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Abstract

In this article a methodology for filtering a time series is presented, with application to high frequency
series such as the minute-by-minute electric load series. The goal of this approach is to detect and 
substitute the irregularities of the time series that can produce distortions on the modelling stage. 
Outlier values are detected through a dynamic linear model and the Bayes factor tool; missing values 
are then interpolated with a Smoothing Cubic Spline. The performance of the proposed approach is 
illustrated using real data and evaluated through a series of tests where the irregularities have been
simulated.

Keywords:  load series; DLM model; irregularities in time series; cubic spline; Bayes factor.

Resumo

Neste artigo apresenta-se uma metodologia para a filtragem de séries temporais, com aplicação em
séries de alta freqüência. Esta metodologia tem como objetivo detectar e substituir as irregularidades da
série temporal que podem comprometer a etapa de modelagem. São detalhados o modelo linear 
dinâmico utilizado para detectar os valores outliers e o emprego do Fator de Bayes. Na interpolação de 
valores faltantes utiliza-se o Spline Cúbico Suavizado. O desempenho da metodologia proposta é 
avaliado a través de vários testes onde as irregularidade foram simuladas. 

Palavras-chave: série de cargas; modelo linear dinâmico; irregularidades em séries 
temporais; spline cúbico; fator de Bayes.
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1. Introduction

Following a worldwide trend, the Brazilian electric sector has been undergoing intense 
transformation over the last few years. In this new context, load forecasting for very short
periods assumes vital importance, serving as a base not only for the calculation of future
pricing of electric power, but also for the programming of optimum dispatch of the plants in
the system carried out by the National Operator of the Electric Power System (ONS). 
Besides this operational use of these forecasting, they are also important in the routine short-
term transactions of the pool electricity market, which, in Brazil, is under responsibility of
another private body known as MAE (Wholesale Electricity Market).

Aimed at developing a profile for a computational system to forecast short-term electric load
series for the ONS, the Cahora Project was created in a partnership between Cepel and
PUC-Rio. This system and the implemented models are detailed in Rizzo (2001). The first
great challenge in developing forecasting models was the great amount of irregularities 
found in the data retrieval system, described as follows.

CNOS, the ONS headquarters located in Brasilia, is responsible for the consolidation of load
measurements for electric energy utilities in the Brazilian system. The readings of the
measurement points arrive at the data retrieval centre by telemetry, at approximately
20-second intervals. Every minute, a recording is made of the available value in the reading.
This system of data retrieval is subject to the occurrence of irregularities that can be
motivated by erroneous information transmission, errors in data consolidation or unexpected
load behaviour (blackout). These irregularities can mainly be described as: 

Occurrence of missing values: when there is no load-value readings during the interval of
one minute.
Occurrence of outliers: when the registered value is nonsense, outside the range of 
expected behaviour. This can be due, for example, to measurement failure at some point
of the interchange or inherent problems in the information sending process. This category
also includes real values corresponding to unexpected events, such as load failures or
blackouts.

These irregularities can impair the performance of any forecasting model. Thus, before carrying 
through the half-hour load series modelling, a data treatment module has been developed. 
Using a filter for Missing Values and Outliers (FMO) these irregularities are corrected,
transforming the minute by minute data recording into a statistically modelled time series, 
that can be aggregated to create higher periods series (for example, at half-hour intervals).

The FMO has two main functions: that of detection of Outliers, declaring them to be missing
values; and the interpolation of all resultant missing values. Once the values have been 
declared to be missing, these values must be substituted by values in conformity to the
dynamics of the series, to pass on to the modelling stage. Since the system works as a daily 
basis operation, it will filter out the data obtained throughout the day on a minute-by-minute
basis, at the end of the day.

After the application of the FMO to the minute-by-minute series, some irregularities still persist
in the filtered series, for example abrupt reductions of the series variance. These irregularities
are outside the expected pattern. Therefore, a procedure called the “Pattern Filter” (PF) was
implemented to detect and substitute these irregularities. The PF is based on matching up the
daily load curves with standard patterns established by neural network techniques.
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In this article we describe the methodology implemented for outlier detection and missing
value interpolation. Theoretical aspects related to the Dynamic Linear Models and Bayes
factor, both used in outlier detection procedure and Smoothing Cubic Spline, commonly used
to interpolation, are discussed in section 2 and 3. A Pattern Filter is presented in section 4
and the whole procedure is illustrated in section 5 using real electric load data. Finally,
results obtained in the simulations carried out to evaluate the performance of the proposed
methodology are presented in Section 6. 

