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ABSTRACT. Bundle methods are often the algorithms of choice for nonsmooth convex optimization, es-

pecially if accuracy in the solution and reliability are a concern. We review several algorithms based on the

bundle methodology that have been developed recently and that, unlike their forerunner variants, have the

ability to provide exact solutions even if most of the time the available information is inaccurate. We adopt

an approach that is by no means exhaustive, but covers different proximal and level bundle methods dealing

with inexact oracles, for both unconstrained and constrained problems.

Keywords: bundle methods, inexact oracles, nonsmooth convex optimization.

1 INTRODUCTION

Nonsmooth convex optimization (NCO) appears often in connection with real-life problems that
are too difficult to solve directly and need to be decomposed. Typically, Lagrangian relaxation or
Benders’ decomposition approaches replace the hard problem by a sequence of simpler problems,
corresponding, in general, to an iteration of some nonsmooth convex method.

As in Nonlinear Programming, NCO methods define iterates using oracle information, which in
the nonsmooth setting comes in the form of a function value and a subgradient. When dealing
with the hard problems mentioned above, usually the oracle information cannot be computed
exactly (the procedure may be too time consuming, or just impossible, for example, if differential

equations or continuous stochastic processes are involved). We refer to this situation as dealing
with an inexact oracle; for many examples in the energy sector, see [49].

In 1975 Claude Lemaréchal and Philip Wolfe independently created bundle methods to minimize

a convex function for which only one subgradient at a point is computable, [29] and [54]. The
short “historical” story [39] discusses the different developments that resulted in theVU-bundle
variants [38], that are superlinearly convergent with respect to so-called serious steps. Such a
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648 BUNDLE METHODS IN THE XXIst CENTURY: A BIRD’S-EYE VIEW

convergence rate was once deemed unattainable for nonsmooth functions, thus explaining the

“science fiction” wording in the title of [39].

Since their introduction, and for practically 25 years, the convergence theory of bundle meth-
ods could only handle exact oracles. It was only in 2001 that the work [17] opened the way to
inexactness. It was followed by [53] and [27].

For a long time bundle algorithms have been considered as the methods of choice for NCO

problems requiring reliable and accurate solutions. The added ability of handling inexact oracles
made the new variants even more interesting for real-life applications, especially those involving
stochastic programming models. Works such as [43, 44, 2] give a flavor of the many different

ways oracle inexactness can be exploited within a bundle method – to eventually solve the hard
problem in an exact way. As shown by the numerical experience in [43], for a large battery of
two-stage stochastic linear programs it is possible to save up to 75% of the total computational

time (while still finding an exact solution) just by letting the bundle method control how accurate
the oracle information should be at consecutive iterates. The main idea is that there is no gain
in “wasting” time by computing exact oracle information at the so-called null steps; we do not

enter into more details here, but refer instead to [43].

In this work we focus on the main ideas behind several variants of bundle methods, rather than on
technicalities or fine details. After laying down a minimal background in Section 2, we consider
separately unconstrained and constrained methods in Section 3 and 4, respectively. To illustrate

the importance of modeling when solving real-life optimization problems, Section 5 contains an
example of hydroreservoir management that can be cast into two different formulations, calling
for unconstrained or constrained methods. Section 6 concludes with some closing remarks and

comments on future research.

2 ORACLE ASSUMPTIONS AND ALGORITHMIC PATTERN

As explained in [48], the versatility of bundle methods dealing with inexact oracles is best ex-
ploited when the structure of the NCO problem is taken into account. For this reason, we con-

sider below two structured optimization problems, defined over a polyhedral set X ⊂ �n and
involving two convex functions, f : �n → � and h : �n → �, possibly nonsmooth:

• unconstrained or linearly constrained problem

υopt := min
x

f (x) + h(x) s.t. x ∈ X . (1a)

• problem with nonlinear convex constraints

υopt := min
x

f (x) s.t. x ∈ X and h(x) � 0 . (1b)

Pesquisa Operacional, Vol. 34(3), 2014
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The interest in considering separately the two functions f and h lies in their oracles. More pre-

cisely, the function f is easy: for each given xk ∈ X the f -oracle provides{
the exact value of the function f (xk ) ,

and an exact subgradient gk ∈ ∂ f (xk ) .
(2)

In contrast, the function h is hard to evaluate and, hence, only approximate values are available.
Accordingly, at any given point xk ∈ X the h-oracle outputs the estimates{

hk
x = h(xk ) − ηk

h ,

sk ∈ �n such that h(·) � hk
x + 〈

sk, · − xk
〉 − η+ ,

(3)

where the errors ηk
h and η+ can be unknown. It follows from the oracle definition that h(xk ) �

hk
x + 〈

sk , xk − xk
〉−η+ = h(xk)−(ηk

h +η+), showing that ηk
h +η+ ≥ 0. Hence, the approximate

subgradient is an (ηk
h + η+)-subgradient of h at xk :

∀x ∈ �n h(x) ≥ h(xk ) +
〈
sk, x − xk

〉
− (ηk

h + η+) with ηk
h + η+ ≥ 0 .

An exact oracle corresponds to ηk
h = η+ = 0. When only η+ = 0, the oracle is said to be of

the lower type: the linearization generated with the oracle information stays below the function
everywhere. In contrast, when η+ > 0, the oracle is of the upper type, and the linearizations may

cut off portions of the graph of h. Several examples of such oracles are given in [44]; we just
mention here that Lagrangian relaxation is a typical source of oracles of the lower type.

Algorithms in the bundle family use oracles (2) and (3) to define linearizations at iterates x j ,
for instance ⎡

⎢⎢⎣
f̄ j (x) := f (x j ) + 〈

g j , x − x j
〉

h̄ j (x) := h j
x + 〈

s j , x − x j
〉

( f +h) j (x) := f (x j ) + h j
x + 〈

g j + s j , x − x j
〉
.

