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ABSTRACT. In this paper, we discuss computational aspects to obtain accurate inferences for the pa-

rameters of the generalized gamma (GG) distribution. Usually, the solution of the maximum likelihood

estimators (MLE) for the GG distribution have no stable behavior depending on large sample sizes and

good initial values to be used in the iterative numerical algorithms. From a Bayesian approach, this problem

remains, but now related to the choice of prior distributions for the parameters of this model. We presented

some exploratory techniques to obtain good initial values to be used in the iterative procedures and also to

elicited appropriate informative priors. Finally, our proposed methodology is also considered for data sets

in the presence of censorship.

Keywords: Bayesian Inference, Classical inference, Generalized gamma distribution, Random censoring.

1 INTRODUCTION

The Generalized gamma (GG) distribution is very flexible to be fitted by reliability data due to
its different forms for the hazard function. This distribution was introduced by Stacy [23] and

has probability density function (p.d.f.) given by

f (t |θ) = α

�(φ)
μαφ tαφ−1 exp

(−(μt)α
)
, (1)

where t > 0 and θ = (φ, μ, α) is the vector of unknown parameters. The parameters α > 0 and

φ > 0 are shape parameters and μ > 0 is a scale parameter. This parametrization is a standard
form of the GG distribution originated from a general family of survival functions with a location
and scale changes of the form, Y = log(T ) = μ+σW where W has a generalized extreme value

distribution with parameter φ and α = 1
σ . The survival function is given by

S(t |θ) =
∫ ∞

(μt)α

1

�(φ)
wφ−1e−wdw = γ [φ, (μt)α]

�(φ)
,
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where �[y, x] = ∫∞
x wy−1e−wdw is the upper incomplete gamma function. Many lifetime dis-

tributions are special cases of the GG distribution such as the Weibull distribution (when φ = 1),
the gamma distribution (α = 1), log-Normal (limit case when φ → ∞) and the generalized
normal distribution (α = 2). The generalized normal distribution also is a distribution that

includes various known distributions such as half-normal (φ = 1/2, μ = 1/
√

2σ ), Rayleigh
(φ = 1, μ = 1/

√
2σ ), Maxwell-Boltzmann (φ = 3/2) and chi (φ = k/2, k = 1, 2, . . .).

Although the inferential procedures for the gamma distribution can be easily be obtained by
classical and Bayesian approaches, especially using the computational advances of last years

in terms of hardware and software [2], the inferential procedures for the generalized gamma
distribution under the maximum likelihood estimates (MLEs) can be unstable (e.g., [8,14,24,25])
and its results may depend on the initial values of the parameters chosen in the iterative methods.

Ramos et al. [20] simplified the MLEs under complete samples and used the obtained results
as initial values for censored data. However, the obtained MLEs may not be unique returning
more than one root. Additionally, the obtained results lies under asymptotic properties in which

are not achieved even for large samples (n > 400) as was discussed by Prentice [17]. A similar
problem appears under the Bayesian approach, where different prior distributions can have a
great effect on the subsequent estimates. It is important to point out that, the literature on GG
distribution is very extensive, with many studies considering statistical inference as well as others

more concentrated in applications [3–5,15,16,18,21,22].

In this study, methods exploring modifications of Jeffreys’ priors to obtain initial values for
the parameter estimation are proposed. The obtained equations under complete and censored
data were used as initial values to start the iterative numerical procedures as well as to elicited

informative prior under the Bayesian approach. An intensive simulation study is presented in
order to verify our proposed methodology. These results are of great practical interest since it
enable us for the use of the GG distribution in many application areas. The proposed methodology

is illustrated in two data sets.

This paper is organized as follows: Section 2 reviews the MLE for the GG distribution. Section
3 presents the Bayesian analysis. Section 4 introduces the methods to obtain good initial val-
ues under complete and censored data. Section 5 describes a simulation study to compare both

classical and Bayesian approaches. Section 6 presents an analysis of the data set. Some final
comments are made in Section 7.

2 CLASSICAL INFERENCE

Maximum likelihood estimates are obtained from from the maximization of the likelihood func-
tion. Let T1, . . . , Tn be a random sample of a GG distribution, the likelihood function is given
by

L(θ; t) = αn

�(φ)n
μnαφ

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
. (2)
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From ∂
∂α

log(L(θ ; t)), ∂
∂μ

log(L(θ ; t)) and ∂
∂φ

log(L(θ ; t)) equal to zero, the obtained likelihood

equations are

n ψ(φ̂) = nα̂ log(μ̂)+ α̂

n∑
i=1

log(ti )

nφ̂ = μ̂α̂
n∑

i=1

ti
α̂ (3)

n

α̂
+ nφ̂ log(μ) + φ

n∑
i=1

log(ti ) = μ̂α̂
n∑

i=1

ti
α̂ log(μ̂ti),

where ψ(k) = ∂
∂k log�(k) = �′(k)

�(k) . The solutions of (3) provide the maximum likelihood esti-
mates [8, 24]. Numerical methods such as Newton-Rapshon are required to find the solution of

the nonlinear system.