2. Detection of Irregularities 

To model the dynamics of the time series, we used a Bayesian Linear Model with a
discounting factor for the trend and the slope and a scale factor for the variance of the 
observations. Canton (1999) used a simpler model with a similar purpose but the trend
components were not considered. For outlier detection, we used the Bayes factor, as 
described in West & Harrison (1986). Because some important discontinuities did not fit into 
this first implementation, such as the irregularities that will be described further ahead, some
modifications to the original procedure have been made in order to detect them. Next, we 
briefly describe the outlier detection process, including a brief summary about the dynamic
linear model setup and Kalman Filter equations.

2.1 The Dynamic Linear Model (DLM) 

Given a time series Yt, the DLM is described by:

 corr(t t t t t t

t t t 1 t t

Y F . ~ N[0, V ]

G . ~ N[0, W ]t
t,  t)=0 (2.1) 

where time t=1...,T; Yt is the vector of observations, with dimension nx1; t is the vector of 
parameters with dimension qx1 containing the non-observable components of the model
(level, slope, seasonal component, etc.); t and t are independent and normally distributed
random errors, uncorrelated to one another.

In the Bayesian formulation of this model the variances of the errors, given by the matrices
Vt and Wt, must be specified. The problem of evolution of error variances must be solved,
when we assume that they are unknown. Pole et al. (1994) and West & Harrison (1997) 
proposed a learning procedure for the unknown observation variances Vt, in terms of a scale
factor that, in the case of normality, is the observation precision. The idea is to scale all 
variances and covariances in the updating equations of the DLM using . The recursive 
equations of the Kalman Filter are still valid; however, conditional distributions of  will be
normal while the marginal distributions will be t-Student with the degrees of freedom given
by the corresponding marginal distribution of . Working with Vt= -1, the model (2.1) can be 
rewritten as: 

1
t t t t t

* 1
t t t 1 t t t

Y F . ~ N[0, ]

G . ~ N[0, W ]
 (2.2) 

We determine the matrix Wt through the formulation of discounting factors, introduced by
Harrison (1965). The idea is based on the consideration that the informative content of one
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observation decays with age. Thus, the prior variance for time instant t is calculated as a 
function of the posterior variance in time t-1, determined by a discount factor 0 (0 < 0  1). 
The discount factor represents the amount of information lost with time as the series
evolves. This is equivalent to establishing the variance of errors of the state vector as
Wt=( 0

-1-1)GtCt-1Gt, where Ct-1 is the variance of the posterior state vector. In this case, 
different discount factors for each component of the state vector are considered, as in 
Ameen & Harrison (1985). Thus, the vector of discount factor will be =( 1, 2,…, n).

For a 1-day long minute-to-minute load series, we consider a local linear trend model
(F=[1,0], G=[1 1;0 1] and values of 0.9 and 0.8 were used for discount factors of level and
trend respectively. So, 10% and 20% of level and trend information decays during each
interval of time. (See Ameen & Harrison (1985) for comments about discount factor
selection).

2.2 Kalman Filter

In what follows, we summarize the recursive equations of the Kalman Filter for this model.
The distributions conditioned to values of are the same as in the DLM with known 
variances and the marginal distributions are obtained from the former. The interested reader 
may find details about the dynamical model elsewhere, in particular in Pole et al. (1994) and
Harrison & West (1997). 

Initialization

At t=0, we assume * 1
0 0 0 0( |D , ) ~ N m ,C , 0 0 0( |D ) ~ n 2,d 2G

Priors on time t

State Vector: , where R* 1
t t 1 t t( | D , ) ~ N[a , R ] t* -1 = Rt.

Scale Factor: , with mean 1/St t 1 t 1 t 1( | D ) ~ G[n / 2,d / 2] t-1, where St-1=dt-1/nt-1.

The unconditional (on ) prior for state vector: , where 
R

t 1t t 1 n t t( | D ) ~ T [a , R ]

* *
t 1 t t t 1 tm ,   R G C G

t=Rt*St-1. Here, at and Rt are calculated as in the known variance model, considering Wt

calculated through the discount factors. Thus: a Gt t  where 

 is the inverse of the discount matrix.* 1/ 2 1/ 2
1 2 ndiag( , ,..., )1/ 2

One-step-ahead forecasting

Conditional distribution: ]Q,f[N~),DY( 1*
tt1tt  with f , Q 1 .t tF 'a t t

* '
t t tF R F*

The unconditional distribution (on ):
t 1t t 1 n t tD ) ~ T [f ,Q ](Y  with Qt=St-1Q*

t-1.