(4)

At the k-th iteration, the bundle is defined by past oracle information accumulated in some
index set Jk ⊂ {1, 2, . . . , k}. Putting together the corresponding linearizations gives cutting-
plane models, which can be built individually for each function, or for their sum:⎡

⎢⎢⎣
f̌k (x) := max j∈Jk f̄ j (x) (≤ f (x))

ȟk(x) := max j∈Jk h̄ j (x) (≤ h(x) + η+)̂

( f +h)k(x) := max j∈Jk ( f +h) j (x) (≤ f (x) + h(x) + η+) .

(5)

By definition, the models above are piecewise linear convex functions.

The modeling functions are used to replace f and h in (1) and define iterates {xk } ⊂ X at which
the oracles will be called. Such a replacement can be done in different ways, to be specified later
on. For now, and to cover both problems in (1), we just write the resulting k-th subproblem as the

Pesquisa Operacional, Vol. 34(3), 2014
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650 BUNDLE METHODS IN THE XXIst CENTURY: A BIRD’S-EYE VIEW

minimization of an abstract objective function Ok , depending on a parameter set pars, specific

to each considered bundle variant. Accordingly, the next iterate is given by

xk+1 ∈ arg minOk(x;pars) s.t. x ∈ X . (6)

Typically, the bundle-variant-dependent set pars contains

• the convex model

̂

( f +h)k of f + h (or the sum of models f̌k and ȟk of f and h);

• a stability center x̂ k , usually an element in the sequence {xk }, together with a test to deter-

mine when the center can be updated (for example, to xk+1);

• an optimality measure to stop the iterations (such as upper and lower bounds for the opti-
mal value of the problem);

• certain algorithmic parameters, to be updated at each iteration.

The main concern when specifying (6) is that the corresponding subproblem is easy, because it
needs to be solved at each iteration of the bundle method. A simple illustration, not belonging
to the bundle family but still fitting the abstract format above, is the cutting-plane method of [9]

and [19], with subproblems fully characterized by

pars :=
̂

( f +h)k and Ok(x;pars) :=
̂

( f +h)k(x)

yielding a linear programming problem (LP) in (6):

xk+1 ∈ arg min

̂

( f +h)k(x) s.t. x ∈ X

(recall the set X is defined by linear equality and inequality constraints.) Bundle methods can
be seen as stabilized forms of the cutting-plane algorithm, well known for its instability and

slow convergence. Different stabilization devices result in different bundle algorithms, such as
the proximal variant [33] or the level one [30]. For these methods, the respective parameter sets
pars involve more objects than just

̂

( f +h)k and, as shown in Sections 3 and 4 below, give

quadratic programming (QP) subproblems (6).

Once the parameter set and the modeling objective function in (6) are specified, the method needs
to define updating rules for the elements in pars, including a stopping test. The main steps of
all the algorithms are given below.

Algorithmic Pattern 1. Oracles for f and h, a model Ok , and a rule for defining the parameter
set pars are given.

STEP 0. For an initial iterate x1, call the oracles to obtain the information ( f (x1), g1) and
(h1

x , s1). Set k = 1 and initialize J1 = {1}, x̂1 = x1 .

STEP 1. Solve (6) to obtain xk+1 .

Pesquisa Operacional, Vol. 34(3), 2014
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STEP 2. Perform a stopping test based on the optimality measure in pars.

STEP 3. If xk+1 was not considered close enough to optimal, call the oracles at xk+1 to obtain

the information
( f (xk+1), gk+1) and (hk+1

x , sk+1) .

STEP 4. Depending on a test measuring progress towards the goal of solving (1), specified in

pars, decide whether or not the stability center is to be replaced:

set x̂k+1 ∈ X .

STEP 5. Update pars by the given rule. Increase k by 1 and loop to Step 1. �

The above pattern is merely a sketch of an algorithm. Different models and different updating
rules for the stability center define different methods. The stopping test performed in Step 2

depends, naturally, on the bundle method variant. In what follows we will make each Step in
the Algorithmic Pattern 1 more precise, for different bundle method variants. In order to ease
the presentation, we split our analysis into the two instances considered in (1), starting with the

linearly constrained problem (1a).

3 UNCONSTRAINED OR LINEARLY CONSTRAINED SETTING

The algorithms considered in this section are suitable for problems with simple constraints (such
as linear) or none at all, as in (1a). We start with the most well known variant, the proximal
bundle method, [32, 25, 33, 15]; see also [37, 17, 53, 7, 38, 27, 24, 11, 45, 34, 44, 50].

3.1 Proximal Bundle Methods

This family defines subproblems based on the equivalence between minimizing a convex function
and finding a fixed point of the proximal point operator, [40]:

x̄ solves (1a) ⇐⇒ x̄ solves min
x∈X f (x) + h(x) + 1

2t
|x − x̄|2M ,

for some proximal stepsize t > 0 and a norm induced by a positive definite matrix M . To make

the equivalence above implementable, methods in this variant replace x̄ by the current stability
center and f + h by some model, which can aggregate the linearizations and use

̂

( f +h)k , or
disaggregate the information and use individual cutting-plane models for f and h:

pars =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

model

{ ̂

( f +h)k if aggregate variant

f̌k + ȟk if disaggregate variant
stability center x̂ k ∈ {xk}
stability function | · |M

prox-stepsize tk > 0 .

Pesquisa Operacional, Vol. 34(3), 2014
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652 BUNDLE METHODS IN THE XXIst CENTURY: A BIRD’S-EYE VIEW

Instead of the M-norm, the generalized bundle methods [15] use as stabilizing term a closed

convex function satisfying certain properties.

The corresponding QP subproblems (6) are

• Aggregate model: Ok(x;pars) =

̂

( f +h)k(x) + 1
2tk

|x − x̂ k |2M .

• Disaggregate model: Ok(x;pars) = f̌k (x) + ȟk(x) + 1
2tk

|x − x̂ k |2M .

Since the objective function in both subproblems is strongly convex, the new iterate xk+1 defined

by (6) is unique.