Under mild conditions the maximum likelihood estimators of θ are not biased and asymptoti-
cally efficient. These estimators have an asymptotically normal joint distribution given by

(θ̂ ) ∼ Nk[(θ ), I−1(θ )] for n → ∞,

where I (θ ) is the Fisher information matrix

I (θ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + 2ψ(φ)+ φψ ′(φ)+ φψ(φ)2

α2
−1 + φψ(φ)

μ
−ψ(φ)

α

−1 + φψ(φ)

μ

φα2

μ2

α

μ

−ψ(φ)
α

α

μ
ψ ′(φ)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In the presence of censored observations, the likelihood function is

L(θ; t, δ) = αdμdαφ

�(φ)n

{
n∏

i=1

t δiαφ−1
i

}
exp

{
−μα

n∑
i=1

δi ti
α

}
n∏

i=1

(�[φ, (μti )
α])1−δi . (4)

From ∂
∂α log(L(θ ; t, δ)), ∂

∂μ log(L(θ ; t, δ)) and ∂
∂φ log(L(θ ; t, δ)) equal to zero, we get the like-

lihood equations,

n∑
i=1

{
(1 − δi )

[
(μti )αφe−(μti)α log(μti )

�
[
φ, μtαi

]
]}

= d

α
+ dφ log(μ)

+ φ

n∑
i=1

δi log(ti )− μα
n∑

i=1

δi t
α
i log(μti )

dαφ

μ
− αμα−1

n∑
i=1

δi t
α
i =

n∑
i=1

{
(1 − δi )

[
αti(μti )αφ−1e−(μti)α

�
[
φ, μtαi

]
]}

(5)
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dα log(μ) − nψ(φ)+ α

n∑
i=1

δi log(ti ) = −
n∑

i=1

{
(1 − δi)

[


[
φ, μtαi

]
�
[
φ, μtαi

]
]}

where


(k, x) = ∂

∂k
�[k, x] =

∞∫
x

wk−1 log(w)e−wdw.

The solutions of the above non-linear equations provide the MLEs of φ, μ and α. Other methods
using the classical approach have been proposed in the literature to obtain inferences on the
parameters of the GG distribution [1,5,9].

3 A BAYESIAN APPROACH

The GG distribution has nonnegative real parameters. A joint prior distribution for φ, μ and α
can be obtained from the product of gamma distributions. This prior distribution is given by

πG (φ, μ, α) ∝ φa1−1μa2−1αa3−1 exp (−b1φ − b2μ− b3α) . (6)

From the product of the likelihood function (2) and the prior distribution (6), the joint posterior

distribution for φ, μ and α is given by,

pG (φ, μ, α|t) ∝α
n+a3−1μnαφ+a2−1φa1−1

�(φ)n

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
×

× exp {−b1φ − b2μ− b3α} .
(7)

The conditional posterior distributions for φ, μ and α needed for the Gibbs sampling algorithm
are given as follows:

pG (α|φ, μ, t) ∝ αn+a3−1μnαφ+a2−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−b3α − μα

n∑
i=1

tαi

}
,

pG (φ|μ, α, t) ∝ μnαφ+a2−1φa1−1

�(φ)n

{
n∏

i=1

tαφ−1
i

}
exp {−b1φ} , (8)

pG (μ|φ, α, t) ∝ μnαφ+a2−1 exp

{
−b2μ− μα

n∑
i=1

tαi

}
.

Considering the presence of right censored observations, the joint posterior distribution for φ, μ
and α, is proportional to the product of the likelihood function (4) and the prior distribution (6),
resulting in

pG (φ, μ, α|t, δ) ∝α
d+a3−1μdαφ+a2−1φa1−1

�(φ)n

{
n∏

i=1

t δi(αφ−1)
i

}
n∏

i=1

(
�[φ, (μti)

α])1−δi ×

× exp

{
−b1φ − b2μ− b3α − μα

n∑
i=1

δi t
α
i

}
.

(9)
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The conditional posterior distributions for φ, μ and α needed for the Gibbs sampling algorithm

are given as follows:

pG (α|φ, μ, t, δ) ∝ αd+a3−1μdαφ+a2−1

{
n∏

i=1

t δi (αφ)
i

}
n∏

i=1

(
�[φ, (μti)

α])1−δi ×

× exp

{
−b3α − μα

n∑
i=1

δi t
α
i

}
,

pG (φ|μ, α, t, δ) ∝μ
dαφ+a2−1φa1−1

�(φ)n

{
n∏

i=1

t δi(αφ)
i

}
n∏

i=1

(
�[φ, (μti)

α])1−δi e−b1φ, (10)

pG (μ|φ, α, t, δ) ∝ μdαφ+a2−1
n∏

i=1

(
�[φ, (μti)

α])1−δi exp

{
−b2μ− μα

n∑
i=1

δi t
α
i

}
.

Using prior opinion of experts or from the data (empirical Bayesian methods), the hyperparam-
eters of the gamma prior distributions can be elicited using the method of moments. Let λi and

σ 2
i , respectively, be the mean and variance of θi , θi ∼ Gamma(ai , bi), then

ai = λ2
i

σ 2
i

and bi = λi

σ 2
i

, i = 1, . . . , 3. (11)

4 USEFUL EQUATIONS TO GET INITIAL VALUES

In this section, an exploratory technique is discussed to obtain good initial values for numerical
procedure used to obtain the MLEs for GG distribution parameters. These initial values can

also be used to elicit empirical prior distributions for the parameters (use of empirical Bayesian
methods).

Although different non-informative prior distributions could be considered for the GG distribu-

tion as the Jeffreys’ prior or the reference prior [10], such priors involve transcendental function
in φ such as digamma and trigamma functions with does not allow us to obtain closed-form esti-
mator for φ. A simple non-informative prior distribution representing the lack of information on
the parameters can be obtained by using Jeffreys’ rule [10]. As the GG distribution parameters

are contained in positive intervals (0,∞), using Jeffreys’ rule the the following prior is obtained

πR (φ, μ, α) ∝ 1

φμα
. (12)

The joint posterior distribution for φ, μ and α, using Jeffreys’ rule is proportional to the product
of the likelihood function (2) and the prior distribution (12), resulting in,

pR(φ, μ, α|t) = 1

d1(t)
αn−1

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
. (13)
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However, the posterior density (13) is improper, i.e.,

d1(t) =
∫
A

αn−1

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ = ∞

where θ = (φ, μ, α) and A = {(0,∞)× (0,∞)× (0,∞)} is the parameter space of θ .