This result is similar to the one obtained when a known variance was considered, if 
we consider the expected value of prior St-1 as a point estimation for  until time t-1: 

*
t t 1 t t t 1Q S F 'R S Ft t  or t t 1 t tQ S F 'R F
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Posterior (Update)

Scale Factor: t 1 t t tp( |D ,Y ) ~ G[n /2,d /2] , where ,
e

2 *
t t 1 t t 1 tn n 1, d d e /Qt

t  innovations. 

State Vector: * 1
t t t t( D , ) ~ N[m ,C ] , where m a * *

t t t t tR F e /Qt

* 1 1 * * * *
t t t t tR F F' Rt t/QC R

The unconditional distribution (marginal):
tt t n t t) ~ T [m ,C( D , where 

and S
] t

*
t tC C S

t is the point estimation for the scale factor. Under these considerations, and taking into 
account that Rt=Rt*St-1, the equations can be rewritten as: 

1t
t t t t t t t t t t t t t

t-1

S
m a R F e /Q , C R R F F' R /Q

S

2.3 Bayes Factor

The Bayes factor concept was introduced by Jeffreys (1961), and constitutes a very useful 
tool for testing hypotheses and model selection. The Bayes factor is none other than the ratio 
between the likelihood function of the standard model (Model S) and the likelihood of an 
alternative model (Model A). In the time series context it is used as a measure of the 
predictive capacity of the model. A thorough discussion, in the classical and bayesian context
with multiple references and applications can be found in Kass & Raftery (1995). 

West (1986) considers a procedure for a sequential monitoring of the model, based on the 
Bayes factor. This procedure, also discussed in West & Harrison (1986), continuously validates 
the predictive capacity of the model, under the bayesian approach. Since the objective is to
develop a tool sensitive to local failure in the model, the Bayes factor concept was adapted. 

Let A be the alternative model and pA(Yt Dt-1) be its predictive distribution. Then we can
define:

t t t k 1 t k A t t k 1 t k(k) p (y ,...,y D ) / p (y ,...,y D ) 1 k t  (3.1) 

If we consider t(0)=1  t, we obtain a recursive equation for t(k): t t t 1(k) H . (k 1) ,
where Ht is the Bayes factor based only on yt: t t t 1 AH p(y D ) / p (yt t 1D ) .

In our case, the predictive distributions are t-Student
t 1t t 1 n t tY | D ~ T f ,Q . If we consider 

the alternative model, based on the use of “power discounting” as in Smith (1979), we will 
assume a diffuse predictive density, that is, with the same mean and variance Qat such that 
Qt = Qat. Then, the Bayes factor becomes:

t-1

t-1

t-1

n 1
2 2

t t n 1
t-1 2t t-1 t

t n 1 2
2 t-1 t2

t t
t-1

t

(Y f )n
Q n e

H
n e

(Y f )n
Qa

 (3.2) 
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Given an adjusted alternative, a value less than 1 and significantly small for Ht is an 
indication of the existence of discontinuity in the series. Ht indicates the existence of a 
potential outlier, but in cases of small or gradual changes, individual Bayes factors (based 
only on yt) may not be small enough to indicate failure in the model. Thus it is necessary to 
use jointly t(k), whose small values suggest a possible change in the past. The algorithm
proposed by West (1986) is summarized as follows: At time t, whatever may have previously
occurred, proceed as follows: 

Step 0. Select values of  >0, [0,1] and Q IN.

Step 1. Compute in sequence quantities Lt and  defined by:t

Lt=Ht min(1,Lt-1) and , the run-length parameter, ast
1 1

1

1
1 1

t t
t

t

if L

if L

Step 2. Determine irregularities
A. Assessment of St

If Ht , yt is consistent with the standard model St, go to B.
If not, (Ht< ), yt is potentially an outlier; go to 3A. 