Depending on the structure of the problem to be solved, other modeling choices are possible. In
[50], for instance, the hard function is the composition of a smooth mapping with a positively
homogeneous convex function. The model in pars results from composing a cutting-plane

model of the latter with a first Taylor expansion of the former (at the current stability center).
Telecommunication networks often exhibit separable structure, that is exploited in [16] via a
special Dantzig-Wolfe decomposition approach and in [31] by using a model that sums a cutting-

plane model of the hard function and a a second order expansion of the (smooth) easy term.

For simplicity in what follows we focus on a proximal bundle variant using the aggregate model̂

( f +h)k and | · |M = | · |, the Euclidean norm.

Subproblem definition

We now provide all the necessary ingredients to make the Algorithmic Pattern 1 an imple-

mentable method, when the proximal subproblem uses the aggregate model, so that (6) becomes

xk+1 = arg min
x∈X

̂

( f +h)k(x) + 1

2tk

∣∣∣x − x̂ k
∣∣∣2 , (7)

and the unique solution to (7) is

xk+1 = x̂ k − tk(G
k + Nk) with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gk :=
∑
j∈Jk

αk
j (g

j + s j ) ∈ ∂

̂

( f +h)k(x
k+1)

Nk := − xk+1 − x̂ k

tk
− Gk ∈ ∂iX (xk+1),

(8)

where iX denotes the indicator function of the set X . As for the simplicial multiplier αk in (8),
it satisfies, for all j ∈ Jk :∑

j∈Jk

αk
j = 1 , αk

j ≥ 0 , αk
j [

̂

( f +h)k(x
k+1) − ( f +h) j (x

k+1)] = 0.

The complementarity relations above, in particular, allow to eliminate a posteriori inactive lin-

earizations without losing relevant information but keeping the QP subproblems not too large.

Pesquisa Operacional, Vol. 34(3), 2014
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The resulting selection mechanism takes in Step 5 of the Algorithmic Pattern 1 a bundle set

satisfying
Jk+1 ⊃ { j ∈ Jk : αk

j > 0} ∪ {k + 1}
to define the next model

̂

( f +h)k+1 given in (5). An even more economical bundle, called com-
pressed, can be built using the aggregate linearization defined in (11) below. As shown in [27]
and [44], these strategies save storage without impairing convergence.

Stability Center and Optimality Certificate

The rule to update the stability center x̂ k must assess the quality of the candidate xk+1 in terms

of the goal of solving (1a). Therefore, if the iterate xk+1 provides enough decrease with respect
to the “best” available value, f (x̂ k ) + hk

x̂ , the stability center is changed to xk+1. In the bundle
jargon setting x̂ k+1 = xk+1 is called making a “serious” step. This occurs when, for an Armijo-

like parameter m ∈ (0, 1),

f (xk+1) + hk+1
x ≤ f (x̂ k ) + hk

x̂ − m
(

f (x̂ k ) + hk
x̂ −

̂

( f +h)k(x
k+1)

)
. (9)

The rightmost term above is a predicted improvement in the sense that it measures the dis-
tance between the best available value f (x̂ k) + hk

x̂ and the best value predicted by the model,̂

( f +h)k(x
k+1).

In this variant, the certificate of optimality depends on two terms, the predicted improvement

employed in (9) and the direction, given by the sum of the gradient and the normal element in
(8). The following object combines both terms

φk := ( f (x̂ k) + hk
x̂ ) −

̂

( f +h)k(x
k+1) +

〈
xk+1, Gk + Nk

〉
, (10)

and ensures convergence of the method whenever there exists a subsequence {(φk , Gk +Nk )}k∈K

that converges to (φ, 0), for some φ ≤ 0, [44, Theorem 3.2]. For this reason, an optimality mea-
sure for proximal bundle algorithms is to require both φk ≤ 0 and

∣∣Gk + Nk
∣∣ to be sufficiently

small. When the serious-step sequence is bounded, this test boils down to the more traditional

criterion, that checks if the approximate subgradient Gk + Nk ∈ ∂εk

(
( f +h) + iX

)
(x̂ k ) is small

enough, where εk ≥ 0, which depends on the errors ηh + η+, must also be sufficiently small.

Impact of inexactness

When the hard function h is exactly evaluated, or the oracle is of lower type, the definition of
Gk + Nk in (8) implies that the aggregate linearization stays always below the sum of functions:

( f +h)a(x) :=

̂

( f +h)k(x
k+1) +

〈
Gk + Nk, x − xk+1

〉
≤ f (x) + h(x) for all x ∈ X . (11)

In particular, the predicted improvement employed in (9) is always nonnegative for exact oracles
and so is the difference f (x̂ k ) + hk

x̂ − ( f +h)a(x̂
k ). In contrast, for lower and upper oracles the

difference satisfies only the inequality

( f (x̂ k ) + hk
x̂ ) − ( f +h)a(x̂

k ) ≥ −(ηk
h + η+) .

Pesquisa Operacional, Vol. 34(3), 2014
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Such difference can be negative, entailing difficulties in the convergence analysis. In order to

overcome this drawback, whenever this difference is too negative the prox-parameter can be
increased in Step 2 of the Algorithmic Pattern 1, as in [27]. The following related rule, based on
a relative criterion, was considered in [3] and [44]:

whenever
( f (x̂ k ) + hk

x̂ ) − ( f +h)a(x̂
k )

tk
∣∣Gk + Nk

∣∣2 ≤ −β set tk = 10tk and loop to Step 1, (12)

for a parameter β ∈ (0, 1) chosen at the initialization step. By making use of the above simple
rule, and preventing tk from decreasing before getting a “good candidate” xk+1, the proximal
bundle algorithm remains convergent. Clearly, convergence is ensured up to the oracle accuracy:

the “optimal” value found by the algorithm has an error not larger than the precision ηh + η+.
The partly asymptotically exact variants let the accuracy vary with the iterates in a manner that
drives ηk

h + ηk+ to 0 at serious steps, hence yielding exact solutions in the limit; we refer to [44]

for further information.