Proof. Since αn−1

φ�(φ)n
μnαφ−1

{∏n
i=1 tαφ−1

i

}
exp

{−μα∑n
i=1 tαi

} ≥ 0, by Tonelli theorem (see
Folland [6]) we have

d1(t) =
∫
A

αn−1

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ

=
∞∫

0

∞∫
0

∞∫
0

αn−1

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dμdφdα

=
∞∫

0

∞∫
0

αn−2 �(nφ)

φ�(φ)n

(∏n
i=1 ti

)αφ−1(∑n
i=1 tαi

)nφ dφdα ≥
∞∫

0

1∫
0

c1α
n−2φn−2

⎛
⎝ n
√∏n

i=1 tαi∑n
i=1 tαi

⎞
⎠

nφ

dφdα

=
∞∫

0

c1α
n−2 γ (n − 1, n q(α))

(n q(α))n−1
dα ≥

∞∫
1

g1
1

α
dα = ∞,

where

q(α) = log

⎛
⎝ ∑n

i=1 tαi
n
√∏n

i=1 tαi

⎞
⎠ > 0

and c1 and g1 are positive constants such that the above inequalities occur. For more details and

proof of the existence of these constants, see Ramos [19]. �

Since the Jeffreys’ rule prior returned an improper posterior, a modification in this prior was

considered. This modified prior is given by

πM (φ, μ, α) ∝ 1

φμα
1
2 + α

1+α
· (14)

The present modification had two main objectives. First was to produce a modified prior for
π(α) that behave similar to π(α) ∝ α−1 (see Figure 1). Second, was to construct a joint prior

distribution that yields a proper posterior distribution.

The joint posterior distribution for φ, μ and α, using the prior distribution (14) is proportional to
the product of the likelihood function (2) and the prior distribution (14) resulting in,

pM(φ, μ, α|t) = 1

d2(t)
α

n− 1
2 −α/(1+α)

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
. (15)
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Figure 1 – Plot of the Jeffreys’ Rule and the new Prior considering different values for α.

This joint posterior distribution is proper, i.e.,

d2(t) =
∫
A

α
n− 1

2 −α/(1+α)

φ�(φ)n
μnαφ−1

{
n∏

i=1

tαφ−1
i

}
exp

{
−μα

n∑
i=1

tαi

}
dθ < ∞, (16)

where θ = (φ, μ, α) and A = {(0,∞) × (0,∞) × (0,∞)} is the parameter space of θ . The

proof of this result is presented in Appendix A at the end of the paper.

The marginal posterior distribution for α and φ is obtained by integrating (15) with respect to μ,
i.e.,

pM (φ, α|t) = 1

d2(t)
α

n− 1
2 −α/(1+α)

φ�(φ)n

{
n∏

i=1

tαφ−1
i

} ∞∫
0

μnαφ−1 exp

{
−μα

n∑
i=1

tαi

}
dμ.

From the result ∞∫
0

xα−1e−βx dx = �(α)

βα

and considering the transformation v = μα , we have

∞∫
0

μnαφ−1 exp

{
−μα

n∑
i=1

tαi

}
dμ = 1

α

∞∫
0

vnφ−1 exp

{
−v

n∑
i=1

tαi

}
dv = �(nφ)

α
(∑n

i=1 tαi
)nφ

.

Therefore, the marginal posterior distribution of α and φ is given by

pM (φ, α|t) = 1

d2(t)
α

n− 3
2 −α/(1+α)

φ�(φ)n

{
n∏

i=1

tαφ−1
i

}
�(nφ)(∑n
i=1 tαi

)nφ .
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The logarithm of the above marginal distribution is given by

log (pM(α, φ|t)) =
(

n − 3

2
− α

(1 + α)

)
log(α)+ log (�(nφ))− log(φ)− log(d2)

+ (αφ − 1)
n∑

i=1

log(ti)− n log (�(φ))− nφ log

(
n∑

i=1

tαi

)
.

The first-order partial derivatives of log (pM (α, φ|t)), with respect to α and φ, are given, respec-

tively, by,

∂ log (pM(α, φ|t))
∂α

= κ(α) + φ

n∑
i=1

log(ti )− nφ

(∑n
i=1 tαi log(ti)∑n

i=1 tαi

)
,

∂ log (pM(α, φ|t))
∂φ

= nψ(nφ)+ α

n∑
i=1

log(ti )− 1

φ
− nψ(φ)− n log

(
n∑

i=1

tαi

)
,

where κ(α) =
(

n − 3
2 − α

(1+α)
)

1
α

− α
(1+α)2 log(α). The maximum a posteriori estimates of φ̃

and α̃ related to pM (α, φ|t) are obtained by solving

∂ log (pM(α, φ|t))
∂α

= 0 and
∂ log (pM (α, φ|t))

∂φ
= 0.

By solving ∂ log (pM(α, φ|t)/ ∂α, we have

φ̃ = κ(α̃)
∑n

i=1 t α̃i(
n
∑n

i=1 t α̃i log(t α̃i )−
∑n

i=1 t α̃i
∑n

i=1 log(t α̃i )
) · (17)

By solving ∂ log (pM (α, φ|t)/ ∂φ and replacing φ by φ̃ we have α̃ can be obtained finding the
minimum of

h(α) = nψ
(

nφ̃
)

+ α

n∑
i=1

log(ti)− 1

φ̃
− ψ

(
φ̃
)

− log

(
n∑

i=1

tαi

)
(18)

Using one dimensional iterative methods, we obtain the value of α̃. Replacing α̃ in equation (17),

we have φ̃. The preliminary estimate μ can be obtained from

∂ log (pM (φ, μ, α|t))
∂μ

= (nφ̃α̃ − 1)− α̃μ̃α̃
n∑

i=1

t α̃i = 0

and after some algebraic manipulation,

μ̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
nα̃ φ̃−1
α̃
∑n

i=1 t α̃i

) 1
α̃
, if nα̃φ̃ > 1

(
nφ̃∑n
i=1 t α̃i

) 1
α̃
, if nα̃φ̃ < 1

(19)
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This approach can be easily used to find good initial values φ̃, μ̃ and α̃. These results are of
great practical interest since it can be used in a Bayesian analysis to construct empirical prior
distributions for φ, μ and α as well as for initialization of the iterative methods to find the MLEs
of the GG distribution parameters.