B. Assessment of St, St-1, … 
If Lt , the sequence of standard model is satisfactory (system controlled). 
Go to 3B. 
Or else (Lt< ,) or ( >Q); then, we have structural breaks. Go to 3A. t

Step 3. Update 
A. Reject observation yt. Update Kalman Filter equation allowing for change: 

incrementing the uncertainty of state vector: mt=at, Ct= Ct

B. The sequence of standard model is satisfactory. Standard update of Kalman
Filter equation. 

When =1 the discontinuity is of the “transient” type. Value >1 indicates a structural 
change that started in instant t - +1. When >Q, even when >Q, we can admit that at 
instant t, a slow structural change is occurring, from instant t - +1.

t t

tt t

t

It is still necessary to establish the values for  (real positive),  (real between 0 and 1) and Q
(natural). A discussion of this choice can be found in West & Harrison (1986) and West 
(1986). Following them we will be working with =0.15 (which implies that the standard 
deviation of model A is roughly 2.5 times the standard deviation of model S) and =.2, which 
indicates that for standardized prediction residuals around 2.5, Ht=  and Yt alone provides 
enough evidence to reject St. A parameter Q controls the threshold to declare structural 
breaks. Considering the high frequency of the data, we worked with Q=6. Values of Q 
smaller than 6 will cause frequent declarations of structural breaks, when in fact there are 
several consecutives outliers. Finally , which represents the uncertainty about the state
vector was set as 1.5 in step 3-A. 
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Considering the characteristics of the short-term load series, certain alterations to West’s
algorithm had to be considered. In West’s algorithm, when we are in the presence of any 
type of discontinuity the update of the model must be made in such a mode as to allow for
changes in the model. The variance matrix of posterior density is multiplied by a factor 
greater than one. This factor can be a matrix, allowing a different inflation for the posterior
variance of each component. This is also advisable in the case of missing values. 

This algorithm should identify outliers and structural changes. In our case, the minute-by-
minute load series frequently has 2 and up to 4 consecutive outliers, without this implying a 
structural change. An adaptation of the model, that increased the uncertainty of the model
when faced with an outlier, would make it difficult to detect other outliers later on. As our 
goal is not modeling but the detection of discontinuities, we propose to increase the 
uncertainty only when a structural change is detected, keeping the uncertainty unchanged 
when an outlier is detected. Furthermore, our data presents large intervals with consecutive 
missing values; consecutive increments to the variance matrix would make it diverge
numerically, making the system unavailable for outlies detection. Thus, we decided not to 
increment variance in the case of missing values. 

According to the nature of the data, abrupt structural changes cannot happen because the load 
cannot have a very strong variation from one minute to the next. Hence, both the outlier 
values and structural changes must be substituted. When a structural change is detected, if it
is a permanent one, all the values in its neighbourhood are substituted in order to smooth the 
structural change. 

3. Missing Values Interpolation

Some methodologies for missing values estimation in time series have been proposed the 
literature. Parametric alternatives have been widely used (Brubacher, S.R. et al., 1976), by
means of a statistical model to adjust the data, and using it later in the interpolation. Ferreiro 
(1987), Harvey & Pierse (1984) and Ljung (1989) use this approach as well. 

A natural idea to substitute the missing values and outliers would be to use the bayesian 
model adjusted in the outlier declaration stage and then to substitute the extraneous 
observations with the one-step-ahead forecasts made in the previous instant. However, the 
existence of data blocks with many consecutive missing observations (or declared outliers),
sometimes for more than a one hour period (60 observations), made it necessary to abandon
these techniques because, as the forecast horizon grows the forecasts cease to be reliable. 

Thus, we decided to use the smoothing cubic spline, previously applied to the interpolation 
of time series by Gordon (1996) and to the handling of missing values in Koopman (1991) 
and Koopman et al. (1998). 

3.1 Smoothing Cubic Spline (SCS) 

The Smoothing Cubic Spline (SCS) is a non-parametric techniques that has been applied in 
interpolation problems in time series (see Ferreiro, 1987; and Koopman et al., 1998) with 
good results. This method has been used in some packages such as the SsfPack (Koopman
et al., 1998b). However, the SCS is not well-behaved for series with a considerable number
of consecutive missing values. This result is basically due to the fact that SCS generates 
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solutions with accented curvature when many consecutive missing values are presented,
distancing itself from the pattern of the data, as we will see further ahead. 

The underlying idea in cubic spline is the smoothing of a third-order polynomial. This
smoothing is effected through a model in state space form that represents the spline,
afterwards using the Smoothing Kalman Filter (SKF), as described in Kohn & Ansley 
(1987). This type of model takes into consideration all the available values and not only three 
points.

