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ABSTRACT. The one-dimensional skiving stock problem is a combinatorial optimization problem being
of high relevance whenever an efficient and sustainable utilization of given resources is intended. In the
classical formulation, a given supply of (small) item lengths has to be used to build as many large objects
(specified by some target length) as possible. For this N P-hard (discrete) optimization problem, we
investigate the quality of the continuous relaxation by considering the additive integrality gap, i.e., the
difference between the optimal values of the integer problem and its LP relaxation. In a first step, we derive
an improved upper bound for the gap by focusing on the concept of residual instances. Moreover, we show
how further upper bounds can be obtained if all problem-specific input data are considered. Additionally,
we constructively prove the integer round-down property for two new classes of instances, and introduce
several construction principles to obtain gaps greater than or equal to one.

Keywords: Cutting and Packing, Skiving Stock Problem, Additive Integrality Gap.

1 INTRODUCTION

In this paper, we consider an offline version of the one-dimensional skiving stock problem (SSP)
[15, 42] which is strongly related to the dual bin packing problem (DBPP) in literature [1, 17, 31].
In the classical formulation, m ∈ N := {1,2, . . .} different item lengths li with availabilities bi

(i ∈ I := {1, . . . ,m}) are given, the so-called item supply. We aim at maximizing the number of
(large) objects with minimum length L that can be constructed by connecting the available items,
see Fig. 1. Without loss of generality, all input data are assumed to be positive integers.

According to the typology in [41], the two denotations (DBPP and SSP) are separated in the
following sense in literature: the term DBPP rather refers to highly heterogeneous input lengths,
meaning that the quantities bi are very small (mostly even equal to one) for all i ∈ I, whereas
larger values of bi are considered whenever the term SSP is used, in general. This is the same
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Figure 1 – A schematic of the SSP for a small instance consisting of three item types.

differentiation as in the cutting context, where the bin packing problem and the cutting stock
problem are considered.

In general, the skiving stock problem can be considered as a natural counterpart of the extensively
studied one-dimensional cutting stock problem (CSP) [8, 12, 16, 27, 37, 40]. Indeed, the latter
consists of cutting larger objects into smaller ones, whereas the SSP asks for the reverse direction.
Although both problems share a certain common structure (e.g., as regards their input data), they
are not dual formulations in the sense of linear optimization. Consequently, the skiving stock
problem actually represents an independent problem class within the field of operations research.

First preliminary thoughts on the SSP appeared in the context of paper cutting [15]. Some years
later, this introductory work led to an ILP formulation (based on the well-known structure of
the Gilmore/Gomory model [12]) for the skiving stock problem containing an infinite number of
variables [42]. More sophisticated (pseudo-polynomial) alternative modeling approaches, being
able to deal with practically meaningful instance sizes, and detailed computational experiments
have recently been presented in [21].

Nowadays, the SSP plays an important role whenever an efficient and sustainable use of limited
resources is intended. Among others, some main areas of real-world applications are given
by: industrial production processes [15, 42], politico-economic problems [1, 17], or wireless
communications [20, 39]. Moreover, the SSP frequently appears side-by-side with the CSP in a
holistic cutting-and-skiving scenario within different fields of industry [5, 15].

2 IMPORTANT DEFINITIONS AND NOTATION

Let E = (m, l,L,b) with l = (l1, . . . , lm)> and b = (b1, . . . ,bm)
> denote an instance of the skiving

stock problem.

Definition 1. Any arrangement of items leading to an object of length not less than L is called
(packing) pattern of E.

Obviously, any pattern can be represented by a vector a = (a1, . . . ,am)
> ∈ Zm

+ where ai ∈ Z+

counts the number of items of type i ∈ I. The set of all patterns is then given by P(E) :={
a ∈Zm

+

∣∣ l>a≥ L
}

.
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Definition 2. A pattern a ∈ P(E) is called minimal if there does not exist any pattern ã ∈ P(E)
such that ã 6= a and ã ≤ a hold (componentwise). The set of all minimal patterns is denoted by
P?(E).

Let x j ∈Z+ count how often the minimal pattern a j =
(
a1 j, . . . ,am j

)> ∈Zm
+ ( j ∈ J?) of E is used

where J? = {1, . . . ,n} represents an index set of P?(E). Then the standard model of the skiving
stock problem [21, 42] can be formulated as

z?(E) = max

{
∑
j∈J?

x j

∣∣∣∣∣ ∑
j∈J?

ai jx j ≤ bi, i ∈ I, x j ∈Z+, j ∈ J?
}
. (1)

Due to the N P-hardness of the SSP, a common (approximate) solution approach consists of
considering the continuous relaxation

z?c(E) = max

{
∑
j∈J?

x j

∣∣∣∣∣ ∑
j∈J?

ai jx j ≤ bi, i ∈ I, x j ≥ 0, j ∈ J?
}

(2)

and/or the application of appropriate heuristics. Then, the difference

∆(E) := z?c(E)− z?(E) (3)

is called gap (of E), and represents a reasonable measure to evaluate the quality of the LP-based
approach.

Remark 1.

(i) The gap can also be formulated with respect to other ILP formulations of the skiving stock
problem, such as the arcflow model or the one-stick model [21]. However, due to the
equivalence of these three models (and of the corresponding continuous relaxations), see
[21], the gap is the same for them.

(ii) The optimization problems (1) and (2) can also be formulated on the basis of the complete
pattern set P(E) or any other pattern set P̃(E) with P?(E)⊆ P̃(E)⊆ P(E) without chang-
ing the respective optimal values z?(E) and z?c(E). In particular, also the gap does not
depend on which pattern set is chosen.

Besides only considering one single instance, frequently the gap of a whole class T of instances
(e.g. the divisible case, see Def. 4) is of interest, too. In these situations, the gap of T shall be
understood in the following way:

∆(T ) := sup
E∈T

∆(E).

In particular, T may also contain all possible instances.

Similar to the context of one-dimensional cutting, the following definitions (originating from [3])
are of importance:
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Definition 3. A set T of instances possesses the integer round-down property (IRDP), if ∆(E)<
1 holds for all E ∈T , and it has the modified integer round-down property (MIRDP), if ∆(E)< 2
holds for all E ∈ T . Whenever T = {E} is a singleton, we briefly say that E, instead of {E},
has the (M)IRDP. An instance E with ∆(E)≥ 1 is called non-IRDP instance.

One of the most important special cases where the MIRDP could successfully be proved is given
by the so-called divisible case [22].

Definition 4. An instance E = (m, l,L,b) belongs to the divisible case (or E ∈DC for short), if
li | L (i.e. L/li ∈Z+) holds for all i ∈ I.

To exploit these structural properties, in this case an instance can be referred to by its normalized
representation E = (m, l′,1,b) with L = 1 and l′i ∈ {1/2,1/3, . . .} for i ∈ I.

Remark 2. For any instance E = (m, l,1,b)∈DC the optimal value of the continuous relaxation
is always given by z?c(E) = l>b, see [22]. Hence, only one optimal value remains to be studied
for the gap.

Note that the divisible case has also been considered for the cutting stock and the bin packing
problem, see [2, 7, 18, 32] for some exemplary contributions.

3 MOTIVATION AND CONTRIBUTIONS

Mainly after the publication of the famous book by Nemhauser and Wolsey [29], a milestone
in integer programming (IP), the strength of optimization models has been placed as a central
concern in IP modeling and discrete optimization. This idea was new with respect to, for instance,
the book by Garfinkel and Nemhauser [11]. In recent years, research has shown, and it became
widely accepted, that

i) the quality of the bound provided by the LP relaxation of the IP model is a crucial factor
in the size of the search trees in branch-and-bound, and

ii) in general, strong models have a better behavior when the size of the instances grows.
More precisely, if two models have a similar behavior (in terms of computational time) for
a given size of instances, one can anticipate that the stronger model will perform better
than the weaker model for larger instances.

