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Abstract 
 
Rapid-transit services are a relevant part of the transportation network in most cities of the world. An 
important aspect of transport policy is the supply of public urban transportation. In particular, it is of 
interest to determine whether rapid-transit operators are working in a technically and scale-efficient 
way. Production analysis of transit services has been characterized by the econometric study of average 
practice technologies. A more recent method to study such production frontiers is Data Envelopment 
Analysis (DEA). It is a non-parametric method, but its application to rapid-transit, where the relations 
among technological variables are more strict, requires a previous structural analysis of the intervening 
inputs and outputs. DEA is employed in this paper to investigate the efficiency and returns to scale of 
21 rapid-transit properties of the world. DEA was also used for the benchmarking of non-efficient 
rapid-transit properties, with special emphasis to the São Paulo’s subway system. 
 
Keywords: rapid-transit efficiency, DEA, benchmarking. 
 
 

Resumo 
 
Os sistemas de metrô são parte relevante do transporte em muitas cidades do globo. Um aspecto 
importante da política de transportes é a oferta. Nesse contexto, é de interesse verificar se os operadores 
estão trabalhando de maneira eficiente, em termos técnicos, e no que diz respeito a ganhos de escala. A 
análise do processo de produção de metrôs tem sido realizada através de estudos econométricos 
baseados em práticas tecnológicas médias. Um método mais recente para estudar fronteiras de 
produção é a Análise Envoltória de Dados (DEA). Trata-se de um método não-paramétrico, mas suas 
aplicações a metrôs, que envolvem relações mais rígidas entre as variáveis tecnológicas, requerem uma 
análise prévia dos inputs e dos outputs. DEA é utilizada no artigo para analisar a eficiência e ganhos de 
escala de 21 metrôs. É também utilizada como instrumento auxiliar no benchmarking de metrôs não 
eficientes, com ênfase ao metrô de São Paulo. 
 
Palavras-chave: eficiência de sistemas de metrô, DEA, benchmarking. 
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1. Introduction 

Rapid-transit services are a relevant part of the transportation network in most of the large 
cities of the world. They provide passenger services within the cities and their surroundings, 
with different technologies and extensions. In addition, part of the urban transportation is a 
major source of externalities imposed on the environment and it is deeply intertwined with 
locational choices. Other issues as fare structure, distributional effects among the population, 
regulatory aspects, private or public operation, and subsidies, have equally attracted the 
attention of researchers and practitioners. Within this framework, an important aspect of 
transportation policy is the supply of urban transportation. Although some authors, as for 
instance Rubin et al. (1999), have argued against the widespread use of urban rail systems in 
the US, the number and the size of such operating systems deserve special attention. In 
particular, it is of interest to determine whether urban rapid-transit operators are working in a 
technically and scale efficient way (Kerstens, 1996). 

Production analysis of transit services has been characterized for years by the study of 
average practice technologies, whereby investigators fit least-square econometric functions 
through the middle of the data. Early Cobb-Douglas estimates of transit cost and production 
functions are widely encountered in the literature. More recently, recognizing that a Cobb-
Douglas technology imposes restrictions on some economic effects of interest in 
transportation, researchers have adopted the more flexible translog approximation (Spady & 
Friedlaender, 1976; Viton, 1992; Berechman, 1993). 

The theoretical economic concept of a production function, however, is associated with its 
frontier nature. This suggests that the traditionally estimated “middle of the data set” 
production function is inappropriate (Oum et al., 1992). The acknowledgement of the 
divergence between characteristics of average and best practice production technologies 
redirected attention to the development of frontier estimation technologies. One of the first 
empirical frontier studies of technical efficiency is due to Farrel (1957). Parametric 
stochastic frontier methods, based on maximum-likelihood techniques, were introduced in 
the literature in the late seventies and their applications have spread to virtually all fields in 
economics (Aigner et al., 1977; Knox Lovell, 1995). Econometric methods have been 
traditionally employed by transportation analysts to investigate the economic and productive 
behavior of transportation services. A relative large body of information has resulted from 
such studies, generating some general principles and conclusions that presently orientate 
practitioners and investigators in the field. The book by Berechman (1993), for example, is 
an effort to consolidate this knowledge in a comprehensive text. 