Weinert et al. (1980) defines in a general way the concept of smoothing spline, discussing 
the problem and establishing the existence and uniqueness of the solutions. Kohn & Ansley
(1987) discuss the particular case of polynomial splines defined as follows: 

Let t1, t2... tN be the available time periods. The problem of interpolation by smoothing
polynomial splines consists of the searching of a polynomial f that minimizes the loss 
function:

 (3.3) 
i

N 12 2
t i 0

i 1
Y (t ) L (t)f f dt

where L is the differential operator L=dm/dtm. When m=2, we will have the smoothing cubic 
spline and the loss function consists of the integral of the square curvature, and the solution 
is such that Yti=f(ti).

Wahba (1978) and Weinert et al. (1980) represent the spline as the limit of the conditional 
expectancies of a random process. This allows Kohn & Ansley (1987), Koopman (1991) to 
establish efficient algorithms to adjust the smoothing cubic spline, through the recursive 
equations of the SKF to state space form of the random model. The reader may find a
synthetic description in Durbin & Koopman (2001). 

In the case where the number of consecutive missing values is not so high, spline cubic 
offers a good solution. But, on the other hand, when there are many consecutive missing
values to interpolate, the spline does not reflect all the details of the load curve due to the 
softness of the solution. For this reason we propose to substitute missing values with a 
convex combination of cubic spline and a value which reflects the load-curve pattern. 

Let Yt be the minute-by-minute load series. Assume that Yt is a missing value at time t=to.
This missing value will be substituted by the convex linear combination of the values SYt

and TYt. That is: Yto= TYto+(1- )SYto, where St is the value interpolated by smoothing
cubic spline and TYt is the value of the load corresponding to the same time instant of the 
day with the load pattern nearest to the current day pattern. Given the load curve, the 
procedure to find a similar stretch to interval [t-stretch, T-1] where t is the corresponding 
time instant and Yt is the value to substitute. The criterion used to select similar stretch could 
be the minimum mean square error of the average quadratic error, after adjusting both 
intervals to the same mean.

4. Pattern Filter

After the application of the Missing and Outlier Filter to the minute-by-minute series, certain 
irregularities will still persist in the filtered series. The load curves for large cities may show 
large instantaneous fluctuations, but nevertheless display daily patterns that are highly
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stereotyped and reproducible. The telemetry system that feeds data to CNOS may have 
technical or transmission problems resulting, rarely, in a large (days) batch of data which fail 
to conform to this stereotyped daily pattern. It has happened, for example, that the load curve 
of a certain day failed to match the expected pattern for that day, without any visible outliers 
that could cause such a deviation. To solve this problem it was decided to implement the 
Filter of Pattern (FP) on the aggregated series every 30 minutes.

Pattern Filter Methodology

In previous work, Sobral (1999) established a classification of hourly load curves in 
several types for one of the Brazilian utilities using a 4x4 Kohonen Neural Network. In 
this work, the days were grouped according to the hourly load pattern and the prototypes 
were obtained. These prototypes will serve as a base for the implementation of the Filter of 
Pattern.

As the idea is to compare the prototypes with the load series at 30-minute intervals, the 
same groups have been used. From the hourly-load profiles of each group, we have
obtained through linear interpolation the profiles of the load curve at each 30-minute
interval. For day d we have a 30-minute load curve and then we analyze whether it follows 
the expected pattern. In order to do this, we select the most adequate profile using certain
criteria. We use for this selection the nearest prototype to a Mean Absolute Percentage 
Error (MAPE). Taking into consideration that the goal is the daily pattern and not the mean
of the load, we make sure that the two curves (the daily curve and the nearest prototype)
have the same mean, for the MAPE computation. If the MAPE of the nearest profile is 
bigger than the specified threshold, we consider this day to be outside the expected standard
and substitute it. 

We do not propose that the whole day should be substituted because it might be the case that 
not all intervals of the day are responsible for the pattern failure. Thus, the day is divided into
the following intervals: 00:00h to 05:30h; 06:00h to 11:30h; 12:00h to 14:30h; 17:00h to 
19:30h; 20:00h to 23:30h. With them, we detect those with a MAPE bigger than the 
threshold. These intervals are substituted by the corresponding intervals of the profile curve 
that had been adjusted to have the same mean as the curve of day under study. The threshold 
chosen for the MAPE was 5%. At first glance, this value may seem small but we should 
remember that both curves have the same mean. Furthermore, to choose this value, we 
observed the behaviour of this statistics for a number of days, including some days that had 
been considered out-of-pattern by the experts. 