Consequently, judging solution strategies for N P-hard problems by the empirical method (i.e.,
by computational experiments covering a significant set of instances, including those that repre-
sent the limits of what can be solved in a reasonable amount of time) is important, but providing
theoretical justifications that the considered formulations are strong is (in many cases) a guar-
antee that, as instances grow, the computational times do not rise so sharply as they would with
weaker ones.

Remark 3. Some of the previous claims are implicitly based on the assumption that the efforts
to generate and solve the considered relaxations do not differ significantly from one another.

Pesquisa Operacional, Vol. 39(1), 2019



JOHN MARTINOVIC and GUNTRAM SCHEITHAUER 5

More generally, from a computational point of view, it is also very important to find a reasonable
balance between the quality of the bound obtained by a given relaxation and the time required to
solve this relaxation (at each node of the search tree). For instance, this trade-off can be observed
when dealing with the well-known asymmetric traveling salesman problem, where those MILP
models providing the best (lower) bounds [13, 38] require high solution times even for small
instances (with less than 40 nodes), so that they are outperformed by much weaker approaches
(with respect to the bound) [28, 36].

As regards, for instance, the well-known cutting stock problem (and the related bin packing
problem) a significant body of work on the additive integrality gap has been established in recent
decades. For a period of more than 20 years, it was conjectured that the gap of the CSP can be
bounded above by the constant 1. The first counterexample to this claim (a so-called non-IRUP
instance) was found by Marcotte [18], but it required input data in the range of 106. Hence,
research on the gap of the CSP was still considered to be rather unimportant, particularly due to
the non-appearance of such data in practical cases, and (as discussed above) due to the fact that
the scientific attention was not yet sufficiently focussed on the performance of relaxations. Some
years later, also under the influence of the agenda presented by [29], Fieldhouse [10] and Nica
[30] constructed the first counterexamples of moderately sized input data. Afterwards, research
on the gap of the CSP was further intensified such that more and more articles dealt with the
construction of large gaps [4, 33, 34] or upper bounds for the maximal gap [32, 35].

Since, contrary to that, the skiving stock problem represents a relatively young field of research,
not having attracted a comparable scientific interest so far, there is no specific preliminary work
on its gap in the related literature (apart from own articles). However, in a very recent publication
[9], maximization problems of type

max
{

c>x : Ax = b, 0≤ x≤ u, x ∈Zn
+

}
, (4)

with arbitrary A = (Ai j) ∈ Zm×n, b ∈ Zm, c ∈ Zn, and upper bounds u ∈ Zn, are investigated
with special emphasis on their additive integrality gap ∆̃. As a consequence of [9, Theorem 6
and Subsect. 3.1], the currently best known upper bound results to

∆̃≤ ||c||∞ ·m · (2m ·∆A +1)m (5)

with

∆A ≥ max
{
|Ai j| : 1≤ i≤ m, 1≤ j ≤ n

}
,

||c||∞ = max
{
|c j| : 1≤ j ≤ n

}
.

For the SSP, where A denotes the pattern matrix, this observation together with the problem-
specific data ||c||∞ = 1 and ∆A ≥ L (and, for instance, u = b) lead to

∆(E)≤ m · (2mL+1)m (6)

for any instance E, i.e., to an upper bound of nonpolynomial order. However, the largest known
gap is currently given by 325/276 ≈ 1.1775, see [23], and hence the SSP is conjectured to
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possess the MIRDP. Consequently, the facts provided by this quite general approach [9] are far
away from being of sufficient quality to obtain reasonable theoretical results for the gap of the
SSP.

Similar to the CSP, a verification of ∆(E) < 2 for arbitrary instances (or the presentation of a
counterexample) of the SSP is actually very difficult. More precisely, the inequality ∆(E) <
(m+ 1)/2 (see [24]) currently represents the best upper bound being available for the case of
general instances. Due to this hardness, two main directions of research have been established in
literature:

• proving the IRDP or the MIRDP for special classes of instances, see [22] or [42], and

• investigating construction principles for instances with gaps larger than or equal to one,
see [23, 22].

One of the most important special cases where the MIRDP could successfully be proved is given
by the divisible case [22, 25].

Within this paper, we address and present several new results related to the gap of the skiving
stock problem, especially with respect to the IRDP and the MIRDP. Besides possessing theo-
retical importance these results are of practical interest as well. For example, if the IRDP of
an instance E is known, then the optimal value of the (hard) integer problem (1) can easily be
obtained by solving the linear program (2) and applying z?(E) = bz?c(E)c. Similarly, the MIRDP
of an instance E only allows the two possibilities z?(E) ∈ {bz?c(E)c,bz?c(E)c−1} for the optimal
value of the integer problem. However, the computation of a corresponding feasible integer so-
lution may still be difficult in some cases. Most notably, the following main achievements will
be presented:

• Compared to the inequality ∆(E) < (m + 1)/2 from [24], the improved upper bound
∆(E) < dβ/2e (with an instance-specific parameter β ≤ m) for arbitrary instances E is
derived in Subsection 4.2.

• Subsection 4.3 introduces new upper bounds for the gap of general instances that make use
of all problem-specific input data of a given instance E (i.e., not only the quantity m is used
as it is the case in all currently available bounds from literature [24, 22, 42]). Remarkably,
this new approach (for arbitrary instances) is based on the well-studied divisible case.

• In Section 5, two new classes of instances (the so-called strongly divisible and semi-
divisible instances) are constructively shown to possess the IRDP.

• Section 6 presents various new construction principles for gaps larger than or equal to
one. Interestingly, this also includes the first published classes of non-IRDP instances not
belonging to the divisible case.

In a final step, we summarize the most important contributions, give some conclusions and pro-
vide an outlook on future research.
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4 UPPER BOUNDS FOR THE GAP OF THE SKIVING STOCK PROBLEM

4.1 Residual Instances and a Short Overview on Existing Upper Bounds

In this subsection, we reformulate the (approximate) calculation of the gap ∆(E) of an instance
E = (m, l,L,b) by replacing this instance E with an instance Ē = (m, l,L, b̄) having principally
the same input data, but a (appropriately) reduced vector b̄ of availabilities. Hence, due to the
smaller total number of objects, the optimization problem becomes more manageable in a certain
extent. On the other hand, the new gap ∆(Ē) only provides an upper bound for ∆(E), in general.
As an initial point, we describe the construction of Ē more precisely.

Definition 5. Let E = (m, l,L,b) be an instance of the skiving stock problem, and let xc denote a
solution of the corresponding continuous relaxation (2). If xc is an extreme point of the feasible
region of problem (2), then the instance

Ē := Ē (xc) := (m, l,L, b̄) := (m, l,L,b−Abxcc)

with bxcc = (bxc
1c, . . . ,bxc

nc)> (n := |J?(E)|) is called residual instance of E. The set of all
residual instances of a given instance E is denoted by R(E).

Remark 4. Whenever xc is a solution but not an extreme point of the feasible region of (2),
the definition of a residual instance would still make sense. The crucial property that will be
required in some of the results presented below is that xc (as an extreme point) possesses at
most m positive components which will, in particular, lead to the inequality z?c(Ē)< m. In order
to see that the latter does not have to hold for arbitrary solutions xc, consider the instance
E = (m, l,L,b) = (3,(15,10,5),30,(2,5,8)) ∈DC . Here, we have z?c = 4 which is, for instance,
provided by the following solution

b =

2
5
8

=

0
3
0

+
1
2
·


2

0
0

+

1
1
1

+

1
0
3

+

0
2
2

+

0
1
4

+

0
0
6


 .

