problem FEA RED BIS NWT RED
FEA

BIS
FEA

NWT
RED+BIS Rel error

1 17 17 159 321 1.00 9.35 1.82 0.074167

2 9 11 114 134 1.22 12.66 1.07 0.253716
3 8 10 98 159 1.25 12.25 1.47 0.290124

4 8 10 103 138 1.25 12.87 1.22 0.248952

5 12 14 120 232 1.16 10.00 1.73 0.029818

1 14 14 0 64 1.00 0.00 4.57 0.094816
2 7 8 0 36 1.14 0.00 4.50 0.168162

3 6 7 0 32 1.16 0.00 4.57 0.420553
4 6 7 0 30 1.16 0.00 4.28 0.501800

5 10 11 0 49 1.10 0.00 4.45 0.128808

In Table 1 (problems with size 50 × 50) it can be seen that problem 3 (with or without bisec-

tion) has a high relative error, with a difference of almost 40%. This also applies to problem 5
without bisection. On the other hand, in Table 2 (problems with size 50 × 100) only problem 2
with bisection shows a high relative error, over 20% of difference. In Table 3 (problems with

size 100 × 50), problem 2 and 4 (with and without bisection) showed the worst relative errors,
somewhere around 40% and 20% of difference respectively. Finally, in Table 4 (problems with
size 100 × 100), problems number 2, 3 and 4 (with bisection) also have high relative error,
over 20% of difference. It is worth mentioning that for all tables, the number of ACRA calls

(FEA) and the number of calls of the reduction procedure (RED) is considerably low when com-
pared to the number of calls of the bisection procedure (BIS). As a final comment, we observe
that when we compare the number of calls of the Newton method (NWT) for all the 20 test

problems considered, the value obtained without bisection is approximately 25% of the value
with bisection.

Pesquisa Operacional, Vol. 35(1), 2015



�

�

“main” — 2015/4/28 — 13:03 — page 120 — #14
�

�

�

�

�

�

120 A NONLINEAR FEASIBILITY PROBLEM HEURISTIC

All problems were solved by computer codes implemented in MATLAB, running on a computer

with an Intel Core 2 Duo – E7500, 2.93 GHz processor, with 3.9 GB of usable RAM.

6 CONCLUSIONS

We extended the known results in [5] for the linear case, using smooth convex regions.

We also presented a heuristic (ACRA) able to recover the approximate analytic center when we

perturb (through the addition of new constraints) the initial region. It is worth recalling that this
is fundamental when we work inside a cutting plane methodology that uses the approximate
analytic center as a testing point.

In the sequence, we presented a procedure (CFA) the solves an important problem of applied

mathematics, that is, the feasibility problem, using the heuristic ACRA.

Finally, the numerical results presented solving the feasibility problem for randomly-generated
problems, show that the greatest number of iterations, due to the bisection routine, represents
nearly ten times the calls to the routine ACRA, when we are interested in obtaining an approxi-

mation for the analytic center.

It is important to underline that the number of calls to ACRA in the second case, i.e. without the
bisection routine, is smaller than when using the bisection routine. On the other hand, in many
problems the number of calls to Newton’s method almost duplicates in the second case. Finally,

the number of calls to the reduction routine does not show meaningful variation in both cases.

All the tests in this work were carried out using randomly generated problems, mainly because
of their easiness and readiness to use. Clearly, every improvement of CFA will depend on more
clever ways to define the bisection routine. In the future, with such improvement, we hope to be

able to test our heuristic with known library problems.
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