Parametric methods require the specification of a functional form for the production 
technology. Deterministic non-parametric methods such as Data Envelopment Analysis (DEA), 
on the other hand, are based on piecewise linear frontiers estimated using mathematical 
programming techniques. Some applications of DEA-related methods to transportation 
efficiency analysis have already appeared in the literature (Husain et al., 2000; Kerstens, 
1996; Odeck & Hjalmarsson, 1996; Chu et al., 1992). Originally, DEA was developed to 
solve problems which had been resistant to other approaches because of the complex (often 
unknown) nature of the relations between the multiple inputs and multiple outputs involved 
in many of the activities. In most cases, the simple linear and additive virtual input and 
output formulation (see equations 11 and 12), envolving the variables in its original form, 
can be a satisfactory representation for the production function activities (Cooper et al., 2000). 
However, when dealing with situations represented by more complex inputs and outputs of 
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social, technological, and environmental nature, the simple DEA formulation may not be 
adequate. In fact, the attributes cannot vary freely in such cases, since they are constrained 
by technical and operational reasons. For instance, when analyzing airline companies, with 
aircraft-hours, employees and fuel consumption as inputs, and carried passengers as output, 
the ratio between fuel consumption and aircraft-hours is limited to a certain range, depending 
on the airplane type and operational characteristics. Therefore, a preliminary analysis of 
basic technical relationships is necessary before DEA application is performed. 

In this paper, we apply DEA to 21 rapid-transit properties but, in order to define the 
appropriate variables, a technical and statistical analysis of the data is performed beforehand. 
It is an advancement of previous research results reported by the author in the literature 
(Novaes, 1997; Novaes et al., 2000). 
 

2. Previous Results on Rapid-Transit Production and Efficiency Analysis 

In most European and Asian cities, rapid transit is regarded as a major element of city life 
and organization of the urban structure. Transit systems tend to rely more heavily on rail, 
both underground and streetcar (Wunsch, 1996). In the United States, although the use of 
private cars by urban commuters is quite intensive, the patronage of rapid transit services in 
the larger metropolitan areas is also impressive. In Latin America, on the other hand, only 
the major cities are provided with rapid transit systems. Their supply levels usually cover 
only a part of the potential travel demand. The rest of the demand for public transportation is 
served by buses and microbuses. 

The literature on the productivity of rapid-transit transportation is scarce as compared to 
equivalent studies of bus firms (Viton, 1992), due perhaps to the methodological difficulties 
of comparing economic attributes of different transit properties located in diverse countries or 
regions. One exception is the United States, where a reasonable number of cities are provided 
with rapid-transit systems. The papers of Pozdena & Merewitz (1978) and Viton (1980) 
analyzed cost and productivity of rapid transit properties in the United States. Viton (1992) 
studied the cost-effectiveness of large multi-modal transit organizations. More recently, 
Wunsch (1996) investigated transit cost and productivity in Europe, including a representative 
number of rapid transit systems together with other urban transportation modes. 

In their study on rapid transit productivity, Pozdena & Merewitz (1978) found evidence of 
increasing returns to scale in the long run, and of economies of density in the short run. 
Analyzing Pozdena and Merewitz findings, Viton (1980) presented a series of considerations, 
questioning their results. Predominant among them was the choice of the functional form. 
Pozdena and Merewitz assumed that the technology of producing rapid-transit output 
(vehicle miles) could be described by a generalized Cobb-Douglas technology, taking, as 
inputs, man-hours of labor, kilowatt-hours of electricity, and the total miles of track. Viton 
argued against the assumption of a Cobb-Douglas technology because the elasticities of 
substitution between different factors of production are important elements when analyzing 
transit productivity, and in the Cobb-Douglas technology these elasticities are fixed. 

In his analysis of the problem, Viton (1980) assumed that trackage is fixed in the short run. 
This is a reasonable hypothesis due to the difficulties and the long time required to layout 
additional tracks, as well as the regulatory problems which may accompany a proposal to 
abandon existing lines (Viton, 1980). Viton used a subset of the observations utilized by 
Pozdena and Merewitz, including data for the rapid rail systems in New York, Chicago, 
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Philadelphia, Cleveland, Shaker Heights, and Montreal, covering the period 1960-70. A 
translog cost function was estimated taking total annual vehicle miles as output and three 
factor inputs: labor, electric power, and track. While Pozdena and Merewitz concluded that 
there existed economies of density throughout the industry, Viton concluded that the 
situation varied greatly over the sample. He found out that New York, Chicago, and the 
SEPTA system in Philadelphia presented short-run diseconomies of density. These results 
were not surprising since the companies in question serve major metropolitan areas and their 
systems were both old and highly congested (Viton, 1980). As for Montreal’s rapid-transit 
system, the results indicated slight diseconomies of density, but the t-statistic did not give 
support to reject the hypothesis of constant returns. The remaining systems showed 
economies of density, although slight. 

Traditionally, production functions are estimated by first adjusting a cost function to the data. 
Then, making use of the Shephard’s duality lemma (Coelli et al., 1998), the corresponding 
production function is inferred. However, some authors impose restrictions to the use of the 
Shephard’s duality lemma in the analysis of the production structure of rapid-transit 
properties. They argue that there is no evidence that transit firms tend to minimize costs. 
Berechman (1993) states that since cost minimization is not, in fact, the main objective of the 
transit firm, the estimated cost function parameters are likely to be biased due to 
misspecification of the model. In this case, since the transit firm is not operating on the 
efficient cost curve, the estimated parameters will, therefore, reflect this inefficient behavior 
rather than the firm’s underlying technology. 