It is often the case that the QP subproblem solution takes a significant proportion of the total
computational time. The aggregate linearization (11) plays an important role for controlling the
QP size and making iterations less time consuming. Proximal bundle methods, and some level

variants with restricted memory, work with models in (5) whose index set Jk can be compressed
in Step 5 of the Algorithm Pattern 1. More precisely, for convergence purposes, it is enough
to include in the new bundle set Jk+1 the linearization of the last iterate and the aggregate lin-

earization (11). Nevertheless, the speed of convergence may be impaired if the bundle is too
economical; in this case, the selection mechanism may offer a better trade-off between number
of iterations to reach convergence and the time spent in each individual iteration.

3.2 Level Bundle Methods

The level bundle method was proposed in [30] for convex unconstrained and constrained opti-
mization problems, saddle-point problems, and variational inequalities. When compared to the
proximal family, the level class can be considered as making primal-dual approximations, in

the following sense. Start by rewriting the proximal point operator equivalence, multiplying the
minimand therein by the positive factor t :

x̄ solves (1a) ⇐⇒ x̄ solves min
x∈X t ( f (x) + h(x)) + 1

2
|x − x̄|2M .

Then, interpreting this factor as a multiplier gives the relation

x̄ solves (1a) ⇐⇒ x̄ solves

⎧⎨
⎩

min
x∈X

1
2 |x − x̄|2M

s.t. f (x) + h(x) ≤ f (x̄) + h(x̄) .

Once again, to make the equivalence above implementable, methods in the level variant replace
x̄ by the current stability center, f + h by some (aggregate or disaggregate) model, and the right

Pesquisa Operacional, Vol. 34(3), 2014
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hand side term in the constraint by a level parameter. Also, the M-norm is extended to general

stability functions derived from a smooth strongly convex function ω : �n → �+ that can yield a
subproblem that is conic and no longer quadratic. Typically, the parameter set in the level variant
is

pars =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

model

{ ̂

( f +h)k if aggregate variant

f̌k + ȟk if disaggregate variant

stability center x̂ k ∈ X ,

stability function ω(x) − 〈∇ω(x̂ k ), x − x̂ k
〉
,

level parameter f k
lev ∈ ( f k

low, f k
up), for

lower and upper bounds f k
low ≤ υopt and f k

up ≥ υopt .

As mentioned in [6], the function ω can be chosen to exploit the geometry of the feasible set X
(that may be non-polyhedral), to get nearly dimension-independent complexity estimates of the

maximum number of iterations necessary to reach an optimality gap f k
up − f k

low inferior to a given
tolerance.

Complexity estimates are obtained if the feasible setX is compact, an assumption present in most
level bundle methods, [30, 26, 12, 6, 28, 47]. Level bundle methods able to deal with unbounded

feasible sets have an asymptotic analysis instead; we refer to [8, 43, 5, 35] and [12, 43, 35] for
variants handling exact and inexact oracles, respectively.

Subproblem Definition

In this case, subproblem (6) has the form

xk+1 = arg min
x∈X ω(x) −

〈
∇ω(x̂ k ), x − x̂ k

〉
s.t.

̂

( f +h)k(x) ≤ f k
lev . (13)

For the (canonical) stability function ω(x) = 1
2 〈x, x〉 in particular, subproblem (13) is the

quadratic program

xk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min 1
2

∣∣x − x̂ k
∣∣2

s.t.

̂

( f +h)k(x) ≤ f k
lev

x ∈ X ,

corresponding to the orthogonal projection of the stability center x̂ k onto the polyhedronX∩Xk
lev,

for

Xk
lev := {

x ∈ �n :

̂

( f +h)k(x) ≤ f k
lev

}
, (14)

a nonempty set, since the level parameter f k
lev ≥ minx∈X

̂

( f +h)k(x).

Similarly to the proximal variant, the optimality conditions for the QP subproblem above give an
iterate xk+1 as in (8), only that now tk is replaced by μk = ∑

j∈Jk
αk

j and

Gk = 1

μk

∑
j∈Jk

αk
j (g

j + s j ) ∈ ∂

̂

( f +h)k(x
k+1)

Pesquisa Operacional, Vol. 34(3), 2014
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for a Lagrange multiplier αk that is no longer simplicial but conical and satisfies the following

relations for all j ∈ Jk∑
j∈Jk

αk
j ≥ 1 , αk

j ≥ 0 , αk
j

[
( f +h) j (x

k+1) − f k
lev

] = 0,

Unlike the proximal bundle variant, in the level family the dual variables of problem (13) can be
unbounded.

Stability Center and Optimality Certificate

The rule to update the stability center x̂ k is more flexible than in the proximal family. For exact

oracles, the initial article [30] sets x̂ k = xk for all k and, hence, does not have the restricted
memory feature: with this approach compression is not possible. The proximal level variant [26]
updates the center using the proximal bundle method rule (9) and, as such, works with restricted

memory; similarly for [8] and [35]. Finally, [5] keeps the stability center fixed along the whole
iterative process by setting x̂ k = x̂1 for all k.

The optimality certificate checks the gap between the upper and lower bounds that also define
the level parameter

f k
low := minx∈X

̂

( f +h)k(x).

f k
up := min j≤k{ f (x j ) + h j

x }

}
⇒ f k

lev := γ f k
low + (1 − γ ) f k

up ,

for some coefficient γ ∈ (0, 1). For polyhedral feasible sets X , the computation of the lower
bound amounts to solving an LP; for more economical alternative definitions of the lower bound,

we refer to [43].

When the feasible set X is compact, the stopping test in Step 2 of Algorithmic Pattern 1 checks
if the optimality gap f k

up − f k
low is below some tolerance. For the unbounded setting the stopping

test of the proximal bundle method must be considered as well: stop either when the optimality

gap is sufficiently small, or when both
∣∣Gk + Nk

∣∣ and φk are small.

Impact of Inexactness

It was shown in [41] that if the feasible set is compact, no additional procedure needs to be done
to cope with inexactness from the oracle. The non-compact setting is more intricate. Basically,
the level parameter remains fixed when the oracle error is deemed too large, using the test (12)

to detect large “noise”. For more information on how to deal with oracle errors in level bundle
methods when in (1a) the feasible set is unbounded see [35].