In this case, xc is not an extreme point and we have Abxcc = (0,3,0)>. Hence, the vector b̄ of
the residual instance Ē(xc) is given by b̄ = (2,2,8). For this specific residual instance, we now
obtain z?c(Ē) = 3 = m which is for instance provided by the decomposition

b̄ =

2
2
8

=
1
2
·


2

0
0

+

1
1
1

+

1
0
3

+

0
2
2

+

0
1
4

+

0
0
6


 .

Hence, an extreme point xc has to be chosen to obtain z?c(Ē) < m for Ē(xc). To provide an
example, we could take

b =

2
5
8

=

2
0
0

+
5
3
·

0
3
0

+
4
3
·

0
0
6


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leading to b̄ = (0,2,2) and the optimal value z?c(Ē) = 1 < m.

However, assuming an extreme point does not represent an actual restriction. On the one hand,
any solvable problem of type (2) always possesses an extreme point within the set of its solutions.
On the other hand, from a practical point of view, solutions of (2) are usually found by the simplex
method and column generation, so that at most m positive components will be obtained anyway.

In addition to the previous remark, the following points shall be emphasized:

• From a theoretical point of view, we formally allow b̄i = 0 (for some i ∈ I) for residual
instances in order to maintain a constant number m of item types.

• The term A = A(E) denotes the matrix whose columns are equal to the elements of P?(E),
i.e., to the minimal patterns of the given instance E. Observe that, for the sake of simplicity,
we will not make any distinction between the system matrix A of the original instance E
and that of the considered residual instance Ē ∈R(E). Even if P?(E)\P?(Ē) = P̂ is non-
empty (which occurs if and only if b̄i = 0 holds for some i ∈ I), the patterns from P̂ can
theoretically be added to the system matrix of Ē without changing the optimal value of the
LP or the ILP. This holds since their related counting variables x j will satisfy x j = 0 in any
(integer or continuous) feasible solution of Ē.

• It is straightforward to show that the continuous relaxation of Ē := Ē(xc) is solved by
x̄c := xc−bxcc.

As presented in [24] we obtain the following relationship between the gaps of an instance and
one of its residual instances.

Lemma 1. Let Ē = Ē (xc) ∈R(E), then ∆(E)≤ ∆(Ē) holds. In particular, the following impli-
cations are true:

1. If Ē has the IRDP, then E has the IRDP.

2. If Ē has the MIRDP, then E has the MIRDP.

Proof. Let x̄? be a solution of Ē. Then, x̄?+x with x := bxcc is feasible for E due to A(x̄?+ x) =
A(x̄?+ bxcc) = b̄+Abxcc= b−Abxcc+Abxcc= b and x̄?+ x ∈Zm

+. Furthermore, we have

z?(E)≥ e> (x̄?+ x) = z?(Ē)+ e>x.

With this inequality and the fact that z?c(E) = z?c(Ē)+ e>x holds for the optimal values of the
continuous relaxations (as indicated in the third point of the above list), we obtain

∆(E) = z?c(E)− z?(E) ≤ z?c(E)− z?(Ē)− e>x

= z?c(Ē)+ e>x− z?(Ē)− e>x

= z?c(Ē)− z?(Ē) = ∆(Ē)

and the proof is complete. �
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Hence, the gap of an instance E can be bounded above by the gap of any corresponding residual
instance Ē ∈R(E). Thus, the consideration of residual instances is sufficient for our purposes.

To our best knowledge, the first general upper bound for the gap of an arbitrary instance was
given in [22, Theorem 1]. Therein, an idea of [42, Theorem 4] could successfully be generalized
to m≥ 2.

Theorem 1. Let m ∈N with m≥ 2 be given and let E = (m, l,L,b) be an arbitrary instance with
m types of item lengths. Then ∆(E)< m−1 holds.

On the basis of residual instances, this result could be improved in [24, Theorem 3].

Theorem 2. Let E = (m, l,L,b) be an instance of the skiving stock problem, then ∆(E) < (m+

1)/2.

If the item lengths are known to be sufficiently small, we can state the following special case of
the previous result [24, Corollary 3].

Corollary 1. Let τ ∈N with τ ≥ 2 be given. If li ≤ (τ +1)/τ2 ·L holds for all i ∈ I, then the gap
satisfies the inequality

∆(E)<
m+ τ

τ +1
.

4.2 An Improved Upper Bound

An obvious possibility to obtain a feasible integer solution on the basis of a given solution xc of
the continuous relaxation consists of rounding down each variable xc

j ( j ∈ J?(E)) to the nearest
integer. This method was also applied in the proof of Theorem 1, see [22] for more details. In
what follows, we aim at evaluating the quality of this approach in terms of the resulting gap. As
a starting point, we need the following lemma.

Lemma 2. Let E = (m, l,L,b) be an instance of the skiving stock problem with l>b/L ≥ ρ − 1
for some ρ ∈N. Then we have z?(E)≥ bρ/2c.

Proof. We consider two cases:

• Case 1: ρ is even
In this case, we have l>b ≥ (ρ − 1)L = (2τ + 1)L for some τ ∈ Z+. Since any minimal
pattern a ∈ P?(E) satisfies l>a < 2L we certainly can build τ patterns out of the given
items. But, after this, there will still remain items of total length greater than l>b−2τL≥
L, i.e., at least one additional pattern can be obtained. Hence, we have

z?(E)≥ τ +1 =
ρ

2
=
⌊

ρ

2

⌋
due to ρ = 2τ +2 and the assumption of this case.
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• Case 2: ρ is odd
In this case, we have l>b≥ (ρ−1)L = 2τ ·L for some τ ∈Z+. Since any minimal pattern
a ∈ P?(E) satisfies l>a < 2L we certainly can build τ patterns out of the given items.
Hence, we have

z?(E)≥ τ =
ρ−1

2
=
⌊

ρ

2

⌋
due to ρ = 2τ +1 and the assumption of this case.

�

This lemma can be used to prove the following theorem.

Theorem 3. Let E = (m, l,L,b) be an instance of the skiving stock problem with n = |J?(E)|,
and let xc denote a solution of the continuous relaxation (2). If

ρ−1≤
n

∑
j=1

xc
j < ρ

holds for some ρ ∈N, then ∆(E)< dρ/2e is satisfied.

Proof. We have l>b/L≥ ∑
n
j=1 xc

j ≥ ρ−1 for some ρ ∈N implying that z?(E)≥ bρ/2c has to
hold (due to Lemma 2). But this immediately leads to

∆(E) = z?c(E)− z?(E) =
n

∑
j=1

xc
j− z?(E)< ρ−

⌊
ρ

2

⌋
=
⌈

ρ

2

⌉
.

�

Obviously, Theorem 3 holds for all instances of the skiving stock problem, particularly for resid-
ual ones. This (trivial) observation has an important implication which improves the upper bound
of Theorem 2.

Corollary 2. Let E = (m, l,L,b) denote an instance of the skiving stock problem. Then

∆(E)< dβ/2e ≤ dm/2e

holds, where β := min
{∣∣{i ∈ I

∣∣ b̄i 6= 0
}∣∣ : Ē = (m, l,L, b̄) ∈R(E)

}
denotes the minimal num-

ber of (remaining) different item types in a residual instance of E.