Berechman (1993) discusses a number of possibilities for the behavior of transit managers. 
One of them is that the transit firm, which is usually controlled or owned by a public agency, 
strive to maximize the budget surplus (i.e., budget less expenditures). Since the annual 
budget is normally fixed or difficult to raise, this approach would lead to a cost-minimization 
result. The empirical evidence, presented by Berechman (1993), is that while the total budget 
allocated to transit firms (bus or rapid-rail transit) has increased substantially over time, 
neither total output nor even labor input have increased, while the unit cost of output has 
gone up dramatically. Hence, Berechman (1993) concludes that the hypothesis that transit 
managers maximize budget surplus is probably incorrect. It is more likely, according to that 
author, that transit managers allow costs to increase to meet the higher budgets. This also 
means that the transit firm is not operating on the efficient cost curve, therefore restraining 
the use of the cost function to analyze the underlying technology. 

Talley (1988) also discussed the objectives of the transit agencies, stating that public transit 
firms tend to adopt bureaucratic-type objectives such as maximizing passenger miles or 
passengers. In addition to these objectives, the public transit firm may also seek to maximize 
net benefits, i.e. total benefits less costs. But Talley, as Berechman (1993), concludes that 
there is no reference in the literature stating that a public transit firm has adopted the objective 
of maximizing net benefits, or budget surplus in Berechman terms. On the other hand, the 
literature indicates that public transit firms tend to adopt effectiveness objectives related to size 
maximization. Talley cited two examples of effectiveness objectives that have been adopted 
by public transit firms in England, Canada, and the United States. The first corresponds to 
the maximization of passenger-miles subject to an overall deficit constraint, and was adopted 
by London Transport. The second objective is to maximize total passengers carried per year, 
also subject to an overall deficit constraint, which was the policy adopted by the staff of the 
Toronto and Norfolk transit systems. In conclusion, there is no evidence in the literature that 
transit agencies behave as cost minimization firms, as required in Shephard’s theory. 
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A third restriction to the estimation of the cost function to infer the production frontier of 
rapid-transit properties is the heterogeneity of the input prices prevailing in different 
countries or regions. As mentioned, when treating the problem through a cross-section 
analysis of world-wide data, as in the case focussed in this paper, the input prices can hardly 
be assumed constant due to different national economic policies, labor regulations, 
construction costs, rolling stock prices, energy costs, etc. 

A fourth question is related to the multi-modal characteristic of many transit agencies. Such 
agencies operate an integrated fleet of busses, streetcars, and rapid transit trains. A 
consolidated transit organization potentially benefits from “economies of scope” (Viton, 
1992). Even operating distinct modes, the transit firm may integrate the sectors dedicated to 
vehicle and crew scheduling, route planning, payroll, marketing, etc, allowing for cost 
savings. As a consequence, the separate analysis of the rail rapid transit costs, without 
consideration to the other modes in such cases, can lead to biased results. 

Regarding this intricate body of discussions and opinions, it is opportune the introduction of 
new forms of analyzing the problem. Particularly, in addition to the traditional parametric 
approaches, Data Envelopment Analysis (DEA) has been used as a process for measuring the 
relative efficiency of a group of decision making units (DMUs). One of the first applications 
of DEA to rapid-transit analysis is due to Chu et al. (1992). Novaes (1997) applied the DEA 
method to a sample of rapid-transit agencies of the world, with 1996 data. Each non-efficient 
agency was then projected onto a point on the envelopment surface (efficient frontier) 
according to DEA rules. Then, taking the set of efficient rapid-transit DMUs, together with 
the frontier-projected DMUs, a least-square regression was performed, leading to a translog 
production function. Although the results were statistically satisfactory, the projected DMUs 
on the envelopment surface do not represent real counterparts. Therefore, the method could 
be criticized for being somewhat artificial. For this reason, a stochastic frontier method, 
based on maximum-likelihood techniques, was further used to estimate a trans-log 
production function to the same data (Novaes, Constantino & Souza, 2000). 

 
3. The Variable Set 

A new data set, comprising 21 rapid-transit agencies of the world, was obtained from the São 
Paulo’s transit agency (Cia. do Metropolitano de São Paulo, Brazil), covering the years 
1999-2000. The available data are presented in Table 1. In our model, the output is 
represented by P, the total passengers carried per year. In order to appropriately select the 
independent variables of the model, a technical analysis of the production process is necessary. 
 