3.3 Doubly Stabilized Bundle Methods

It is often observed empirically that generally proximal bundle methods perform better than the
level variants when X = �n in problem (1a). On the other hand, the situation is reversed when
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the feasible set is a compact polyhedron. The doubly stabilized bundle method [46] combines in

a single algorithm the main features of the proximal and level methods, in an effort to exploit the
best features of both variants.

A possible parameter set in this variant is

pars =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

model

{ ̂

( f +h)k if aggregate variant

f̌k + ȟk if disaggregate variant

stability center x̂ k ∈ {xk } ,

stability function | · | ,
prox-stepsize tk > 0 ,

level parameter f k
lev ∈ ( f k

low, f k
up), for

lower and upper bounds f k
low ≤ υopt and f k

up ≥ υopt .

Subproblem Definition

Letting iXk
lev

(·) denote the indicator function of the level set (14), the objective function of sub-
problem (6) is given by

Ok(x;pars) =

̂

( f +h)k(x) + 1

2tk

∣∣∣x − x̂ k
∣∣∣2 + iXk

lev
(x) .

As long as the level set Xk
lev is nonempty, the new iterate is given by the following particulariza-

tion of subproblem (6):

xk+1 = arg min
x∈X

̂

( f +h)k(x) + 1

2tk

∣∣∣x − x̂ k
∣∣∣2 + iXk

lev
(x) , (15)

which can be rewritten as

xk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arg min

̂

( f +h)k(x) + 1
2tk

∣∣x − x̂ k
∣∣2

s.t.

̂

( f +h)k(x) ≤ f k
lev

x ∈ X .

Lemma 2 in [46] shows that the solution xk+1 of the QP (15) solves either (7) or (13) (when
ω(x) = 1

2 〈x, x〉 in the latter problem), so the doubly stabilized variant indeed combines the
proximal and level methods. The numerical experiments reported in [46] show a gain in perfor-

mance, likely due to the increased versatility of this variant.

The unique QP solution is characterized as follows; see [46, Prop. 2.1]:

xk+1 = x̂ k − tkμk (G
k + Nk) with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gk := 1

μk

∑
j∈Jk

αk
j (g

j + s j ) ∈ ∂

̂

( f +h)k(x
k+1)

Nk := − xk+1 − x̂ k

tkμk
− Gk ∈ ∂iX (xk+1).
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The multipliers αk ≥ 0 and μk ≥ 1 satisfy the following relations for all j ∈ Jk

μk =
∑
j∈Jk

αk
j , λk = μk − 1

αk
j

[ ̂

( f +h)k(x
k+1) − ( f +h) j (x

k+1)
] = 0 , λk

[ ̂

( f +h)k(x
k+1) − f k

lev

] = 0 .

As in the previous methods, the αk
j -multipliers can be employed to select active linearizations.

With this variant, the compression mechanism is also applicable.

Stability Center and Optimality Certificate

The rule to update the stability center x̂ k is (9), as in the proximal bundle method. The stopping
test combines the proximal and level criteria: the algorithm stops when either

∣∣Gk + Nk
∣∣ and φk

are small, or when the optimality gap is close to zero.

An additional bonus is that the μk-multipliers can be used to update the prox-stepsize. Specifi-
cally, in view of the optimality conditions above, given some γ ∈ (0, 1), the rule

sets tk+1 = γ tk in case of null step and tk+1 = μk tk if xk+1 is a serious iterate.

Impact of Inexactness

As shown in [46], a distinctive feature of this variant is that it can be employed with both exact
or inexact oracles without any changes, as long as the last “proximal step” linearization is kept
in the information bundle.

Having laid down the background for problems with simple constraints, we now turn our atten-
tion to the constrained problem (1b).

4 CONSTRAINED SETTING

In spite of having only one scalar constraint, formulation (1b) is general and covers problems
with m scalar convex constraints h j (x) ≤ 0 , j = 1, . . . m, just by taking

h(x) := max
j=1,...,m

h j (x) .

A key definition in NCO is the so-called improvement function, a merit function which trans-
forms (1b) into an unconstrained problem. The potential interest of such reformulation is to
make it possible for algorithms to work without forcing feasibility. Indeed, constrained bundle
methods such as those in [36] and [21, Ch. 5] can only work with feasible points. Although such
a setting can be useful in some cases, there are also some applications for which the problem
of computing one feasible point is as difficult as to solve the optimization problem itself (an
example is the hydroreservoir management in [3, 2] mentioned in Section 5 below). For such
applications, infeasible methods are of foremost importance. Using exact penalty objective func-
tions as in [20, 22] is one possibility, keeping in mind that estimating a suitable value of the
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penalty parameter is sometimes a delicate task. In what follows we focus on methods developed
under a different paradigm, making use of improvement functions. For another alternative, we
refer to the filter method in [18].

4.1 Improvement Function

When the optimal value υopt of problem (1b) is known, a direct reformulation of (1b) consists in
minimizing the function max{ f (x) − υopt, h(x)} over the set X . Since often the optimal value
is not available, instead one considers approximations of the form

F(x; τ k
1 , τ k

2 ) := max{ f (x) − τ k
1 , h(x) − τ k

2 } for targets

{
τ k

1 ≈ υopt

τ k
2 ≈ 0 ,

(16)

which will be in turn modeled by cutting-plane functions.

The improvement function (16) finds a compromise between optimality and feasibility, repre-
sented by the first and second terms in the max-operation, respectively. The target choice depends
on the method; [30] takes τ k

1 := f k
low, a lower bound for υopt, and sets τ k

2 := 0; in [23], the
first target is the sum of the objective function value at the current stability center and a weighted
measure of its feasibility; and other rules are considered in [23, 51, 3].

As for the unconstrained case, we revise different bundle variants suited to (1b), starting with the
proximal family.

4.2 Constrained Proximal Bundle Methods

The method introduced in [51] takes the current serious step function value for the first target
and τ k

2 = 0 and applies an unconstrained proximal bundle method to the function

Fk(x) := max
{

f (x) − f (x̂ k ), h(x)
}

.