5 A NUMERICAL ANALYSIS

In this section, a simulation study via Monte Carlo method is performed in order to study the ef-
fect of the initial values obtained from (17, 18 and 19) in the MLEs and posterior estimates,
considering complete and censored data. In addition, MCMC (Markov Chain Monte Carlo)
methods are used to obtain the posterior summaries. The influence of sample sizes on the ac-
curacy of the obtained estimates was also investigated. The following procedure was adopted in
the study:

1. Set the values of θ = (φ, μ, α) and n.

2. Generate values of the GG(φ, μ, α) distribution with size n.

3. Using the values obtained in step (2), calculate the estimates of φ̂, μ̂ and α̂ using the MLEs
or the Bayesian inference for the parameters φ, μ and α.

4. Repeat (2) and (3) N times.

The chosen values for this simulation study are θ = ((0.5, 0.5, 3),(0.4, 1.5, 5)) and n = (50,
100, 200). The seed used to generate the random values in the R software is 2013. The com-
parison between the methods was made through the calculation of the averages and standard
deviations of the N estimates obtained through the MLEs and posterior means. It is expected
that the best estimation method has the means of the N estimates closer to the true values of θ

with smaller standard deviations. It is important to point out that, the results of this simulation
study were similar for different values of θ .

5.1 A classical analysis

In the lack of information on which initial values should be used in the iterative method, we
generate random values such that φ̃ ∼ U(0, 5),μ̃ ∼ U(0, 5) and α̃ ∼ U(0, 5). This procedure
is denoted as “Method 1”. On the other hand, from equations (17, 18 and 19), good initial val-
ues are easily obtained to be used in iterative methods to get the MLEs considering complete
observations. In the presence of censored observations we discuss the possibility of using only
the complete observations, in order to obtain good initial values φ̃, μ̃ and α̃. This procedure is
denoted as “Method 2”.

Tables 1-3 present the means and standard deviations of the estimates of N = 50, 000 samples
obtained using the MLEs, calculated by the methods 1 and 2 for different values of θ and n,
using complete and censored observations. We also have the coverage probability (CP) with a
nominal 95% confidence level.
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Table 1 – Estimates of the means and standard deviations of MLE’s and coverage probabilities with

a nominal 95% confidence level obtained from 50, 000 samples using Method 1 for different values

of θ and n, using complete observations as well as censored observations (20% censoring).

Complete observations Censored observations

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
θ

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

MLE MLE MLE MLE MLE MLE

φ = 0.5 1.940(1.416) 1.806(1.335) 1.788(1.248) 1.105(1.323) 1.026(1.202) 0.981(1.149)

μ = 0.5 1.816(1.973) 1.692(1.850) 1.646(1.821) 1.112(1.983) 1.033(1.876) 0.997(1.835)

α = 3 1.827(1.260) 1.821(1.061) 1.742(0.921) 3.565(2.863) 3.254(2.218) 3.091(1.834)

φ = 0.4 1.094(0.968) 1.050(0.957) 0.983(0.970) 0.667(0.882) 0.659(0.936) 0.535(0.544)

μ = 1.5 2.318(1.724) 2.386(3.729) 2.352(4.507) 1.842(1.617) 1.872(2.110) 1.608(0.894)

α = 5 3.548(2.003) 3.539(4.282) 3.526(1.492) 6.266(4.290) 5.686(3.180) 5.379(2.613)

CP CP CP CP CP CP

φ = 0.5 97.96% 98.17% 98.52% 70.59% 65.67% 61.67%

μ = 0.5 98.31% 98.36% 98.62% 79.61% 72.29% 64.35%

α = 3 44.64% 39.49% 29.58% 71.05% 67.27% 63.38%

φ = 0.4 98.30% 98.80% 98.80% 77.40% 74.00% 75.00%

μ = 1.5 99.20% 99.00% 98.90% 83.10% 77.50% 77.20%

α = 5 63.90% 52.30% 47.80% 79.40% 75.80% 76.60%

Table 2 – Estimates of the means and standard deviations of MLE’s and coverage probabilities

obtained from 50, 000 samples using Method 2 for different values of θ and n, using complete

observations as well as censored observations (20% censoring).

Complete observations Censored observations

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
θ

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV IV IV IV IV IV

φ = 0.5 0.675(0.211) 0.686(0.141) 0.689(0.092) 0.759 0.793 0.599 0.429 0.532(0.223)

μ = 0.5 0.572(0.124) 0.571(0.069) 0.570(0.043) 0.713 1.148 0.565 0.399 0.519(0.101)

α = 3 2.576(0.432) 2.493(0.316) 2.450(0.224) 3.282 1.616 3.296 1.283 3.201(0.895)

φ = 0.4 0.646 0.157 0.661(0.105) 0.674 0.071 0.752 0.716 0.543(0.312) 0.456(0.157)

μ = 1.5 1.695 0.170 1.703(0.110) 1.711 0.073 1.876 1.225 1.629(0.333) 1.549(0.131)

α = 5 3.742 0.564 3.619(0.410) 3.538 0.293 4.204 1.602 4.603(1.299) 4.867(1.012)

Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

MLE MLE MLE MLE MLE MLE

φ = 0.5 0.651(0.592) 0.557(0.327) 0.523(0.185) 0.738(0.778) 0.585(0.410) 0.525(0.215)