Proof. Let Ē = Ē(xc) ∈R(E) represent a residual instance of E that possesses exactly β dif-
ferent remaining item types. According to a previous observation, we know that x̄c := xc−bxcc
is a solution of the continuous relaxation of Ē with 0≤ x̄c < e (in a componentwise sense). In a
first step, we show that x̄c has at most β nonzero components. To this end, consider an arbitrary
but fixed index i ∈ I with b̄i = 0 (i.e., the items of type i do actually not appear anymore in the
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residual instance), and note that the solution xc has to satisfy Axc = b. Based on the definition of
the vector b̄, see Def. 5, we have (Abxcc)i = bi which implies that xc

j ∈ Z+ has to hold for any
pattern j ∈ J?(E) with ai j ≥ 1. But now, at least one non-zero component of xc has to belong to
a pattern j? with ai j? ≥ 1 in order to ensure Axc = b for the value bi ≥ 1 given by the instance
E. Consequently, we obtain that xc

j? > 0 and x̄c
j? = xc

j? −bxc
j?c= 0 have to hold, so that x̄c has at

most m−1 positive components. By an iterative continuation of this procedure we finally obtain
that x̄c has at most β non-zero components.

According to this observation (and 0 ≤ x̄c < e), we have ∑
n
j=1 x̄c

j < β . Hence, there exists ρ ∈
{1, . . . ,β} with

ρ−1≤
n

∑
j=1

x̄c
j < ρ

implying

∆(E)≤ ∆(Ē)<
⌈

ρ

2

⌉
≤
⌈

β

2

⌉
≤
⌈m

2

⌉
due to Theorem 3. �

This approach leads to an improvement of the previous upper bound (see [24]) (m+1)/2, at least
for all instances where m is even. Note that, due to Axc = b, the situation β < m appears if and
only if

b̄i = 0⇐⇒ (Abxcc)i = bi⇐⇒∀ j ∈ J? with ai j ≥ 1 : xc
j ∈Z+

holds for some i ∈ I. The latter is likely to be satisfiable especially for highly heterogeneous
instances, i.e., where the values bi are close to (or equal to) 1. However, even though in some
cases there are easily computable residual instances possessing strictly less item types than the
original instance E, the exact value β will be hard to find, in general.

Remark 5. Even after several decades of extensive research, the best known upper bound for the
gap of the related cutting stock problem is also given by O(m) (but with a constant of 1/4), see
[35].

Note that whenever l>b/L ≥ ρ−1 holds for some ρ ∈N, we cannot obtain a better result than
z?(E) = bρ/2c in the worst case. Hence, further improvements of the presented upper bound
require different approaches. One of them will be introduced in the next subsection.

4.3 An Approach based on the Divisible Case

Besides the issue discussed in the previous subsection, one of the main drawbacks of all the
existing upper bounds from literature is the fact that they do not use any information about the
other given input data, such as the vectors l and b. This means that, for constant m, the upper
bound is always the same regardless of how the further parameters look like. In this subsection
we aim at constructing an upper bound that uses as many of the given information as possible.
To this end, let E = (m, l,L,b) be an instance of the skiving stock problem. Then we consider
the instance EDC = (m, l′,L,b) where l′i is given by l′i := L/ki with ki := dL/lie for i ∈ I. Due to
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this construction, it is possible that different item lengths li 6= l j lead to the same modified length
l′i = l′j. In order to maintain a constant number m of items, these objects shall formally be treated
as different, in general. Note that EDC can also be interpreted as an instance, even if we have
l′ ∈Qm

+, in general.

Lemma 3. The inequality l′i ≤ li holds for all i ∈ I.

Proof. Let i ∈ I be arbitrarily chosen but fixed. Then we have the equivalence

l′i ≤ li ⇐⇒
L
ki
≤ li ⇐⇒

L⌈
L
li

⌉ ≤ li ⇐⇒
li
L
·
⌈

L
li

⌉
≥ 1

and the latter is true due to
li
L
·
⌈

L
li

⌉
≥ li

L
· L

li
≥ 1.

�

Corollary 3. The inequalities z?(EDC )≤ z?(E) and z?c(EDC )≤ z?c(E) hold.

Proof. Due to l′i ≤ li for i ∈ I, we have P(EDC ) ⊆ P(E) for the pattern sets of both instances.
Hence, any feasible (integer) solution of EDC is also a feasible (integer) solution of E which
proves the assertion. �

Remark 6. In the previous proof we applied that the optimal objective values of (1) and (2) are
independent of the fact, whether P(E) or P?(E) is used (see also Remark 1) as the pattern set.
This is important since the inclusion P?(EDC ) ⊆ P?(E) does not necessarily have to hold for
any instance E. By way of example, consider the instance E = (3,(11,4,2),12,(1,1,1)) with
EDC = (3,(6,4,2),12,(1,1,1)). Here we have a = (1,1,1)> ∈ P?(EDC ), but not a ∈ P?(E)
since the item of length l3 = 2 can be removed.

Note that EDC is an instance of the well-studied divisible case since

L
l′i
=

L
L
ki

= ki ∈N

holds for all i ∈ I. Thus, we can state

z?c(EDC ) =
m

∑
i=1

bil′i
L

z?(EDC ) > z?c(EDC )−
3
2
+

1

2
⌊

∑
m
i=1

bil′i
L

⌋ =
m

∑
i=1

bil′i
L
− 3

2
+

1

2
⌊

∑
m
i=1

bil′i
L

⌋
due to the properties of the divisible case. More precisely, we use that any instance E =

(m, l,L,b) ∈ DC with b(l>b)/Lc = K satisfies z?c(E) = (l>b)/L, see Remark 2, and ∆(E) <
3/2−1/(2K), see [26, Theorem 3]. These preliminaries lead to the following result.
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Theorem 4. Let E = (m, l,L,b) be an instance of the skiving stock problem, Ē = Ē(xc) =

(m, l,L, b̄)∈R(E) denote one of its residual instances, and let ĒDC = (m, l′,L, b̄) be constructed
as above. Then

∆(E)


≤ ∑i∈I

b̄ili
L , if (l′)>b̄ < L,

< 3
2 −

1

2
⌊

∑i∈I
b̄il
′
i

L

⌋ +∑i∈I
b̄i·(li−l′i)

L , if (l′)>b̄≥ L, (7)

holds. In the second case, we particularly have

∆(E)<
3
2
− 1

2
⌊

∑
m
i=1

b̄il′i
L

⌋ + 1
2 ∑

i∈I

b̄ili
L

.

Proof. Let us consider the case (l′)>b̄≥ L at first. Then we have

∆(E)≤ ∆(Ē) = z?c(Ē)− z?(Ē) = z?c(Ē)− z?c(ĒDC )+ z?c(ĒDC )− z?(Ē)

≤ z?c(Ē)︸ ︷︷ ︸
≤(b̄>l)/L

−z?c(ĒDC )︸ ︷︷ ︸
=(b̄>l′)/L

+z?c(ĒDC )− z?(ĒDC )︸ ︷︷ ︸
< 3

2−
1

2b(b̄>l′)/Lc

<
3
2
− 1

2
⌊

∑
m
i=1

b̄il′i
L

⌋ +∑
i∈I

b̄i · (li− l′i)
L

which proves the inequality. On the other hand, observe that li− l′i < li/2 holds by construction
for any i ∈ I, so that we directly obtain the second upper bound.