When the next serious iterate is generated, the first target is replaced accordingly, making the
necessary changes to the bundle. These changes are not straightforward because, as explained in
[51], ensuring descent for the improvement function above does not necessary entail descent for
the objective in (1b).

The parameters characterizing this family of methods is

pars =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

model 
k(x) := max{ f̌ (x) − f (x̂ k ), ȟ(x)} ,

stability center x̂ k ∈ {xk } ,

stability function | · | the Euclidean norm ,

prox-stepsize tk > 0 .

Subproblem Definition

In this variant, the objective function in (6) is

Ok(x;pars) = 
k(x) + 1

2tk

∣∣∣x − x̂ k
∣∣∣2 ,

Pesquisa Operacional, Vol. 34(3), 2014
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yielding a QP problem, with unique solution as in (8) written with ∂

̂

( f +h)k(x
k+1) therein re-

placed by

∂
k (x
k+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ f̌ (xk+1) if f̌ (xk+1) − f (x̂ k ) > ȟ(xk+1),

conv{∂ f̌ (xk+1)
⋃

∂ȟ(xk+1)} if f̌ (xk+1) − f (x̂ k ) = ȟ(xk+1),

∂ȟ(xk+1) if f̌ (xk+1) − f (x̂ k ) < ȟ(xk+1).

Stability Center and Optimality Certificate

The stability center, which also defines the first target, is changed when the current improvement
function is sufficiently reduced using a test akin to (9), i.e.,

Fk(x
k+1) ≤ Fk (x̂

k) − m
(

Fk(x̂
k ) − 
k(x

k+1)
)

.

Because the improvement function is a max-function, the test requires progress on both opti-
mality and feasibility criteria. Note also that, as Fk(x̂ k ) = max{0, h(x̂ k )}, when the center is
infeasible it is possible that f (x̂ k+1) > f (x̂ k ). So, outside the feasible region, the method is not
monotone with respect to f but it is monotone with respect to h, thus decreasing infeasibility.
The situation is reversed once a feasible stability center is found.

The non-straightforward changes in the bundle alluded above refer to the fact that when x̂ k+1 =
xk+1, the bundle that was used to model the function Fk must now be adapted to model the new
improvement function Fk+1(x) = max{ f (x) − f (xk+1), h(x)}. We refer to Section 3 in [51]
for details.

Approximate optimality is declared when the center satisfies the inclusion Gk + Nk ∈ ∂εk Fk(x̂ k )

with both
∣∣Gk + Nk

∣∣ and εk sufficiently small. When calculations are exact or for inexact oracles
with bounded X , this test boils to the one using φk from (10).

Impact of Inexactness

Suppose now the constraint h in (1b) is hard to compute. The ideas above were generalized
to handle inexact oracles in [3], using a test similar to (12) mutatis mutandis. The extension
addresses two important issues, described below.

• The targets in the improvement function are more general:

τ k
1 = f (x̂ k) + ρk max{hk

x̂ , 0} and τ k
2 = σk max{hk

x̂ , 0}
for parameters ρk ∈ [0, ∞] and σk ∈ [0, 1] such that 1 − σk + ρk is bounded away from
zero. The function Fk from (16) is recovered by taking σk = ρk = 0 at all iterations,
a setting that may slow down the convergence when getting close to the boundary of the
feasible set, due to zigzagging. Taking ρk > 0 prevents oscillating when close to a solution
and may be beneficial for the speed of convergence. Note also that the target choice also
allows for driving ρk to infinity, as in an exact penalty approach.
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• Rather than requiring descent for the improvement function, the stability center is updated
when either the center is feasible and the new point is feasible and gives descent for the
objective function, or the center is infeasible and the new point reduces infeasibility. This
weaker condition is likely to update serious steps more often.

4.3 Constrained Bundle Methods in the Level Family

The first constrained level method able to deal with inexactness was proposed by [12], assuming

the oracle is of the lower type with vanishing errors, that is ηk
h → 0. Further improvements,

incorporating the on-demand accuracy setting from [43], were considered in [13]. The basic
idea in these articles is to apply some unconstrained level bundle method to solve the linearly
constrained problem minx∈X Fk(x) where

Fk (x) := F(x; f k
low, 0) from (16) and with f k

low ↑ υopt .

Since the algorithms in [30, 26, 12, 13] make use of certain dual variables to update the level
parameter for the cutting-plane model of Fk , below we grouped them in the family of primal-

dual level bundle methods. In contrast, the methods proposed in [2] do not set the objective
function in the subproblems to be Fk but rather use the improvement function as a measure
to certify optimality. The authors justify this choice as being more natural when dealing with

inexactness from the oracle. The method was extended in [42] to solve convex mixed-integer
non-linear programming problems.

For both types of methods, the parameter set is

pars =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

models

{
f̌k for f

ȟk for h

stability center x̂ k ∈ X ,

stability function | · | ,
lower bound f k

low ≤ υopt ,

level-parameter f k
lev ≥ f k

low ,

improvement function Fk .

4.3.1 Primal-Dual Constrained Level Bundle Methods

The algorithms in [30, 12] define the objective function in (6) as

Ok(x;pars) = 1

2

∣∣∣x − x̂ k
∣∣∣2 + iXk

lev
(x) .

In these primal-dual variants, the level set Xk
lev depends on a dual variable αk ∈ (0, 1), computed

by solving a one-dimensional optimization problem related to the max-operation defining Fk ,
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so that αk f̌k (x) + (1 − αk)ȟk (x) is a cutting-plane approximation of the improvement function.

Accordingly, the iterate xk+1 solves the QP subproblem:

xk+1 =

⎧⎪⎪⎨
⎪⎪⎩

arg min 1
2

∣∣x − x̂ k
∣∣2

s.t. αk f̌k (x) + (1 − αk)ȟk (x) ≤ f k
lev

x ∈ X .

The level parameter f k
lev is updated by solving an LP, as in the unconstrained variant.

Stability Center and Optimality Certificate

The rule proposed in [30] to update the stability center is simple: just take x̂ k as the current
iterate xk . Differently, [26] updates x̂ k only after observing enough progress in the improvement
function Fk (as for the proximal variants). The new stability center can be any point in the infor-

mation bundle (for example, a feasible iterate with lowest objective function value). The choice
x̂ k = x1 for all k is also possible for the method proposed in [26].