3.1 Composite variable 

Let us assume that a general rapid-transit property has NL lines, with extensions . 
On the other hand, let d be the average distance between stations, given by 

NL21 L  ...,  ,L  ,L

S
Ld =  , (1) 

where L is the total extension of the rapid-transit lines and S is the total number of stations. 
Assuming an average constant speed v, the time necessary for a composition to complete a 
cycle on line i is given by 

v
L 2

T i
i =  . (2) 
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The number of compositions operating on line i can be expressed as a function of T  and 
H, the peak-hour headway: 

iNt i

H
T

  k    Nt i
i ≅  , (3) 

where k is a constant which takes into account spare compositions parked at the depot (reserve, 
maintenance, etc), lost time when reversing train direction, etc. Let  be the number of 
passenger cars allocated to line i. If u is the number of cars per train, the following relation holds 

iC

ii Nt u    C =  (4) 

Making the necessary substitutions in (4), and adding up on i, one gets 

L 
H v
u k    L  

H v
u k     C    C '

i
i

i
i === ∑∑

2  (5) 

where C is the total number of passenger cars owned by the rapid-transit property and 
k’ = 2 k  is a constant. From (5) one estimates u: 

L
H C v  ''k    u =  (6) 

where kk 2
1'' =  is a constant. Passenger trip attraction in line i can be expressed as a 

combination of three factors: a) the number of stations in line i; b) the train passenger 
capacity; and c) the peak-hour frequency of trains 

,1          
H

WSA ii ××≈  (7) 

where  is the number of stations in line i. On the other hand, W is the train capacity, given 
by u , where w is the car capacity. Making substitutions in (7), and simplifying, one gets 

iS
w 

.  (8)   
L

 C w vS  
H

  
L

H C w v   S    A iii ×=××≈
1

The total number of passengers P carried by the rapid-transit property is proportional to the 
sum of the  for all lines: sAi

∑
×

=≈
i

i L
SC w vS  

L
 C w v    P  (9) 

We admit that the effects, on the rapid-transit production, of variables v, the average train speed, 
and w, the average car capacity, are indirectly expressed by other inputs, such as the number of 
cars and the headway. This means we may approximately assume v and w to be constant in 
equation (9). Therefore, one important input variable to explain rapid-transit trip generation is 

L
S  Cx ×

=1  (10) 

where C is the total number of cars of the rapid-transit property, S is the total number of 
stations, and L is the total extension of the lines. 
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Table 1 – Rapid-Transit Data 

Rapid-transit 
property P POP NL L S C H E 

Barcelona 280 2.6 5 80.5 111 488 210 2,517 
Berlin 437 3.4 9 144.0 169 1528 180 5,033 
Buenos Aires 217 11.0 5 43.6 78 467 180 2,511 
Caracas 285 3.5 3 42.5 39 415 110 4,689 
Hong Kong 794 5.5 3 43.2 38 923 112 8,786 
Lisbon 117 2.5 4 30.0 36 307 180 2,124 
London 832 6.3 12 392.0 267 4912 120 16,000 
Madrid 423 5.1 11 120.9 164 1076 120 5,438 
Mexico City 1,362 20.0 10 178.0 154 2571 115 13,259 
Moscow 3,208 8.8 11 262.0 160 4192 90 29,003 
New York 1,192 13.2 29 393.2 481 6143 130 26,324 
Osaka 957 2.6 7 115.6 92 1200 120 7,503 
Paris 1,470 11.0 19 567.0 455 3364 95 12,116 
Santiago 196 4.3 3 37.6 47 394 95 1,405 
San Francisco 76 6.0 5 153.0 39 669 150 2,400 
Sao Paulo 470 17.1 3 49.2 46 654 100 7,028 
S. Petersburg 721 3.2 4 94.3 56 1343 95 12,000 
Seoul 1,388 13.5 4 131.6 114 1602 150 11,116 
Singapore 278 2.9 2 83.0 48 510 120 2,706 
Tokyo 2,639 30.0 12 248.7 235 3039 110 17,316 
Washington 194 3.2 6 150.0 75 764 180 3,420 

Source: Cia. do Metropolitano de São Paulo, METRO 
P – Passengers carried per year (million); POP – Served population (million); NL – Number of lines; 
L – Total line extension (km); S – Number of stations; C – Number of passenger cars; H – Peak-hour 
headway (seconds); E – Number of employees 

 
3.2 Peak-hour frequency (x 2 )  

The output, total passengers carried per year, is relatively sensitive to the peak-hour 
frequency variation, which is given by 3,600/H, with the headway H in seconds. In fact, the 
renewal of passengers at the station platforms is positively influenced by train frequency, 
thus increasing passenger flow in the line. 

 
3.3 Average line extension (x 3 )  
The average line extension, given by L / N L , on the other hand, has two major effects on the 
output. When the line extension increases, the rapid-transit spatial coverage also increases, 
producing a positive effect on the demand. But the line segments with partial load (edges) also 
tend to increase (Figure 1a), generating a curve as depicted in Figure 1b. Although the line 
extension L has been included into both variables x1 and x3, this fact does necessarily implies 
that both variables are correlated, since the presence of L in variable x 1  can be regarded 
simply as the ratio S / L (the average number of stations per kilometer), which is not related to 
the line extension L. In fact, the correlation between x 1  and x 3  in the sample is only 0.02. 
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Figure 1 – Effect of subway line extension into the output 

 
3.4 Total number of employees (x 4 )  

The number of employees (x 4 )  influences demand both directly and indirectly. Train-
conducting crews, being directly related to train supply, normally have a direct impact. 
Station personnel, on the other hand, usually have an indirect impact (ticket sales, for 
instance). Other activities (cleaning of the premises, maintenance, security, administration, 
etc.) tend to have an indirect, somewhat weaker impact. 