Whenever (l′)>b̄< L holds, the previous approach would lead to a division by zero (in the second
summand) and cannot be applied. However, note that in this case, we have z?(ĒDC ) = 0 so that
the difference z?c(ĒDC )− z?(ĒDC ) is equal to z?c(ĒDC ) = ((l′)>b̄)/L as a consequence of the
divisible case. �

There are still at least two main possibilities to further improve the upper bounds presented
by (7):

• The first two terms of (7) can be decreased if it is possible to find a better upper bound
for the gap of the divisible case. For instance, in the related context of one-dimensional
cutting, ∆(E)< 1.4 has been proved for the whole divisible case, but it has only been pub-
lished in German language as a contribution of the PhD thesis [32] (However, at least a
short hint on the existence of this upper bound can be found at the end of the introductory
section in [33].). So far, it is not known whether a similar result can be shown for the
skiving stock problem, too. On the other hand, the currently largest known gap for the di-
visible case of the skiving stock problem is given by 22/21−ε (for arbitrarily small values
of ε > 0), see [22]. Both aspects give hope that further improvements are possible. Note
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14 NEW THEORETICAL INVESTIGATIONS ON THE GAP OF THE SKIVING STOCK PROBLEM

that in the special case where ĒDC consists of only two item types, i.e., |{l′1, . . . , l′m}|= 2,
the first two summands of (7) can be replaced by 1 due to Theorem 1.

• A very weak inequality, used in the previous estimate, is

z?c(Ē)≤∑
i∈I

b̄ili
L

since the absolute difference of both terms may be large. Thus, the upper bound (7) can
be improved significantly if, for instance, a constant C ∈ R+ with z?c(Ē) ≤ z?c(ĒDC )+C
could be found.

Nevertheless, Theorem 4 provides an upper bound that uses all of the input data and improves
the bound given by Theorem 3 in some cases. As a conclusion of this section, the latter shall be
investigated in more detail.

Remark 7. First of all note that there are numbers αi ∈ [1,2) so that l′i ≤ li ≤ αil′i holds for any
i ∈ I. For example, we can always choose αi := ki/(ki− 1) where ki := dL/lie, but depending
on the particular residual instance Ē = (m, l,L, b̄) ∈R(E) better choices of αi can be possible.
Then, the ideas of the previous proof lead to

∆(E)≤ ∆(Ē) = z?c(Ē)− z?(Ē) = z?c(Ē)− z?c(ĒDC )+ z?c(ĒDC )− z?(Ē)

< ∑
i∈I

(αi−1)
b̄i

ki
+

3
2
− 1

2
⌊

∑i∈I
b̄i
ki

⌋ ,
where li− l′i ≤ (αi−1)l′i (for i ∈ I) was used in the last line. Now, it can be seen that this bound
is better than dm/2e, if for instance

• the availabilities b̄i are small: More precisely, by assuming that b̄i ≤ λ · ki(ki− 1) holds
for some λ ∈R and all i ∈ I, we obtain

∆(E) < λ ∑
i∈I

(αi−1)(ki−1)+
3
2
− 1

2b∑i∈I λ (ki−1)c

≤ λ ·m+
3
2
− 1

2b∑i∈I λ (ki−1)c
because of αi ≤ ki/(ki− 1) for i ∈ I. By choosing λ < 1/2, we obviously obtain a better
upper bound.

• the instance is close to the divisible case: So far, we only dealt with the worst-case αi =

ki/(ki− 1), but in many scenarios the values αi are (much) smaller. In other words, this
would mean that the differences li− l′i are rather close to zero, so that Ē is close to the
divisible case. If, for instance αi ≤ 1+ ki/(pb̄i) holds for some p ∈ R and all i ∈ I, then
we obtain

∆(E)<
m
p
+

3
2
− 1

2
⌊

∑i∈I
b̄i
ki

⌋ ,
which is better than dm/2e if and only if p > 2.
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Furthermore, observe that also small values of β directly decrease the upper bounds presented
in (7) since the summations contain a fewer number of non-zero terms.

5 NEW CLASSES OF INSTANCES POSSESSING THE IRDP

As mentioned in the introductory sections, the skiving stock problem is conjectured to satisfy
∆(E) < 2 for all instances E. Computational simulations [21, 42] have shown that many in-
stances even possess a gap less than one (i.e., they have the IRDP); whereas instances with gaps
(significantly) larger than one are hard to find, in general. Note that the optimal objective value of
(1) can easily be calculated by z?(E) = bz?c(E)c for IRDP instances; and hence a deeper insight
on those instances is desirable. Observe that there is only a single result known in literature [42,
Theorem 4] concerning the IRDP of a very simple class of instances which now is, in fact, a
direct consequence of Corollary 2.

Lemma 4. Any instance E = (2, l,L,b) possesses the IRDP.

Admittedly, instances consisting of only two different item types are very rare, and may (if at
all) only appear as residual instances for practically meaningful scenarios. To cope with larger
values of m, the following two results provide some obvious (but new) observations:

Lemma 5. Let E = (m, l,L,b) be an instance with z?c(E)< 2. Then E has the IRDP.

Proof. If z?c(E)< 1 holds, we have ∆(E) = z?c(E)− z?(E)< 1−0 = 1. In the other case where
z?c(E) ∈ [1,2) holds, we also have l>b ≥ L implying that the given item supply is sufficiently
large to build one pattern. Hence, we obtain ∆(E) = z?c(E)− z?(E)< 2−1 = 1. �

Note that, besides allowing arbitrary values of m, the condition of Lemma 5 is also less restrictive
than that of Lemma 4. In fact, any residual instance E =(2, l,L,b) satisfies the inequality z?c(E)<
2 of Lemma 5.

Lemma 6. Let E = (m, l,L,b) be an instance with L/(k− 1) > li ≥ L/k for all i ∈ I and some
k ∈N, then E has the IRDP.

Proof. Observe that we need exactly k items to build a minimal pattern of E, and hence we
obtain z?(E) =

⌊
e>b/k

⌋
. Now let us assume that z?c(E) > e>b/k holds for a solution x? of the

continuous relaxation (2). Then we have

e>b =
m

∑
i=1

bi =
m

∑
i=1

∑
j∈J?

ai jx?j = ∑
j∈J?

x?j
m

∑
i=1

ai j︸ ︷︷ ︸
=k

= k · z?c(E)> e>b

which gives the contradiction. Altogether, we obtain

∆(E) = z?c(E)− z?(E)≤ 1
k
·

m

∑
i=1

bi−

⌊
1
k
·

m

∑
i=1

bi

⌋
< 1,
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i.e., E has the IRDP. �

In the remainder of this section we want to prove the IRDP for two new classes of instances
which can be seen as special representatives of the divisible case.

Definition 6. An instance E = (m, l,L,b) of the skiving stock problem is called

• weakly divisible, if li+1 | li holds for all i ∈ I \{m}.

• strongly divisible, if it is weakly divisible and if l1 | L is satisfied.

• semi-divisible, if li | L holds for all i ∈ I, and if there exists a partition I = I1 ∪ I2 with
I1 = {µ1, . . . ,µp} and I2 = {ν1, . . . ,νm−p} such that

lµp | lµp−1 | . . . | lµ1 and lνm−p | lνm−p−1 | . . . | lν1

are satisfied.

Remark 8. Observe the following relationships:

1. Each strongly divisible instance is also weakly divisible and semi-divisible. The reversions
are not true in general.

2. Each semi-divisible instance E can be decomposed into two strongly divisible instances
E1 and E2, where

E1 =
(

p, l1 =
(
lµ1 , . . . , lµp

)
,L,b1 =

(
bµ1 , . . . ,bµp

))
,

E2 =
(
m− p, l2 =

(
lν1 , . . . , lνm−p

)
,L,b2 =

(
bν1 , . . . ,bνm−p

))
.