μ = 0.5 0.605(0.368) 0.537(0.158) 0.514(0.073) 0.673(1.107) 0.538(0.370) 0.499(0.086)

α = 3 3.771(2.135) 3.380(1.349) 3.160(0.779) 3.523(1.842) 3.500(1.419) 3.378(0.967)

φ = 0.4 0.571(0.503) 0.500(0.258) 0.491(0.152) 0.737(0.704) 0.539(0.302) 0.457(0.154)

μ = 1.5 1.681(0.517) 1.591(0.234) 1.574(0.123) 1.818(1.179) 1.593(0.302) 1.523(0.121)

α = 5 5.563(2.763) 4.987(1.676) 4.688(1.204) 4.438(1.787) 4.826(1.425) 5.071(1.083)
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Table 3 – 95% confidence level obtained from 50, 000 samples using Method 2

for different values of θ and n, using complete observations as well as censored

observations (20% censoring).

θ
Complete observations Censored observations

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0.5 83.93% 88.34% 91.63% 94.19% 91.99% 91.55%

μ = 0.5 86.58% 89.31% 91.81% 92.08% 88.56% 86.69%
α = 3 92.95% 94.48% 94.89% 95.58% 96.30% 96.69%

φ = 0.4 91.57% 95.35% 95.35% 98.34% 99.01% 99.09%

μ = 1.5 93.99% 96.08% 96.18% 98.53% 98.44% 97.58%
α = 5 90.64% 91.85% 90.18% 92.79% 94.43% 96.07%

We can observe in the results shown in Tables 1 to 3, that the MLEs are strongly affected by
the initial values. For example, using method 1, for μ = 0.5andn = 50, the average obtained
from N = 50, 000 estimates of μ is equal to 1.816, with standard deviation equals to 1.973.
Other problem using such methodology is that the coverage probability tends to decrease even
considering large sample sizes.

Using our proposed methodology (method 2) it can be seen that in all cases the method gives
good estimates for φ, α and μ. The coverage probabilities of parameters show that, as the sam-
ple size increase the intervals tend to 95% as expected. Therefore, we can easily obtain good
inferences for the parameters of the GG distribution for both, complete or censored data sets.

5.2 A Bayesian analysis

From the Bayesian approach, we can obtain informative hyperparameter for the gamma prior
distribution using the method of moments (11) with mean given by λ = (φ̃, μ̃, α̃), obtained using
the equations (17-19). Additional, we have assumed the variance given by σ 2

θ = (1, 1, 1), σ 2
θ =

(φ̃, μ̃, α̃) and σ 2
θ = (10, 10, 10) to verify which of these values produce better results. The

procedure was replicated considering N = 1, 000 for different values of the parameters.

The OpenBUGS was used to generate chains of the marginal posterior distributions of φ, μ and
α via MCMC methods. The code is given by

model<-function () {

for (i in 1:N) {

x[i] ˜ dggamma(phi,mu,alpha)

}

phi ˜ dgamma(phi1,phi2)

mu ˜ dgamma(mi1,mi2)

alpha˜ dgamma(alpha1,alpha2)

}

Pesquisa Operacional, Vol. 37(2), 2017
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In the case of censored data, we only have to change dggamma(phi,mu,alpha) in the code above

by dggamma(phi,mu,alpha)I(delta[i],). The hyperparameters phi1,phi2,. . . , alpha2 are obtained
by our initial values. The main advantage of using the OpenBUGS is due its simplicity, here,
the proposal distribution for generating the marginal distributions are defined by the program

according to its structure. Therefore we only have to set the data to be fitted. For each simulated
sample 8, 500 iterations were performed. As “burn-in samples”, we discarded the 1000 initial
values. To decrease the autocorrelations bettwen the samples in each chain, the thin considered

was 15, obtaining at the end three chains of size 500, these results were used to obtain the
posterior summaries for φ, μ and α. The convergence of the Gibbs sampling algorithm was
confirmed by the Geweke criterion [7] under a 95% confidence level.

To illustrated the importance of good initial values and informative priors, firstly we considered

a simulation study using flat priors, i.e., prior distributions that have large variance, here we
assume that θi ∼ Uniforme(0, 40), i = 1, . . . , 3 or θi ∼ Gamma(0.01, 0.01). Table 4 displays
the means, standard deviations of the posterior means from 1000 samples obtained using the flat

priors calculated for different values of θ and n.

Table 4 – Means and standard deviations from initial values and posterior means subsequently ob-

tained from 1000 simulated samples with different values of θ and n, using the gamma prior distribu-

tion with θi ∼ Uniform(0, 40) and θi ∼ Gamma(0.01, 0.01).

θi ∼ Uniform(0, 40) θi ∼ Gamma(0.01, 0.01)
θ

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0.5 2.945(2.255) 1.264(1.325) 0.669(0.409) 1.052(0.934) 0.719(0.499) 0.580(0.222)
μ = 0.5 7.454(6.442) 2.114(3.490) 0.646(0.708) 1.785(2.534) 0.772(1.079) 0.549(0.193)
α = 3 3.465(3.673) 3.141(1.740) 3.033(0.867) 8.762(44.485) 3.955(8.192) 3.177(0.916)

φ = 0.4 1.807(1.833) 0.773 0.813) 0.488(0.200) 0.864(0.845) 0.548(0.363) 0.452(0.168)
μ = 1.5 5.246(5.029) 2.210 2.073) 1.587(0.214) 2.634(2.582) 1.730(0.853) 1.551(0.143)
α = 5 6.177(4.707) 5.500 2.853) 5.211(1.536) 9.773(11.967) 6.348(4.353) 5.426(1.680)

From this table, we observe that flat priors with vague information may affect the posterior

estimates, specially for small sample sizes, for instance in the case of n = 50 and α = 3.0
we obtained the mean of the estimates given by 8.762 with standard deviation 44.485 which
is undesirable. On the other hand, tables 5-6 display the means, standard deviations and the

coverage probabilities of the estimates of 1000 samples obtained using the initial values (IV) and
the Bayesian estimates (BE) of the posterior means, calculated for different values of θ and n,
using complete data.