 
3.5 Served population (x 5 )  

Finally, the served population has an impact on rapid-transit production because the growth 
of cities is generally correlated to increasing urban concentration, mainly in the CBD areas. 
This concentration generates, of course, higher levels of transportation demand. 

 
3.6 Variable preliminary analysis 

A preliminary multiple regression adjustment of a logarithmic production function was 
performed with the data. The correlations between the output P and the five inputs 
x 1 ,x 2 ,…,x 5  are respectively: 0.850, 0.616, 0.326, 0.926, and 0.468. A high correlation 
between x 1  and the output P has confirmed the importance of that variable. Figure 2 shows 
the variation of the output with x 1 . One can notice that, although the sample points spread 
out as x 1  gets larger, the correlation between the variables is apparent. The number of 
employees, on the other hand, has also shown a high correlation with the output P. In fact, it 
can be noticed in Figure 5 the narrower range of variation of the output with such a variable. 
Figure 3 shows the variation of P as a function of x 2 . Due to technological limitations, the 
minimum headway presently attainable by conventional rapid-transit systems is 90 seconds. 
Therefore, the maximum frequency is 40 trains per hour. As shown in Figure 3, the points 
start spreading out at about x 2  = 15. Consequently, we redefined the variable x 2 , expressing 
it as 'x2 153600 −= H . Figure 4 shows the variation of the output P with input x 3 . Finally, 
Figure 6 shows the variation of P with x 5 , the served population. It can be seen that the 
points in Figure 6 spread out more randomly. 
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Figure 2 – Output P as a function of variable x 1  

 

 
Figure 3 – Output P as a function of variable x 2  

 

 
Figure 4 – Output P as a function of variable x 3  
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Figure 5 – Output P as a function of variable x 4  

 

 
Figure 6 – Output P as a function of variable x 5  

 
4. The DEA Approach 

4.1 The Basic Models 

Data Envelopment Analysis (DEA) was originally developed by Charnes et al. (1978) as a 
process for measuring the relative efficiency of a group of public and/or non-profit decision 
making units (DMUs). Each DMU is represented by a set of S outputs and a set of M inputs. 
In contrast to parametric approaches, whose objective is to optimize a single regression curve 
through the data, DEA optimizes on each individual observation in order to calculate a 
discrete piecewise frontier determined by the Pareto-efficient DMUs. In parametric analysis, 
the single optimized regression function is applied to each DMU. In contrast, DEA optimizes 
the performance measure of each DMU. In other words, the focus of DEA is on the 
individual observations as represented by the n required optimizations (n being the number 
of DMUs under analysis). This is in contrast to the focus on the average behavior that is 
associated with single-optimization statistical approaches (Charnes et al., 1994). 
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Charnes at al. (1978) extended Farrell’s (1957) approach linking the estimation of technical 
efficiency and production frontiers. Their initial model generalized the single output/input 
ratio measure of efficiency due to Farrell. The multiple output/input characterization of each 
DMU was transformed into a single virtual output and a single virtual input. Then, the 
problem was treated with a fractional linear-programming formulation. The relative technical 
efficiency of any DMU is calculated by forming the ratio of a weighted sum of outputs to a 
weighted sum of inputs. These weights are selected calculating the Pareto efficiency measure 
of each DMU subject to the constraint that no DMU can have a relative efficiency score 
greater than unity. The DMUs that attain a relative efficiency score equal to one form the 
frontier efficient set of DMUs (Charnes et al., 1994). 

Two basic DEA models are generally used in the applications. The first, called the ratio form 
model, named CCR after its authors Charles, Cooper and Rhodes, allows for the evaluation 
of overall efficiency, identifies the efficient and non-efficient DMUs, and determines how far 
from the efficient frontier are the non-efficient units. The BCC model, named after its 
authors Banker, Charnes and Cooper (Banker et al., 1984), yields the projected efficiency 
point on the envelopment surface for each non-efficient DMU, together with the peer-group 
of efficient units associated with each non-efficient DMU (Cooper et al., 2000). 