Note that, although appearing rather restrictive, the instance types appearing in Definition 6 may
(in part) be relevant for practical tasks as well. For instance, in terms of assigning secondary
users to vacant frequency intervals [20, 39], the resulting instances can sometimes belong to
those classes due to a high degree of standardization in wireless communications. Moreover,
such instances have also attracted scientific interest with respect to the related one-dimensional
cutting stock problem [18, 19].

At first we want to prove the IRDP for strongly divisible instances (with the representation E =

(m, l,1,b), i.e., with l ∈ Qm
+). Therefore, the first fit decreasing (FFD) algorithm, proposed in

[1] for the dual bin packing problem, represents an initial point of our further investigations.
Note that this heuristic was also successfully applied to prove the modified integer round-down
property (MIRDP) for the divisible case [22]. In this algorithm, given an instance normalized to
E = (m, l,1,b) with l>b≥ 1, bins of capacity lB = L = 1 are filled successively.

Definition 7. A bin B is called filled if the objects allocated to it possess a total length of at least
lB. If this total length equals lB, the bin B is said to be filled exactly. Furthermore, we say that a
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bin B can accept an object if, after adding this item, the total length of all objects in B does not
exceed lB.

Algorithm 1 First Fit Decreasing
Phase I:

1. Let ñ = e>b, with e = (1, . . . ,1)> ∈Zm
+, be the total number of items. Sort them accord-

ing to non-increasing lengths and number them consecutively: 1 > l?1 ≥ l?2 ≥ . . .≥ l?ñ .

2. If there are unallocated objects: Let i ∈ {1, . . . , ñ} be the index of the first unallocated
object. Choose the first bin that is able to accept this object and place it therein. If such
a bin does not exist, add a new (empty) bin and place the object therein.

Phase II:

1. If there is more than one nonempty bin that is not filled: consider the last of these bins,
choose one of its items and allocate it to the first of these bins.

2. If there is exactly one nonempty bin that is not filled: allocate its objects to the last bin
that is filled.

Note that after Phase II each non-empty bin contains objects of total length not less than L = 1.
Hence, each bin can be interpreted as a uniquely determined packing pattern of E. Actually,
observe that all bins but possibly the very last one correspond to a minimal pattern. However, by
successively removing appropriate items, also the last non-empty bin can easily be reduced to a
minimal pattern.

Remark 9. Note that there are further good heuristics especially for the divisible case, e.g.,
a best-fit decreasing algorithm introduced in [25]. However, for our theoretical purposes the
properties provided by Algorithm 1 are sufficient.

Lemma 7. Let E be strongly divisible. After the completion of Phase I of Algorithm 1 the
following statement holds: The remaining capacity of any bin is given by a nonnegative multiple
of the smallest item length that is contained in the considered bin.

Proof. Let q denote the number of bins after Phase I, and let j ∈ {1, . . . ,q} be fixed. Let l( j)
denote the smallest item length allocated to bin B j. Then there is k ∈ I with l( j) = lk. Since E
is strongly divisible, there are natural numbers ξ0,ξ1, . . . ,ξk ∈N with L = ξ0 · lk and li = ξi · lk
for all i ∈ {1, . . . ,k}. Let a j

i ∈Z+ (i ∈ {1, . . . ,k}) denote the number of objects of length li in B j,
then the remaining capacity R( j) of B j satisfies

0≤ R( j) = L−
k

∑
i=1

a j
i li =

(
ξ0−

k

∑
i=1

a j
i ξi

)
lk.
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This implies ξ0−∑
k
i=1 a j

i ξi ∈Z+ and we are done. �

Observe that, actually, even a stronger version of the statement can be proved by the same ar-
guments. More precisely, it also holds that any possible partial filling of a bin possesses the
property mentioned in the previous lemma.

By means of Algorithm 1 (not necessarily with L = 1) and the Lemma 7, the IRDP of strongly
divisible instances can be shown.

Theorem 5. Let E be strongly divisible, then E possesses the IRDP.

Proof. Let q ∈N denote the number of bins after Phase I, and let

j := inf{i ∈ {1, . . . ,q}|Bi is not filled exactly} .

For j = ∞ all bins are filled exactly which means l>b = q ·L. Consequently, we obtain

∆(E) = z?c(E)− z?(E) =
l>b
L
−q = 0,

i.e., E has the IRDP.

Now consider the case j ∈ {1, . . . ,q}. At first we prove that j = q has to hold in this case: For
the sake of contradiction let us assume j ≤ q−1. Then we consider the bin B j and define

k := max
{

i ∈ {1, . . . , ñ}
∣∣ l?i is in B j

}
,

where ñ and l?i are defined as in Phase I of Algorithm 1. Due to j ≤ q− 1 we have k < ñ.
According to Lemma 7, the remaining capacity R( j) has to be a nonnegative multiple of l?k , i.e.,
there exists ξ ∈N (ξ = 0 is not possible since B j is not filled exactly) with R( j) = ξ · l?k ≥ l?k .
But now the object k+ 1 must have also been allocated to B j in Phase I since all previous bins
are filled exactly and R( j) ≥ l?k ≥ l?k+1. This means that k was not maximal which gives the
contradiction.

Consequently, only the very last bin is not filled exactly which ensures z?(E) ≥ q− 1. On the
other hand this observation shows l>b < q ·L leading to

∆(E) = z?c(E)− z?(E) =
l>b
L
− (q−1)< q− (q−1) = 1,

and we are done. �

Based on this result we can now cope with semi-divisible instances E = (m, l,L,b).

Theorem 6. Let E be a semi-divisible instance, then E possesses the IRDP.
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Proof. The main idea of the proof is to apply Algorithm 1 to the two strongly divisible subin-
stances of E separately, and then to possibly add a single post-processing step. The full details
and the resulting case study can be found in the appendix. �

Note that the previous proofs do not only state the IRDP of the considered instances, but they
also provide a direct method to construct the corresponding integer solution (based on the FFD
heuristic) in the various cases.

Remark 10. Observe that this method cannot be generalized to instances E consisting of
k ≥ 3 strongly divisible subinstances. Indeed, if we consider k = 3 and the instance Ê =

(3,(21,14,6) ,42,(1,2,6)), then it is not possible to build two feasible patterns out of the given
items, see [22, Remark 3].

For the one-dimensional cutting stock problem, also weakly divisible instances are known to
possess the IRUP (integer round-up property), see [18] for a proof based on polyhedral theory.
Whether an analogue statement holds in the context of one-dimensional skiving has to remain
open at this point. Perhaps such a result can be proved by induction over L, since the induction
basis L = l1 belongs to the family of strongly divisible instances.

6 NEW CONSTRUCTION PRINCIPLES FOR FAMILIES OF NON-IRDP INSTANCES

In consideration of the upper bound developed in Section 4, a direct verification of the property
∆(E) < 2 for general instances seems to be very hard. Instead, another approach to tackle the
MIRDP conjecture is given by the investigation of conditions ensuring that a given instance does
not possess the IRDP. Perhaps, such construction principles may (in future) be valuable when
striving to find instances with gaps close to (or larger than) 2.

6.1 Construction Principles based on the Cutting Stock Problem

So far, only construction methods for non-IRDP instances of the divisible case are known in
literature, see [22]. In this subsection, we aim at presenting families of parametrized instances
not belonging to the divisible case, but possessing a gap ∆(E) = 1, which actually represents the
first systematic approach to obtain more general non-IRDP instances. These instances have also
been studied in the context of one-dimensional cutting by J. Rietz and co-authors, see [33] and
[34] for some of the results, so that the corresponding proofs would only require minor changes
in almost all cases. However, we also emphasize that some other constructions to be introduced
here are only contained in the German-language PhD thesis [32], and hence they have never been
made available (not even for the CSP case) to a broad scientific community.