We observed from Tables 5-6 that using the values calculated from equations (17-19) in the

method of moments (11) with mean λ = θ̃ and with variance σ 2
θ = θ̃ to get the hyperparameter

values of the gamma distribution, we obtained very good posterior summaries for φ, μ and α,
under a Bayesian approach.

The parameters estimation were also considered under censored observations (20% of censor-

ing). Here, we used the same procedures described in Martinez et al. [13] to generate the pseudo
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Table 5 – Coverage probabilities with a confidence level of 95% of the estimates of posterior means

obtained from 1000 simulated samples of size n = (50, 100, 200), with different values of θ , using the

gamma prior distribution with λ = (φ̃, μ̃, α̃), σ 2
θ = (1, 1, 1),σ 2

θ = (φ̃, μ̃, α̃) and σ 2
θ = (10, 10, 10) and

complete observations.

θ
σ 2
θ = (1, 1, 1) σ 2

θ = (φ̃, μ̃, α̃) σ 2
θ = (10, 10,10)

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0.5 94.00% 94.60% 95.50% 95.30% 95.80% 95.40% 96.60% 95.50% 95.30%

μ = 0.5 93.00% 94.30% 96.20% 94.90% 95.40% 95.20% 95.20% 95.60% 95.60%

α = 3 94.90% 94.00% 96.00% 95.70% 95.00% 94.80% 96.00% 95.30% 95.40%

φ = 0.4 89.30% 88.20% 89.90% 93.70% 94.40% 93.70% 95.80% 94.90% 94.90%

μ = 1.5 88.90% 88.10% 89.90% 92.40% 92.60% 93.20% 94.90% 94.40% 94.80%

α = 5 86.30% 85.80% 88.80% 93.70% 93.70% 93.20% 96.60% 95.30% 94.60%

Table 6 – Means and standard deviations from initial values and posterior means subsequently obtained

from 1000 simulated samples with different values of θ and n, using the gamma prior distribution with

λ = (φ̃, μ̃, α̃),σ 2
θ = (1, 1, 1),σ 2

θ = (φ̃, μ̃, α̃) and σ 2
θ = (10,10, 10) assuming complete observations.

θ
σ 2
θ = (1, 1, 1) σ 2

θ = (φ̃, μ̃, α̃) σ 2
θ = (10, 10, 10)

n = 50
Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV BE

φ = 0.5 0.674(0.184) 0.741(0.300) 0.676(0.193) 0.729(0.327) 0.667(0.190) 0.893(0.603)

μ = 0.5 0.572(0.097) 0.624(0.166) 0.572(0.101) 0.623(0.177) 0.568(0.100) 0.879(0.611)

α = 3 2.572(0.439) 2.767(0.634) 2.567(0.442) 2.983(0.858) 2.592(0.432) 3.423(1.466)

φ = 0.4 0.629(0.135) 0.641(0.212) 0.629(0.137) 0.636(0.264) 0.625(0.128) 0.706(0.416)

μ = 1.5 1.683(0.142) 1.701(0.205) 1.684(0.145) 1.712(0.256) 1.678(0.138) 1.837(0.481)

α = 5 3.772(0.551) 4.004(0.697) 3.767(0.554) 4.454(1.082) 3.779(0.545) 4.981(1.630)

n = 100 Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV PD

φ = 0.5 0.684(0.126) 0.678(0.240) 0.685(0.129) 0.661(0.258) 0.679(0.125) 0.690(0.372)

μ = 0.5 0.569(0.060) 0.583(0.117) 0.569(0.061) 0.578(0.124) 0.568(0.062) 0.635(0.290)

α = 3 2.489(0.304) 2.805(0.568) 2.495(0.311) 2.981(0.747) 2.502(0.307) 3.238(1.086)

φ = 0.4 0.636(0.099) 0.590(0.166) 0.635(0.095) 0.555(0.204) 0.635(0.098) 0.552(0.277)

μ = 1.5 1.680(0.102) 1.652(0.155) 1.680(0.098) 1.634(0.186) 1.679(0.100) 1.646(0.278)

α = 5 3.698(0.422) 4.143(0.650) 3.701(0.424) 4.650(1.052) 3.707(0.417) 5.112(1.475)

n = 200 Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV BE

φ = 0.5 0.687(0.084) 0.605(0.169) 0.688(0.086) 0.593(0.185) 0.685(0.084) 0.582(0.216)

μ = 0.5 0.569(0.038) 0.545(0.072) 0.570(0.039) 0.543(0.078) 0.569(0.038) 0.544(0.126)

α = 3 2.456(0.216) 2.889(0.498) 2.454(0.224) 2.999(0.629) 2.454(0.221) 3.116(0.750)

φ = 0.4 0.639(0.062) 0.527(0.121) 0.639(0.060) 0.488(0.141) 0.639(0.061) 0.467(0.156)

μ = 1.5 1.684(0.066) 1.602(0.106) 1.683(0.064) 1.574(0.117) 1.683(0.066) 1.561(0.134)

α = 5 3.642(0.292) 4.369(0.622) 3.647(0.288) 4.821(0.958) 3.645(0.287) 5.125(1.223)
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random samples under the same conditions described in the beginning of this section. Tables

7-8 display the means, standard deviations and the coverage probabilities of the estimates of
1000 samples obtained using the initial values and the Bayes estimates of the posterior means,
calculated for different values of θ and n, using censored observations (20% censoring).