5. Application to Real Data 

To show the behaviour of the proposed methodology for outlier detection and missing value 
interpolation, we present the results when applied to a minute-by-minute load series for a 
Brazilian Southeast utility. Due to the high volume of data we only present herein the 
filtering of series corresponding to August 1999. Figure 5.1 (a) shows the 44640
observations of this series, where 189 observations (0.42%) were missing. Using the outlier 
detection procedure discussed in section 2, 159 observations (0.34 %) were declared outliers
as Figure 5.1 (b) shows. 
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 (a) (b)

Figure 5.1 – Minute-by-minute load series. Month: August 
(a) Original Series. (b) Outliers detected. 

We then used the missing values interpolation procedure described in section 3 to substitute 
348 observations (0.78%) declared missing values and outliers of the load series. The 
resulting series is shown in Figure 5.2 (b). 

 (a) (b)

Figure 5.2 – minute-by-minute load series. Month: August 
(a) Original Series. (b) Series having substituted outliers and missing values. 

With regard to missing values interpolation through SCS, we should warn that if the interval
of consecutive missing values increases in length (say for example, by more than 100 
consecutive missing values), the performance of SCS may be jeopardized. This happens 
because the solution offered by SCS could develop wild bends when attempting to
interpolate into a large interval of missing values, and then the interpolated curve would be 
far from the expected curve. This problem could be circumvented by increasing the 
smoothing parameter  in 3.3, yielding a smoother solution; however this would be 
counterproductive because it would lead us to solutions not close enough to the Yt’s, and 
would affect the performance of the method in most general cases. 
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A typical case where the Pattern Filter is required is illustrated in Figure 5.3. Here we show 
the series for September 1999. After the missing values and outlier filter, the series was
aggregated in a 30-to-30 minutes series as shown in Figure 5.3 (a). An anomaly is obvious in 
the period between the 13th and 20th of September (around observations 600-1000), as an 
abrupt decrease in the daily variance. Power engineers assure us that this decrease in the 
variance did not, in fact, happen. Figure 5.3 (b) shows the resultant series after pattern
filtering, showing a more plausible pattern. 

 (a) (b)

Figure 5.3 – Aggregated 30-to-30 minute Load Series. Month: September.
 (a) Original Series (b) Filtered Series.

This example was meant only as a qualitative illustration that the methodology is well 
behaved. In the next section we shall quantitatively evaluate the performance of the 
procedure in a variety of situations. 

6. Test and Results 

To evaluate the performance of the presented methodology, we have included the results of
simulations using a sample of three months (December 1999, January 2000 and March 2000) 
of minute-by-minute load series of two Brazilian utilities in the Southeast and South region. 
We selected from each one of these utilities samples consisting of two sets of days: 10 
ordinary days (Monday to Sunday, without holidays or special events) and 6 days of special 
events and holidays. For these sets, artificial irregularities were introduced in the series in
order to evaluate a posteriori the agreement of the values obtained by filtering. We conducted 
four types of test: (i) one for outlier detection, two different missing value interpolation tests 
using (ii) short and (iii) long segments of consecutives missing values, and (iv) a daily 
pattern test, as described below. These four tests were carried out for each utility (South, 
Southeast), for each of the two different types of day sets (ordinary days and special events 
or holidays) as well as for each of the two subgroups of load condition (peak and off-peak), 
totaling 16 tests per utility (32 tests). For test validation purposes, the MAPE statistics were
considered (Mean Absolute Percentage Error) or the percentage of agreement, depending on 
the type of test. We consider MAPE more illustrative in our case since it allows us to 
compare between regions with different level of total load. 
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6.1 Outlier Test

For this test, outliers were artificially generated in the set of times described in Table 1. In 
observations chosen to become outliers, the value of the real load was increased by 50%, that 
is, if in a specific minute the value of the load were 1000, it would be substituted by 1500. 
The resulting data was then passed through the outlier filter. The table containing the data 
where outliers were generated can be found in Annex 2 of Table A1. The filter detected all 
outliers generated in this fashion, for a 100% success rate. 

6.2 Missing Value Tests 

Two types of missing values were considered: short and long term sets. 

6.2.1 Test for short-term missing values 

In the original data, three 15-minute-long sequences were declared missing (i.e, their load 
values were set to -999.99); they appear in Table 4. The same missing-value sequences were
considered for both utilities. Table A2 in Annex 2 contains data from which missing values 
were generated. 