Let yk = {y1 k , y2 k , …, yS k} and xk = {x1 k , x2 k , x3 k ,…, xM k} be the vectors of outputs and inputs 
respectively for DMU k (k = 1, 2,.., n), where S and M are respectively the number of outputs 
and inputs considered in the analysis. Outputs and inputs are transformed into single virtual 
entities by weighting the values of the attributes. The single virtual output, for DMU k, is 

k SSkkk y u  ... y u y u  Y +++= 2211  (11) 

and the single virtual input for DMU k is 

k MMkkk x v  ... x v x v  X +++= 2211  (12) 

The input-oriented BCC model, with variable returns-to-scale (VRS) (Cooper et al., 2000), is 

  min  kθ  (13) 

subject to 

0           
1

≥− ∑
=

l
l

l i

n

ikk xx λθ ,  (14) M...,i 21=

kjj

n
yy   

1
       ≥∑

=
l

l
lλ ,  (15) S...,j 21=

1
1

=∑
=

n

l
lλ , (16) 

with , and where k  represents a generic DMU, θ k  is the efficiency score of DMU k , 
and n  is the number of DMUs. On the other hand, the CCR model assumes constant returns 
to scale (CRS), and is obtained from the BCC model by suppressing constraint (16). 

0 ≥lλ

Sometimes, part of the inputs or outputs cannot be changed by the decision makers at will. 
For example, the served population in our case study can be used as an exploratory variable, 
but it cannot be varied by the rapid-transit executives at their will. On the contrary, it is a long 
term variable imposed by external factors. DEA treats those variables as non-discretionary 
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inputs or outputs. This means that when a non-efficient DMU is projected onto a point on the 
envelopment surface (efficient frontier) according to DEA rules, the non-discretionary inputs 
and outputs remain constant, i.e. they cannot be used to upgrade a non-efficient unit. 

In our application, we admitted short-term improvements only. Thus, new rapid-transit lines 
and new stations, as well as line extensions were considered non-discretionary variables in 
the DEA model. In fact, it takes a few years to plan, design and implement them. As a result, 
the input x1 was assumed discretionary because variable C is so. Inputs x2 and x4 are also 
discretionary. Since variables L and NL are non-discretionary, the input x3 is non-discretionary 
too. Of course, as already mentioned, the served population is a non-discretionary input. 

 
4.2 The Assurance-Region Method 

DEA assumes that the output weights u1, u2,…, uS and the input weights v1,v2,…,vM are 
variable in the model, with the result that the numerous a priori assumptions and 
computations involved in fixed weight choices are avoided. Thus, DEA minimizes the need 
for recourse to assumptions that are “outside the data” (Cooper et al., 2000). There are 
situations, however, in which the attributes cannot vary freely, since they are constrained by 
technical or operational reasons. For example, in the optimal weight vectors of DEA models 
for inefficient DMUs, one may see many zeros, showing that the DMU has a weakness in the 
corresponding items compared with other efficient DMUs. Large differences in weights from 
item to item may also be a concern. 

The assurance-region method imposes additional constraints on the relative magnitude of the 
weights for special items. According to it, one may add a constraint on the ratio of weights 
for input i and input j, as follows (Cooper et al., 2000): 

j,i
i

j
j,i U

v
v

L         ≤≤ , (17) 

where  and U  are lower and upper bounds respectively. Generally, the DEA efficiency 
score in the corresponding envelopment model is worsened by the additions of these 
constraints and a DMU previously characterized as efficient may subsequently be found to 
be inefficient after such constraints have been imposed (Cooper et al., 2000). 

j,iL j,i

Running the BCC model without any weight restriction, 12 of the 21 rapid-transit properties 
were considered efficient. Moreover, many zero weights were observed where a positive 
value should appear instead. Large differences in weights from item to item were also 
observed. Analyzing Figures 2 to 6, together with the correlations between the output P and 
the inputs, the following weight restrictions were introduced in the DEA model: 

a) The current ways of increasing train frequency (x2) is to add more trains to the lines 
(and consequently more cars), or to increase train trips per day, or both. Since the 
number of stations S and the total trackage L are non-discretionary inputs, the 
variation of input x1 tend to be close to the variation of x2. But, due to the possibility 
of running more train trips per day with the same number of cars, the second input can 
be varied with more flexibility than the first. Thus, we have assumed that the weights 
of x1 and x2 are limited by the following restriction: 

121   31        v.vv ≤≤  (18) 
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b) For inputs x3, x4, and x5, the following restrictions were adopted: 

14      vv ≥                    v  (19) 31   3    vv ≥ 51   5    v≥

Before running the DEA model each variable was multiplied by a constant in order to 
impose that the largest value of each input or output is set to one hundred. This 
procedure, although not mandatory, is intended to avoid computing errors in the LP 
programming and does not affect the DEA results (scale invariance). 

 
4.3 Efficiency analysis 

We have adopted the input-oriented DEA models. This means that the non-efficient DMUs 
are projected on the envelopment surface (efficient frontier) by reducing the discretionary 
inputs, and holding the outputs constant. Both the CCR and the BCC models were applied to 
the data with the aid of the software EMS, version 1.3, developed by Holger Scheel (2000). 