Table 7 – Coverage probabilities with a confidence level of 95% of the estimates of posterior means

obtained from 1000 simulated samples of size n = (50, 100, 200), with different values of θ , using the

gamma prior distribution with λ = (φ̃, μ̃, α̃), σ 2
θ = (1, 1, 1),σ 2

θ = (φ̃, μ̃, α̃) and σ2
θ = (10, 10, 10) and

censored observations (20% of censoring).

θ
σ 2
θ

= (1, 1, 1) σ 2
θ

= (φ̃, μ̃, α̃) σ 2
θ

= (10, 10, 10)

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

φ = 0, 5 95.10% 92.20% 94.70% 95.70% 93.50% 94.80% 96.30% 94.00% 93.80%

μ = 0, 5 96.40% 95.70% 96.00% 97.10% 95.70% 94.70% 96.70% 94.80% 94.40%

α = 3 96.00% 94.50% 96.20% 97.20% 95.70% 95.90% 97.70% 95.20% 93.90%

φ = 0.4 87.80% 85.20% 86.20% 94.10% 93.70% 94.30% 96.70% 95.60% 95.50%

μ = 1.5 91.10% 91.20% 93.30% 94.90% 96.00% 95.90% 96.60% 96.60% 95.40%

α = 5 87.30% 88.60% 91.40% 94.80% 95.50% 96.00% 97.10% 97.20% 95.60%

From Tables 7-8 that using the values calculated from equations (17-19) in the method of mo-
ments (11) with mean λ = θ̃ and with variance σ 2

θ = θ̃ are usefull to get the hyperparameter
values of the gamma distribution under censored data allowing us to obtain good posterior sum-

maries for φ, μ and α, under a Bayesian approach.

6 REAL DATA APPLICATIONS

In this section, the proposed methodology is applied using two data sets from the literature. The
GG distribution is assumed to analyze these data sets and the obtained results are compared

with other models such as the Weibull, Gamma and Lognormal distributions, using the Akaike
information criterion (AIC = −2l(α̂; x)+2k), corrected Akaike information criterion (AICc =
AIC + (2 k (k + 1))/(n − k − 1)) and the Bayesian information criterion (B IC = −2l(α̂; x)+
k log(n)), where k is the number of parameters to be fitted and α̂ is the estimate of α. In all cases,
Bayesian approach is used to obtain the estimates of the parameters for the different distributions.
Addionaly, we assume gamma priors with hyperparameters values equal to 0.1 for the parameters

of the Weibull, Gamma and Lognormal distributions. For each case, 30, 000 Gibbs samples were
simulated using MCMC methods taking every 15th generated sample obtaining a final sample of
size 2, 000 to be used to get the posterior summaries.

6.1 Remission times of patients with cancer

In this section, we consider a data set that represents the remission times (in months) of a random
sample of 128 bladder cancer patients [12]. This data set does not has censored values (see
Table 9).
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Table 8 – Means and standard deviations from initial values and posterior means subsequently ob-

tained from 1000 simulated samples with different values of θ and n, using the gamma prior distribu-

tion with λ = (φ̃, μ̃, α̃), σ2
θ = (1, 1, 1), σ2

θ = (φ̃, μ̃, α̃) and σ 2
θ = (10,10, 10) assuming censored

data (20% censoring).

θ
σ 2
θ

= (1, 1, 1) σ 2
θ

= (φ̃, μ̃, α̃) σ 2
θ

= (10, 10, 10)

n = 50
Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV BE

φ = 0.5 0.656(0.186) 0.757(0.302) 0.662(0.196) 0.744(0.330) 0.653(0.187) 0.941(0.638)

μ = 0.5 0.564(0.096) 0.602(0.152) 0.567(0.101) 0.603(0.166) 0.563(0.100) 0.897(0.625)

α = 3 2.635(0.465) 2.840(0.636) 2.623(0.471) 3.098(0.869) 2.648(0.462) 3.657(1.573)

φ = 0.4 0.622(0.159) 0.669(0.229) 0.624(0.165) 0.665(0.284) 0.617(0.148) 0.759(0.445)

μ = 1.5 1.682(0.173) 1.688(0.223) 1.685(0.181) 1.704(0.279) 1.677(0.162) 1.860(0.503)

α = 5 3.831(0.610) 4.041(0.718) 3.824(0.614) 4.503(1.055) 3.844(0.606) 5.060(1.595)

n = 100 Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV BE

φ = 0.5 0.694(0.180) 0.727(0.287) 0.694(0.178) 0.703(0.310) 0.688(0.161) 0.762(0.471)

μ = 0.5 0.575(0.094) 0.583(0.141) 0.576(0.094) 0.578(0.153) 0.572(0.080) 0.672(0.394)

α = 3 2.505(0.360) 2.843(0.606) 2.501(0.357) 3.070(0.830) 2.516(0.359) 3.447(1.338)

φ = 0.4 0.632(0.102) 0.625(0.176) 0.629(0.099) 0.581(0.211) 0.629(0.098) 0.591(0.310)

μ = 1.5 1.680(0.104) 1.645(0.155) 1.676(0.101) 1.621(0.179) 1.677(0.101) 1.657(0.309)

α = 5 3.726(0.451) 4.146(0.642) 3.738(0.448) 4.736(1.056) 3.734(0.444) 5.274(1.573)

n = 200 Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

IV BE IV BE IV BE

φ = 0.5 0.684(0.095) 0.626(0.188) 0.683(0.092) 0.602(0.196) 0.684(0.094) 0.597(0.246)

μ = 0.5 0.569(0.044) 0.536(0.076) 0.569(0.044) 0.528(0.078) 0.568(0.044) 0.534(0.119)

α = 3 2.466(0.249) 2.982(0.583) 2.471(0.250) 3.155(0.738) 2.467(0.249) 3.357(0.998)

φ = 0.4 0.637(0.066) 0.559(0.127) 0.637(0.066) 0.510(0.153) 0.634(0.063) 0.478(0.167)

μ = 1.5 1.681(0.070) 1.593(0.106) 1.681(0.070) 1.563(0.123) 1.678(0.069) 1.542(0.135)

α = 5 3.659(0.314) 4.370(0.605) 3.658(0.307) 4.913(0.976) 3.665(0.308) 5.351(1.297)

From equations (17-19), we have φ̃ = 0.5665, μ̃ = 0.2629 and α̃ = 1.4669. Using (11) and

assuming as mean λ = θ̃ and variance σ 2
θ = θ̃ , we obtain the priors φ ∼ Gamma(0.5665, 1),

μ ∼ Gamma(0.2629, 1) and α ∼ Gamma(1.4669, 1). The posterior summaries obtained from
MCMC methods are given in Table 10.