The MAPE of the value filled-in by the filter versus the real value for each sequence of 
missing values was computed for each day, for special days, and for common days, at peak
hours and at normal off-hours, as well as the General MAPE. The results appear in Table 6.1. 

Table 6.1 – Results of filter – short-term missing values 

MAPE

South Southeast
Peak-hour demand 0.0463 0.0846
Off-hour demand 0.0595 0.0739

Special Days 0.0604 0.0842
Common Days 0.0449 0.0792

GENERAL 0.0507 0.0811

The results obtained with the application of the filter in short-term sequences can be 
considered good in terms of MAPE, all values being below 0.1%. For common days as well 
as for special days, the maximum values of this measure were under 0.118% and 0.125%, 
respectively for South and Southeast utilities. Average values occurred between 0.04% and 
0.061% for South utility and between 0.07% and 0.085% for Southeast utility. 

6.2.2 Test for long-term missing values 

Two missing value sequences were generated for the selected days. For the subgroup with 
normal off-hour load conditions, a 3-hour-long sequence from 1:15 p.m. to 4:14 p.m. was 
considered (both for the utilities companies and for the types of days). For the subgroup with 
peak-hour load conditions, a 2-hour-long sequence from 6:30 p.m. to 8:29 p.m. was 
considered (both for the utilities companies and for the types of days). All times declared 
missing were set to value -9999.99. The MAPE of the value filled by the filter in relation to 
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the real value was computed. These values can be found in Table 6.2. Besides the interval 
value, there appear values consolidated by day, by type of day and the general value as well. 

Table 6.2 – Results of the filter – long-term missing values 

MAPE

South Southeast
Peak-hour demand 0.0233 0.0476
Off-hour demand 0.0657 0.0562

Special Days 0.0429 0.0603
Common Days 0.0387 0.0455

General 0.0403 0.0510

The results obtained with the application of the filter continue to be good when long-term
sequences are considered. Both for weekdays as well as for holidays, the maximum values 
for this measure were under 0.062% and 0.105%, respectively, for South and Southeast. 
Average values remained between 0.023% and 0.066% for South utility and between 0.045%
and 0.061% for Southeast utility. Values for peak-hour demand were slightly better but the 
length of the sequence was smaller than in the off–hour demand period. 

6.3 Test for Pattern Filtering 

The data used for this test were previously filtered and added in a thirty-to-thirty minute
series. Thus, these data do not present any other type of irregularity. To introduce an 
irregularity into the load standard, each day was substituted by its average, so that this day 
had an unexpectedly low standard deviation. The MAPE of the values filled by the filter in
relation to the real values were computed. The procedures for attainment of the profiles of
the daily curve of Southeast and South utilities are detailed in Annex 1.

The results obtained through the application of the PF in 30-by-30-minute sequences turned
out well. Both for common days as well as for special days, the maximum values of this 
measure were under 0.3% and 0.26%, respectively, for South and Southeast utilities. 
Average values were placed between 0.14% and 0.13% for South and between 0.096% and 
0.128% for Southeast utility. 

7. Conclusions

In this article we describe a methodology for the filtering of time series with high frequency
of observations, which was implemented to handle real data collection and transmission
problems in the Brazilian electric power system. The methodology is illustrated using the 
August 1999 load series, which happened to present all the irregularities here addressed. The
procedure was tested for various scenarios and for different types of irregularities using 
Brazilian Southeast and South utilities load series. The performance of the proposed 
approach from the experiments carried out produced an overall MAPE of less than 1%, 
though for special days and for the Southeast utility the MAPE was slightly above 1%, which 
is considered quite reasonable for the problem. These examples and test showed good results, 
validating our methodology for its intended application. 
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Table 6.3 – Results of Pattern Test Utilities 

South Southeast
Day

MAPE x Day MAPE x Day

24 – Dec – 1999 0.1202 0.1184
31 – Dec – 1999 0.0950 0.1136
01 – Jan – 2000 0.3008 0.0780
06 – Mar – 2000 0.0699 0.0847
07 – Mar – 2000 0.0896 0.0927
08 – Mar – 2000 0.1541 0.0909
07 – Dec – 1999 0.1283 0.1291
11 – Dec – 1999 0.0385 0.1298
12 – Dec – 1999 0.1923 0.0719
13 – Dec – 1999 0.1785 0.2561
16 – Dec – 1999 0.1051 0.1487
18 – Dec – 1999 0.0856 0.0684
19 – Dec – 1999 0.2204 0.0824
02 – Jan – 2000 0.2217 0.0532
04 – Jan – 2000 0.0918 0.2048
06 – Jan – 2000 0.0820 0.1346