The optimality certificate is given by the improvement function: the algorithm stops with a
δTol-solution when min j≤k Fk (x j ) ≤ δTol.

Impact of Inexactness

Publication [12] works with lower oracles, so η+ ≡ 0, and the algorithm assumes the oracle error
ηk

h is driven to zero along the iterative process: eventually the method coincides with the variant

for exact oracles.

4.3.2 Constrained Level Bundle Methods

The method proposed in [2] defines the objective function in (6) as

Ok(x;pars) = 1

2

∣∣∣x − x̂ k
∣∣∣2 + iXk

lev
(x) ,

where the level set Xk
lev is the intersection of the level set for the objective model f̌k with an outer

approximation of the constraint set. Accordingly, the next iterate solves the QP subproblem:

xk+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arg min 1
2

∣∣x − x̂ k
∣∣2

s.t. f̌k (x) ≤ f k
lev

ȟk(x) ≤ 0

x ∈ X .

(17)

Lemma 2 in [2] assures that f k
lev is a lower bound for the optimal value υopt of (1b) whenever

the feasible set of QP (17) is empty.
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The rule given in [2] to update the lower bound and the level parameter does not rely on dual

variables, and is much simpler:

f k
lev = f k

low + γ min
j≤k

Fk(x
j )

f k
low =

{
f k
lev if Xk

lev is empty

f k−1
low otherwise.

Different from the primal-dual family, no additional optimization subproblem needs to be solved

at each iteration (neither to define the dual variable αk nor to obtain f k
low). In this method, both

selection and compression of the bundle is possible.

Stability Center and Optimality Certificate

Similar to the unconstrained level bundle method given in [43], a new stability center x̂ k is
chosen in the information bundle whenever Xk

lev is empty. The stopping test is identical to the

one in [30, 26, 12], checking that min j≤k Fk (x j ) is sufficiently small.

Impact of Inexactness

The algorithm is robust to noise, in the sense that no additional test is required to cope with
inexactness. With an exact oracle, the improvement function is always nonnegative. Negative

values for Fk(·) may arise when the oracle is inexact, in which case the method terminates with
an (ηh + η+ + δTol)-solution to problem (1b). For lower oracles, driving to zero the error ηk

h for
certain iterates named substantial ensures that asymptotically an exact solution is found; [2].

5 ONE PROBLEM, TWO FORMULATIONS

When dealing with real-life problems, modeling is an issue as important as solving the result-
ing optimization problem. As an illustration, we now consider an example from hydroreservoir
management and represent the same physical problem in two different manners, yielding either

a problem of the form (1a) or of the form (1b).

Figure 1 represents a set of power plants along a hydrological basin in which the reservoirs
uphill have a volume subject to random streamflows due to melted snow. In the figure, there are
N reservoirs, each one with volume V i(t) for i = 1, . . . , N and a certain time step t , out of

which the first r are subject to uncertain inflows. For the full model details, we refer to [1].

Since power plants are cascaded along the same basin, water released uphill fills the reservoirs
downhill. The increased volume allows the plants downhill either to produce hydropower by
directing water through turbines or to release water that is pumped to refill uphill reservoirs.

These operations make the plants interdependent and, as such, the best practice is to manage
them together rather than individually.
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Figure 1 – Schematic Representation of a Hydrovalley.

In particular, an important concern is to keep the reservoirs above some min-zone constraints,

i.e., lower bounds set by the system operator for navigation or irrigation purposes. Since the
reservoir volumes are uncertain, so are the min-zones values, and the optimization problem that
defines the remuneration for each power plant has a stochastic nature. A possibility to define a

turbine throughput and pumping strategy that is suitable for the whole hydrovalley is to endow
the optimization problem with probabilistic constraints.

Suppose a (random) unit price π , a (random) lower bound �, and a probability level p ∈ (0, 1)

are given. Letting x ∈ Rn denote the abstract vector gathering the decision variables (release

water through the turbines, pumping, etc), the hydroreservoir management problem has the form⎧⎪⎪⎨
⎪⎪⎩

max 〈π, x〉
s.t. x ∈ X a bounded convex polyhedron ,

P(� ≤ x) ≥ p .

When streamflows are represented by some autoregressive model with Gaussian innovations,

the joint chance constraints above define a convex feasible set and

h(x) := log(p) − log
(
P(� ≤ x)

)
(18)

is a convex function, whose differentiability depends on the covariance matrix of the Gaussian
noises. The oracle to compute values for h and a (sub)gradient needs to perform numerical
integration in high dimensions. More precisely, since, typically, the horizon has T = 48 or
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96 time steps, the vector x , formed by subvectors for each plant, each one of length T , has a

dimension of several hundreds.

We are therefore in our initial setting: the hydroreservoir management problem fits structure (1b)
with a linear f (·) := 〈π, ·〉, easy to evaluate, and a difficult constraint of the form (18).

To see how to cast the hydroreservoir problem in the format (1a), we follow [52, Chapter 4.3.2]
and consider the set of p-efficient points, a generalization of the p-quantile:

Zp := {
z ∈ Rn : F�(z) ≥ p

}
where F�(z) = P(x ≥ z) is the distribution function of the min-zone bound �.

As explained in [52, Chapter 4.3.3], the equivalent reformulation of the hydroreservoir problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max 〈π, x〉
s.t. x ∈ X

x ≥ z
z ∈ Zp

can be dualized by introducing Lagrange multipliers 0 ≤ u ∈ Rn for the constraint x ≥ z. The
resulting dual problem{

min f (u) + h(u)

s.t. u ≥ 0
with

{
f (u) := maxx∈X 〈π − u, x〉
h(u) := maxz∈Zp 〈u, z〉

fits setting (1a). Oracles for estimating the value and gradient of the hard function h, involving
integer programming, are considered in [10].