Two different sources of inefficiency can be investigated in DEA models. The first 
comprises the effects of managerial and operational drawbacks, determining the technical 
efficiency. The second is due to the disadvantageous scale conditions under which the DMU 
is operating, and is accordingly named scale efficiency. In single input and output case, both 
efficiencies can be illustrated by Figure 7. Take, for example, the non-efficient DMU A in 
Figure 7. When one applies the input-oriented BCC model, point A is projected onto point B, 
on the efficient frontier. The technical efficiency εT is given by (Cooper et al., 2000): 

BCCT MA
MB θε == , (20) 

where θBCC is the efficiency obtained with the BCC DEA model. The scale efficiency ε S, on 
the other hand, given by the input-oriented CCR model, is defined as 

MB
MN

S =ε . (21) 

The overall efficiency ε , of DMU A, is the product of both, and it is given by the 
corresponding CCR model: 

CCRST MA
MN

MB
MN

MA
MB θεεε                    ==×=×=  (22) 

From expression (22), combined with equation (20), we compute the scale efficiency of a 
DMU (Cooper et al., 2000): 

BCC

CCR
S θ

θ
ε = . (23) 

Table 2 shows the scores (efficiency levels) for the 21 DMUs, obtained with the CCR and 
BCC input-oriented models. The rapid-transit properties were listed in the decreasing order 
of production level (passengers carried per year). If a DMU is efficient, then θCCR or θBCC, 
depending on the case, is equal to one; otherwise, θ < 1. The BCC model selected six 
technically efficient rapid-transit properties from the sample: Moscow, Tokyo, Seoul, 
Barcelona, Santiago, and Lisbon. Applying the more restricted CCR model, only one DMU, 
Tokyo, was classified as efficient (Table 2). 
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Scale efficiencies, given by (23), are shown in the last column of Table 2. Figures 8 and 9 
show the variation of the technical and scale efficiency with the output. Technical efficiency, 
which reflects management performance, is not strongly influenced by the size of the 
production level, although the spread of the θBCC values tends to decrease as the output 
increases (Figure 8). Scale efficiency, on the other hand, shows a strong relationship with 
DMU size, as expected (Figure 9). 

The São Paulo rapid-transit, whose analysis is one of the specific objectives of our study, 
shows a low technical efficiency (0.506), together with a reasonable scale efficiency (0.867), 
leading to a somewhat poor overall score (0.439). In fact, the rapid-transit system of the city 
of São Paulo, with a population of about 17 million, carries only about 8.3% of the total 
motorized trips, with the bus system responsible for 38.3%. Although the São Paulo’s Metro 
is an important element in the local transport of people, it covers only a small part of the 
urban area, with only three lines, which explains the relative inefficiency. 
 

 
Figure 7 – Technical and Scale Efficiencies in DEA 

 

 
Figure 8 – Rapid-transit Technical Efficiency 
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Figure 9 – Rapid-transit Scale Efficiency 

 
Table 2 – Efficiencies and Returns to Scale 

Rapid-transit Passengers carried/year 
(million) CCR score BCC score Scale score 

Moscow 3,208 0.960 1.000 0.960 
Tokyo 2,639 1.000 1.000 1.000 
Paris 1,470 0.796 0.804 0.990 
Seoul 1,388 0.979 1.000 0.979 
Mexico City 1,362 0.674 0.698 0.966 
New York 1,192 0.335 0.368 0.910 
Osaka 957 0.837 0.887 0.944 
London 832 0.349 0.383 0.911 
Hong Kong 794 0.593 0.646 0.918 
S. Petersburg 721 0.394 0.436 0.904 
São Paulo 470 0.439 0.506 0.867 
Berlin 437 0.570 0.689 0.827 
Madrid 423 0.510 0.601 0.848 
Caracas 285 0.399 0.513 0.778 
Barcelona 280 0.730 1.000 0.730 
Singapore 278 0.674 0.834 0.808 
Buenos Aires 217 0.566 0.918 0.616 
Santiago 196 0.916 1.000 0.916 
Washington, DC 194 0.374 0.726 0.515 
Lisbon 117 0.362 1.000 0.362 
San Francisco 76 0.208 0.852 0.244 
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5. Benchmarking with DEA 

Another important aspect of DEA is the information it offers to perform benchmarking 
analysis. Benchmarking is based on the best-practice technology, which is represented in 
DEA by the piece-wise efficiency frontier. Suppose that, by applying the BCC model, 
DMU k has been found to be inefficient. Associated with this inefficient DMU, there is an 
optimal virtual point on the envelopment surface that may be expressed as a convex 
combination of the efficient DMUs (Cooper et al., 2000). The efficient DMUs with , 
obtained by applying the BCC model to DMU k, form the peer group that can be used as a 
reference when benchmarking k. A part of the efficient DMUs has a relatively large 
participation on the peer groups of the inefficient DMUs. Some efficient units, on the other 
hand, show an isolated behavior, being benchmarking references to other DMUs on a 
marginal scale only. 