MAPE Special Day 0.1383 0.0964
MAPE Common Day 0.1344 0.1279

Total MAPE 0.1359 0.1161
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Appendix 1 – Load Profiles for Southeast and South Utilities 

The Load profiles used as base for the filter of standards was estimated by Sobral (1999) 
who used a neural network argument (Kohonen classification) to derive the different profiles 
for both utilities. The Kohonen algorithm produces 9 and 6 distinct profiles, respectively, for 
the two utilities being analyzed, as shown below in Figure 9. For more details, the reader is
referred to Sobral (1999). 

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6
Profile 7
Profile 8
Profile 9

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6
Profile 7
Profile 8
Profile 9

 (a) (b)

Figure 9 – 30-to-30-minute-load-curve profiles.
a) Southeast utility b) South utility.

Appendix 2 – Observations Used in the Simulation

Table A1 – Observations that generated outliers

Type of Day Year Day Day of the Week Hours
24 – Dec Special Day 06:00; 15:00; 19:00 1999
31 – Dec Special Day 06:10; 15:10; 19:10 
01 – Jan Holiday 06:20; 15:20; 19:20 
06 – Mar Carnival 06:30; 15:30; 19:30 
07 – Mar Carnival 06:40; 15:40; 19:40 

Day of Special 
Event or 
holiday 2000

08 – Mar Carnival 06:50; 15:50; 19:50 
07 – Dec Tuesday 07:00; 16:00; 20:00 
11 – Dec Saturday 07:10; 16:10; 20:10 
12 – Dec Sunday 07:20; 16:20; 20:20 
13 – Dec Monday 07:30; 16:30; 19:30 
16 – Dec Thursday 07:40; 16:40; 20:40 
18 – Dec Saturday 07:50; 16:50; 20:50 

1999

19 – Dec Sunday 08:00; 17:00; 21:00 
02 – Jan Sunday 08:10; 17:10; 21:10 
04 – Jan Tuesday 08:20; 17:20; 21:20 

Normal Day

2000
06 – Jan Thursday 08:30; 17:30; 21:30 
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Table A2 – Short-term missing values sequence

Type of 
Day

Year Day
Day of the 

Week
Hours

24 – Dec Special Day 05:30 to 05:44; 14:30 to 14:44; 18:30 to 18:44 
1999

31 – Dec Special Day 05:35 to 05:59; 14:35 to 14:49; 18:35 to 18:59 
01 – Jan Holiday 05:40 to 05:54; 14:40 to 14:54; 18:40 to 18:54 
06 – Mar Carnival 05:45 to 05:59; 14:45 to 14:59; 18:45 to 18:59 
07 – Mar Carnival 05:50 to 06:04; 14:50 to 15:04; 18:50 to 19:04 

Day of 
Special
Event or 
Holiday 2000

08 – Mar Carnival 05:55 to 06:09; 14:55 to 15:09; 18:55 to 19:09 
07 – Dec Tuesday 06:00 to 06:14; 15:00 to 15:14; 19:00 to 19:14 
11 – Dec Saturday 06:05 to 06:19; 15:05 to 15:19; 19:05 to 19:19 
12 – Dec Sunday 06:10 to 06:24; 15:10 to 15:24; 19:10 to 19:24 
13 – Dec Monday 06:15 to 06:29; 15:15 to 15:29; 19:15 to 19:29 
16 – Dec Thursday 06:20 to 06:34; 15:20 to 15:34; 19:20 to 19:34 
18 – Dec Saturday 06:25 to 06:39; 15:25 to 15:39; 19:25 to 19:39 

1999

19 – Dec Sunday 06:30 to 06:44; 15:30 to 15:44; 19:30 to 19:44 
02 – Jan Sunday 06:35 to 06:49; 15:35 to 15:49; 19:35 to 19:49 
04 – Jan Tuesday 06:40 to 06:54; 15:40 to 15:54; 19:40 to 19:54 

Normal
Day

2000
06 – Jan Thursday 06:45 to 06:59; 15:45 to 15:59; 19:45 to 19:59 
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