The loop is looped: starting with a problem as in (1b) we found an equivalent problem in the

form (1a). The decision of which formulation to choose to eventually solve the hydroreservoir
management problem will depend on the availability of the oracle and NCO solvers. For instance,
designing an oracle for (18) requires having a good code for numerical integration while the

hard function depending on p-efficient points calls for combinatorial optimization techniques.
A final, not less important, consideration is to analyze what is the desired output of the problem
(only the optimal value, or a solution, or a feasible point, etc).

6 FINAL COMMENTS

We gave a panorama of state-of-the-art bundle algorithms that were developed in the last 10-15
years to deal with inaccurate oracle information. Applications in energy, finance, transportation

or planning often require solving with high precision and in a reliable manner large-scale prob-
lems for which the oracle information is hard, if not impossible, to obtain. The new generation
of bundle methods reviewed in this work constitutes an important set of optimization tools for

such real-life problems.

Our presentation covers methods for unconstrained, linearly constrained and nonlinearly con-
strained convex nonsmooth optimization problems. As made clear by the hydroreservoir exam-
ple in Section 5, the choice of which specific formulation and bundle variant to employ depends
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largely on the structure of the problem to be solved. For instance, for large-scale unconstrained

optimization problems the proximal bundle method seems to be more suitable than the level one,
since each iterate can be determined by maximizing a quadratic function over a simplex (this is
a QP subproblem, dual to (7)). On the other hand, if the feasible set is bounded, the level bun-

dle variant might be preferable because the fact of having a lower bound allows the method to
build an optimality gap, a stopping criterion that is easier to satisfy in general. Similarly if the
optimal value of the problem is known in advance. The doubly stabilized variant can be a good

solver for repeated solution of different types of problems, since it gives an automatic mechanism
to combine the advantages of the proximal and level methods for the unconstrained or linearly
constrained setting.

Notwithstanding, each bundle variant has parameters to be dealt with, such as the prox-stepsize

or the level parameter. The convergence theory for each method relies on the proper updating
of such parameters. For the proximal family, for instance, the stepsize cannot increase at null
steps and (as for subgradient methods) must form a divergent series. For the level family, f k

lev is

often a convex combination of the current upper and lower bounds. Depending on the updating
rule for the lower bound, the level parameter can make the subproblem infeasible. As long as the
subproblem is a QP, this is not a major concern: most of modern QP solvers return with an exit
flag informing infeasibility. In this case, the lower bound and level parameter are easily updated,

see Subsection 4.3.2. Furthermore, to prevent the level set from being empty, the lower bound
can be computed by solving an LP at each iteration, as discussed in Subsection 3.2.

An important point to note is that for lower and on-demand accuracy oracles (not for upper
oracles), inexact bundle methods can eventually find an exact solution even if the oracle infor-

mation is inexact most of time: the solution quality depends only on how accurate the oracle is at
serious steps.

Regarding computational packages, several of the variants described above are freely available

for academic use upon request to the authors, including [15] and [44].

We finish by commenting on several future directions of research.

For the proximal family, [4] makes a first incursion into new criteria to define stability centers.
Differently from (9), the serious sequence may have non-monotone function values. The idea is
to have more serious steps and to avoid the algorithm stalling at null steps. It would be interesting

to see if it is possible to relate these new criteria to crucial objects in the level family, such as the
optimality gap.

Concercing research impacting applications, we can mention four topics. First, asynchronous
parallelization as in [14] deserves further investigation. Second, the issue of primal recovery

when solving a problem via Lagrangian relaxation: it remains to understand how the primal
solutions are polluted by “noise” when the Lagrangian subproblems are solved inexactly and
some inexact bundle algorithm is used. Third, regarding mixed-integer problems, the extension

of bundle methods [42] left open some issues on complexity and restricted memory. Fourth,
when in finance or economics there are multiple solutions, some special one can be singled out
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by, for instance, looking for the solution that is closest to some reference point. Exploiting the

structure in such nonsmooth minimal norm solution problems could lead to the design of new
specialized solution algorithms, based on the bundle methodology.

Finally, along the lines of the work [38] for proximal bundle methods, it would be interesting
to incorporateVU-decomposition into the level family to device superlinearly convergent level

bundle methods.
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[24] KIWIEL K & LEMARÉCHAL C. 2009. An inexact bundle variant suited to column generation.
Math. Program., 118: 177–206.

[25] KIWIEL KC. 1995. Approximations in proximal bundle methods and decomposition of convex pro-
grams. Journal of Optimization Theory and Applications, 84: 529–548. 10.1007/BF02191984.

[26] KIWIEL KC. 1995. Proximal level bubdle methods for convex nondiferentiable optimization, saddle-

point problems and variational inequalities. Math. Program., 69: 89–109.

[27] KIWIEL KC. 2006. A proximal bundle method with approximate subgradient linearizations. SIAM

Journal on Optimization, 16: 1007–1023.

[28] LAN G. 2013. Bundle-level type methods uniformly optimal for smooth and nonsmooth convex opti-
mization. Math. Program., pp. 1–45.
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[45] DE OLIVEIRA W, SAGASTIZÁBAL C & SCHEIMBERG S. 2011. Inexact bundle methods for two-

stage stochastic programming. SIAM Journal on Optimization, 21: 517–544.

[46] DE OLIVEIRA W & SOLODOV M. 2013. A doubly stabilized bundle method for nonsmooth convex

optimization, tech. rep. Available at:

http://www.optimization-online.org/DB_HTML/2013/04/3828.html.
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[52] SHAPIRO A, DENTCHEVA D & RUSZCZYŃSKI A. 2009. Lectures on Stochastic Programming: Mod-

eling and Theory. MPS-SIAM Series on Optimization, SIAM – Society for Industrial and Applied
Mathematics and Math. Program. Society, Philadelphia.

[53] SOLODOV MV. 2003. On approximations with finite precision in bundle methods for nonsmooth

optimization. Journal of Optimization Theory and Applications, 119: 151–165.

[54] WOLFE P. 1975. A method of conjugate subgradients for minimizing nondifferentiable functions.

Math. Programming Stud., 3: 145–173.

Pesquisa Operacional, Vol. 34(3), 2014