0≠λ

Suppose DMU  is efficient. Taking the resulting values of one has (see Table 3): (a) 
the number of inefficient DMUs which have chosen the peer DMU l  as benchmark; (b) the 
average value of the , for each efficient DMU ; (c) the minimum and maximum 

observed values of  for each efficient DMU. Moscow is an isolated efficient DMU since 
it has not been selected as a benchmarking peer to any of the non-efficient DMUs. Seoul can 
be also classified in that category since it has been selected as peer to only one non-efficient 
DMU, with a low participation level ( ). The remaining efficient DMUs, Tokyo, 
Barcelona, Santiago and Lisbon, participate with different intensity levels as benchmarking 
peers, as shown in Table 3. 

l )k(
lλ

s)k(
lλ

)k

l
(
lλ

090.=λ

 
Table 3 – DEA benchmarks 

l  – Efficient rapid-
transit property 

The number of 
inefficient DMUs which 

have chosen the peer 
DMU as benchmark 

Minimum  
λ 

Average  
λ 

Maximum 
λ 

Moscow 0 − − − 
Tokyo 12 0.01 0.17 0.52 
Seoul 1 0.09 0.09 0.09 
Barcelona 14 0.07 0.63 0.91 
Santiago 12 0.05 0.19 0.42 
Lisbon 3 0.09 0.44 0.89 

 

Let us take the non-efficient São Paulo’s rapid-transit, as a benchmarking example. It is 
related to the following efficient peers: Barcelona ( ), Santiago ( ), and 
Tokyo ( ). Table 4 shows the DEA elements that can be used to benchmark São 
Paulo’s rapid transit. First, the São Paulo’s subway could improve fleet utilization taking 
Santiago as a reference. In fact, although Barcelona and Tokyo show cars/km-of-track/peak-
hour-ratio values close to the São Paulo figure, Santiago shows a much better score. This 
improvement could be achieved by improving maintenance activities and reducing idle time, 
thus rising the fleet working time average. 

650.=λ 260.=λ
090.=λ
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Table 4 – Benchmarking the São Paulo’s rapid transit property 

Item Benchmarking 
object DEA efficient peers 

Rapid-transit São Paulo Barcelona Santiago Tokyo 
λ ------- 0.65 0.26 0.09 
DEA Efficiency:     
• Technical efficiency 0.506 1.000 1.000 1.000 
• Scale efficiency 0.867 0.730 0.916 1.000 
• Overall efficiency 0.439 0.730 0.916 1.000 

Output (passengers carried per 
year – million) 470 280 196 2,639 

Ratios:     
• cars / km of track 13.29 6.06 10.48 12.22 
• cars / km of track/ peak-hour 

frequency 0.369 0.353 0.276 0.373 

• employees / station 152.78 22.67 29.89 73.68 
• employees / km of track 142.85 31.27 37.37 69.63 
• employees / one million pass 14.95 8.99 7.17 6.56 

 

Although some improvement could be achieved through better fleet utilization, as 
mentioned, the input that is visibly in excess is the number of employees. If we take 
Barcelona indexes as a reference, the São Paulo Metro should have no more than 4,225 
employees, which compare to a present labor force of 7,028 people, about 66% greater. As a 
matter of fact, the São Paulo rapid-transit authority is charged with a relatively large number 
of activities outside the conventional tasks performed by its international counterparts: urban 
planning, traffic analysis, landscape design, among others. Strictly speaking, the intrinsic 
rapid-transit tasks could be performed by a smaller team. 

 

6. Conclusions 

The results of our analysis agree with previous findings reported in the literature (Viton, 1980; 
Berechman, 1993): rapid-transit properties show increasing returns to scale (see Figure 9), 
except for the second largest DMU in our sample, Tokio, which presents constant returns to 
scale. Data Envelopment Analysis, on the other hand, furnishes additional information to the 
benchmarking process, as shown for the São Paulo rapid-transit property. 

In applying analytical techniques such as DEA, it is necessary that the selected sample data 
satisfy some general conditions (Golany & Roll, 1989). First, we look for a homogeneous set 
of units, which for our purposes, is one where: (1) the units of analysis perform the same 
kind of tasks, with the same objectives; (2) the units perform under the same set of ‘market 
conditions’; (3) the factors of production (inputs and outputs), characterizing the 
performance of all units in the group, are identical in nature, except for differences in 
intensity or magnitude. Although the rapid-transit properties of the world have somewhat 
different technologies, scope and extensions, there is no apparent reason to believe that the 
above conditions are not satisfied by the DMUs in the sample. 
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The other aspect to be considered is the size of the comparison group. A rule of thumb 
generally adopted in DEA applications is that the number of DMUs should be at least twice 
the sum of the number of inputs and outputs. In this case, there are 5 inputs and 1 output, for 
a total of 21 DMUs, meaning the size of the sample is satisfactory. 
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