In order to see how all the sets of instances can be used in the skiving framework, we need the
following two results.

Lemma 8. The following assertions hold:
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1. Let E = (m, l,L,b) be an instance of the one-dimensional cutting stock problem with
z?,CSP

c (E) = l>b/L. Then also z?c(E) = l>b/L holds if E is interpreted as an instance
of the one-dimensional skiving stock problem.

2. Let E = (m, l,L,b) be an instance of the one-dimensional skiving stock problem with
z?c(E) = l>b/L. Then also z?,CSP

c (E) = l>b/L holds if E is interpreted as an instance
of the one-dimensional cutting stock problem.

Proof. See [42, Theorem 2]. �

Theorem 7. The following assertions hold:

1. Let E = (m, l,L,b) be an instance of the one-dimensional cutting stock problem with
z?,CSP

c (E) = l>b/L ∈ N. If E is a non-IRUP instance then E considered as an instance
of the skiving stock problem is a non-IRDP instance, too.

2. Let E = (m, l,L,b) be an instance of the one-dimensional skiving stock problem with
z?c(E) = l>b/L ∈ N. If E is a non-IRDP instance then E considered as an instance of
the cutting stock problem is a non-IRUP instance, too.

Proof. Let E =(m, l,L,b) be a non-IRUP instance of the cutting stock problem with z?,CSP
c (E)=

l>b/L ∈ N. Note that, in this case, also z?c(E) = l>b/L holds due to Lemma 8. Then it is not
possible to find an integer solution consisting of k := l>b/L cutting patterns. Since all these
cutting patterns would have to be trim-less this is equivalent to the non-existence of k (exact)
packing patterns. Hence, we have z?(E) ≤ k−1 which proves ∆(E) ≥ 1. In an analogous way,
the second statement can be proved. �

Based on this important observation and non-IRUP instances from the literature, we obtain the
following main result:

Proposition 1. Any instance E of the following families satisfies ∆(E) = 1, i.e., none of the
presented instances possesses the IRDP:

(a) E(t) = (7, l(t),51+3t,b) with t ∈Z, t ≥−8, and

l(t) = (23+ t,19+ t,17+ t,16+ t,15+ t,14+ t,13+ t) ,

b = (1,2,2,1,1,1,1) .

(b) E(k) = (8, l(k),L(k),b) with k ∈N, k ≥ 6, L(k) = 10k2 +11k, and

l(k) =
(
10k2−19k−15,10k+11,10k+7,10k+5,10k+4,10k+3,

10k+2,10k+1) ,

b = (3,1,2,2,1,1,1,1,1).
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(c) E(k, t) = (9, l(k, t),L(k, t),b(k, t)) with k ∈N, k≥ 2, t ≥max{3k3−k2−3k,3k2+3k+1},
L(k, t) = (k+1)(t +3k), and

l(k, t) =
(
t +3k2 +2k, t +2k2 + k, t +6k, t +1, t + k+2, t +3k−3,

t, t + k, t +3k) ,

b(k, t) = (1,1,1,k−1,k−1,k−1,1,1,1).

(d) E(p,q) = (9, l(p,q),L(p,q,),b) with p,q ∈N, p≤ q, L(p,q) = 37+3p+q, and

l(p,q) = (25+ p+q,21+ p+q,19+ p+q,11+ p,9+ p,8+ p,7+ p,

6+ p,5+ p),

b = (1,1,1,1,1,1,1,1,1).

(e) E(k) = (7, l(k),L(k),b(k)) with k ∈N, k ≥ 3, L(k) = 10k2 +6k, and

l(k) = (10k+6,10k+4,10k−2,10k−4,10k−6,10k−7,10k−11) ,

b(k) = (1,1,1,2k−4,1,1,1) .

Proof. The families (a)-(d) are taken from [34, Proposition 3], [34, Proposition 6], [35, Propo-
sition 7], and [32, Aussage 19] (in precisely that order) with respect to the cutting stock problem.

The set (e) basically appears in [32, Aussage 16], but there k ≥ 8 is required. By way of excep-
tion, we will provide a small part of the proof in order to indicate that, actually, only k ≥ 3 is
sufficient: At first, we obtain

l>b = (10k+6)+(10k+4)+(10k−2)+(2k−4)(10k−4)+(10k−6)

+(10k−7)+(10k−11)

= 60k−16+
(
20k2−48k+16

)
= 20k2 +12k = 2L

implying that z?c(E(k))≤ 2 has to hold. On the other hand, we also have

1
2



1
1
0

k−3
0
0
2


+

1
2



1
0
0

k−2
0
2
0


+

1
2



0
1
0

k−2
2
0
0


+

1
2



0
0
2

k−1
0
0
0


= b

which leads to z?c(E(k))≥ 2. Note that k ≥ 3 is required since, otherwise, the first pattern would
contain a negative entry. The rest of the proof follows the ideas published in [32] for the cutting
stock problem. �
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Remark 11. For the sake of completeness, observe that:

• The instances E(t) from (a) turn out to be equivalent for t ∈Z+, see [32, Aussage 14].

• According to Lemma 5, the non-IRDP instances presented in (e) are minimal with respect
to the value z?c(E).

• All proofs of this subsection (mostly referred to by appropriate literature references)
strongly depend on the specific structure of the given instances, either with reference to
the particular item lengths li or their availabilities bi (i ∈ I). Although we do not intend to
investigate within this article, whether small perturbations of these input data may destroy
the key properties to obtain ∆(E) ≥ 1, our first feelings are that the current proofs would
have to be rephrased considerably after having (slightly) changed the listed instances.

Obviously, the integrality of l>b/L is a main ingredient of the proof of Theorem 7. Consequently,
the method (to simply use non-IRUP instances of the CSP) cannot be straightforwardly applied
to find non-IRDP instances of the skiving stock problem with ∆(E)> 1. Hence, other approaches
will become necessary in order to obtain larger gaps. For the cutting stock problem, J. Rietz has
proposed several methods to construct larger gaps based on a few given non-IRUP instances [32,
Sect. 4.5]. As a result of extensive theoretical considerations, he succeeded in finding an instance
E with ∆(E) = 1.2 which still represents the largest known gap in the cutting stock context. Due
to the expected efforts, at the moment we do not intend to investigate whether these additional
approaches can also be transferred to the skiving stock problem or not. However, although not
being discussed here, it is likely that similar results can be observed for the SSP, too. Then, any
class of non-IRDP instances listed in Section 6, may represent a valuable basis to find non-IRDP
instances of the skiving stock problem with ∆(E) > 1. For that reason, an additional class will
be introduced and thoroughly discussed in the upcoming subsection.

6.2 A New Construction Principle for Large Gaps of the Divisible Case

The divisible case (where li | L holds for all i ∈ I) of the skiving stock problem has recently been
proved to possess the MIRDP, see [22, 25]. Moreover, in that paper, a construction principle is
presented that leads to a maximum gap of ∆(E) = 1+ 1/42. By further manipulations of the
resulting instances slightly larger gaps can be obtained. In this subsection we present a new
construction method to obtain non-IRDP instances of the divisible case. Contrary to [22], this
approach

• possesses a less complex construction (only two parameters determine the whole instance,
whereas four quantities are needed for the strategy in [22, Theorem 14]),

• directly leads to a gap ∆(E) = 1+5/156 > 1+1/42, and

• only requires a fixed number of m = 3 item types (compared to m→ ∞ for the class pre-
sented in [22]),
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so that it exhibits significant advantages in comparison with the previous method. Moreover, this
procedure also provides gaps arbitrarily close to (but strictly less than) 22/21 if further items are
allowed to be added.