Figure 2 shows the survival function fitted by the different probability distributions and the em-

pirical survival function. Table 10 presents the results of the AIC, AICc and BIC criteria for the
different probability distributions, considering the blader cancer data introduced in Table 8.

Based on the AIC and AICc criteria, we concluded from the results of Table 11 that the GG
distribution has the best fit for the bladder cancer data.
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Table 9 – Remission times (in months) of a random sample of 128 bladder cancer patients.

0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35

1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54
2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36

3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26
4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32

5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76
6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63

7.66 7.87 7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47

9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03
12.07 12.63 13.11 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62

17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.60 23.63 25.74 25.82
26.31 32.15 34.26 36.66 43.01 46.12 79.05

Table 10 – Posterior medians, standard deviations and 95% credibility intervals for φ,μ and α.

θ Median SD C I95%(θ)

φ 2.5775 0.7485 (1.3444; 4.2175)

μ 0.5712 0.7215 (0.1575; 2.5821)

α 0.6300 0.1110 (0.4789; 0.9183)

Figure 2 – Survival function fitted by the empirical and by different p.d.f considering the bladder cancer

data set and the hazard function fitted by a GG distribution.

6.2 Data from an industrial experiment

In this section, we considered a lifetime data set related to the cycles to failure for a batch of
60 electrical appliances in a life test introduced by Lawless [11] (+ indicates the presence of
censorship).
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Table 11 – Results of AIC, AICc and BIC criteria for different probability

distributions considering the bladder cancer data set introduced in Table 8.

Criteria G. Gamma Weibull Gamma Lognormal

AIC 828.05 832.15 830.71 834.17

AICc 828.24 832.25 830.81 834.27

BIC 836.61 837.86 836.42 839.88

Table 12 – Data set of cycles to failure for a group of 60 electrical appliances in a life test

(+ indicates the presence of censorship).

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210

0.381 0.464 0.479 0.556 0.574 0.839 0.917 0.969 0.991 1.064
1.088 1.091 1.174 1.270 1.275 1.355 1.397 1.477 1.578 1.649

1.702 1.893 1.932 2.001 2.161 2.292 2.326 2.337 2.628 2.785
2.811 2.886 2.993 3.122 3.248 3.715 3.790 3.857 3.912 4.100

4.106 4.116 4.315 4.510 4.580 4.580+ 4.580+ 4.580+ 4.580+ 4.580+

From equations (17-19), we have φ̃ = 0.5090, μ̃ = 0.2746 and α̃ = 1.7725. Using (11) and

assuming as mean λ = θ̃ and variance σ 2
θ = θ̃ , we elicit the priors φ ∼ Gamma(0.5090, 1),

μ ∼ Gamma(0.2746, 1) and α ∼ Gamma(1.7725, 1). The posterior summaries obtained from
MCMC methods are given in Table 13.

Table 13 – Posterior medians, standard deviations

and 95% credibility intervals for φ,μ and α.

θ Median SD C I95%(θ)

φ 0.2689 0.1856 (0.1097; 0.8193)

μ 0.1988 0.0632 (0.1538; 0.3685)

α 2.5850 1.3094 (1.0629; 5.6785)

Figure 3 shows the survival function fitted by probability distributions and the empirical survival
function. Table 14 presents the results of the AIC, AICc and BIC criteria for different probability

distributions, considering the industrial failure data set introduced in Table 12.

Table 14 – Results of DIC criteria, AIC and BIC for different probability

distributions considering the data of cycles to failure introduced in Table 11.

Criteria G. Gamma Weibull Gamma Lognormal

AIC 199.19 202.11 201.80 216.55

AICc 199.62 202.32 202.01 216.76

BIC 205.47 206.30 205.99 220.74
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Figure 3 – Survival function fitted by the empirical and different p.d.f considering the data set related to

the industrial data set and the hazard function fitted by a GG distribution.

Based on the AIC and AICc criteria, we concluded from Table 14 that the GG distribution has
the best fit for the industrial data. Additionally, the GG distribution is the only one between
probability distributions assumed that allows bathtub shape hazard. This is an important point

for the use of the GG distribution in applications.

7 CONCLUDING REMARKS

The generalized gamma distribution has played an important role as lifetime data, providing great
flexibility of fit. In this paper, we showed that under the classical and Bayesian approaches, the

parameter estimates usually do not exhibit stable performance in which can lead, in many cases,
to different results.

This problem is overcome by proposing some empirical exploration methods aiming to obtain
good initial values to be used in iterative procedures to find MLEs for the parameters of the GG

distribution. These values were also used to elicit empirical prior distributions (use of empirical
Bayesian methods). These results are of great practical interest since the GG distribution can be
easily used as appropriated model in different applications.
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APPENDIX A

Proof. Since
α
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where c′
1, c′

2, g′
1, g′

2, g′
3 and g′

4 are positive constants such that the above inequalities occur. For
more details and proof of the existence of these constants, see Ramos [19]. Therefore, we have:
d4 = s1 + s2 + s3 + s4 < ∞. �
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