Our new construction is based on the following simple observation.

Lemma 9. Let ξ1,ξ2 ∈N be relatively prime with ξ1 > ξ2 ≥ 2. Then

gcd(ξ1,ξ3) = gcd(ξ2,ξ3) = 1

holds for ξ3 := ξ1ξ2 +1.

Proof. For the sake of contradiction, we assume that d ∈P is a common prime factor of ξ1 and
ξ3. Then also ξ3−ξ1 has to be an integer multiple of d. But, on the other hand, we have

ξ3−ξ1 ≡ ξ1(ξ2−1)+1≡ 0+1≡ 1 mod d

which gives the contradiction. The same proof can be applied to ξ2 instead of ξ1. �

Now let ξ1,ξ2 ∈N satisfy the conditions of the previous lemma, and let ξ3 := ξ1ξ2+1. We claim
that the instance

E(ξ1,ξ2) :=
(

3,
(

1
ξ1

,
1
ξ2

,
1
ξ3

)
,1,(ξ1−1,ξ2−1,ξ1 +ξ2 +1)

)
(8)

possesses a gap larger than one. Obviously, the defined instance belongs to the divisible case.
Hence, the optimal objective value of its continuous relaxation is given by

z?c(E(ξ1,ξ2)) =
ξ1−1

ξ1
+

ξ2−1
ξ2

+
ξ1 +ξ2 +1

ξ1ξ2 +1
= 2+

ξ1 +ξ2 +1
ξ1ξ2 +1

− 1
ξ1
− 1

ξ2

= 2+
(ξ1 +ξ2 +1)ξ1ξ2−ξ2(ξ1ξ2 +1)−ξ1(ξ1ξ2 +1)

ξ1ξ2(ξ1ξ2 +1)

= 2+
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
.

Note that the second summand is always positive for the feasible choices of (ξ1,ξ2). Hence,
it suffices to show that z?(E) = 1 holds in order to prove that E(ξ1,ξ2) represents a non-IRDP
instance.

Theorem 8. Let E := E(ξ1,ξ2) be defined as in (8). Then the following assertions hold:

1. The inequality

l>a > 1+
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

holds for all a ∈ P?(E) with a≤ b.
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2. The gap of E results to

∆(E) = ∆(E(ξ1,ξ2)) = 1+
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
, (9)

i.e., E is a non-IRDP instance.

Proof. Both statements are proved by contradiction. In the first part, the main idea is to show
that any counterexample a = (a1,a2,a3)

> ∈Zm
3 would have to satisfy a1ξ2− (ξ2−a2)ξ1 +a3 ∈

{0,1}, but a deeper investigation based on number theory reveals that none of these cases can
occur. Then, the second statement is a straightforward consequence of the first one. The full
details can be found in the Appendix. �

Note that for ξ1 = 2 and ξ2 = 3 we obtain the instance

E =

(
3,
(

1
2
,

1
3
,

1
7

)
,1,(1,2,6)

)
which is equivalent to the instance E(2) of [22, Theorem 14]. Hence, the method that was pre-
sented here can be understood as a generalization of the case K = 2 in the aforementioned theo-
rem. But then, the question arises whether it is possible to achieve a larger gap than ∆(E(2)) =
1+1/42 (from [22, Theorem 15]) with this new approach.

Proposition 2. The equation

max
{

ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

∣∣∣∣2≤ ξ1 < ξ2, ξ1,ξ2 ∈N relatively prime
}
=

5
156

holds. The unique solution is given by ξ1 = 3 and ξ2 = 4.

Proof. At first, observe that ξ1 = 3 and ξ2 = 4, actually, lead to the objective value 5/156.
Furthermore, we have

ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
<

1
ξ1ξ2

(10)

due to

ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
<

1
ξ1ξ2

⇐⇒ ξ1ξ2− (ξ1 +ξ2)< ξ1ξ2 +1⇐⇒−(ξ1 +ξ2)< 1

where the latter is certainly true. Consequently, if (ξ1,ξ2) is a solution of the considered max-
imization problem, 5/156 < 1/ξ1ξ2 has to hold due to (10). But then, we have ξ1ξ2 < 156/5
which is equivalent to ξ1ξ2 ≤ 31 due to the integrality of the left hand side. The only remaining
pairs (ξ1,ξ2) with ξ1 < ξ2 relatively prime and ξ1ξ2 ≤ 31 are given in Table 1. Obviously, we
cannot obtain an objective value larger than 5/156. Thus, the unique solution is given by ξ1 = 3
and ξ2 = 4.

�
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Table 1 – Objective values for the remaining pairs (ξ1,ξ2), where the crossed cells are not feasible. The

cell (ξ1,ξ2) = (3,4) represents the maximum value.

ξ2
ξ1 3 4 5 6 7 8 9 10 11 13 15

2 1
42

3
110

1
42

7
342

9
506

11
702

13
930

3 5
156

7
240

1
42

13
600

17
930

4 11
420

17
812

5 19
930

As a consequence of this proposition, the largest gap that can be constructed with the presented
approach results to ∆(E) = 1+ 5/156 for the choice (ξ1,ξ2) = (3,4) which corresponds to the
instance

E =

(
3,
(

1
3
,

1
4
,

1
13

)
,1,(2,3,6)

)
.

Note that this gap is larger than all the gaps that can be obtained by [22, Theorem 14]. This gives
hope that by adding some sufficiently small item lengths (that do not influence z?(E) = 1), gaps
larger than or equal to 22/21 (as in [22, Corollary 16]) can be obtained. Hence, the remainder of
this subsection will deal with the computation of

f (ξ1,ξ2) := min
{

a1

ξ1
+

a2

ξ2
+

a3

ξ3

∣∣∣∣ a1

ξ1
+

a2

ξ2
+

a3

ξ3
≥ 1,ai ∈Z+,ai ≤ bi, i ∈ I

}
(11)

for a given instance E(ξ1,ξ2) as in (8), since then we can add items of total length less than

ε := ε(ξ1,ξ2) := f (ξ1,ξ2)−
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

without changing z?(E) = 1. Note that, by this procedure, z?c(E) and ∆(E) will increase. To this
end, we start with the following lemmas.

Lemma 10. Let 2≤ ξ1 < ξ2 be relatively prime. Then there exists

ψ ∈ {0,1, . . . ,ξ1ξ2−ξ1}

with ξ1 | ψ and ψ ≡ 1−ξ1 mod ξ2.

Proof. It suffices to show that there exists ν ∈ {0, . . . ,ξ2−1} with

νξ1 ≡ 1−ξ1 mod ξ2

since, then, ξ1 | νξ1 and νξ1 ∈ {0,1, . . . ,ξ1ξ2−ξ1} are clear by construction. Therefore, remem-
ber that gcd(ξ1,ξ2)= 1 is true which implies that ξ1 is invertible in the set of residue classes mod-
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ulo ξ2, i.e., in Zξ2
' {0,1, . . . ,ξ2−1}. Hence, we can find ν? ∈ Zξ2

with ν? 6= 0 and ν?ξ1 ≡ 1
mod ξ2. Setting ν = ν?−1, we obtain an element of the set Zξ2

such that

νξ1 ≡ (ν?−1)ξ1 ≡ ν
?
ξ1−ξ1 ≡ 1−ξ1 mod ξ2

is satisfied which completes the proof. �

Lemma 11. Let 2≤ ξ1 < ξ2 be relatively prime. Then there exists a solution of

a1ξ2 +a2ξ1 = 1+ξ1ξ2−ξ1−ξ2 (12)

with a1,a2 ∈Z+ and ai ≤ ξi−1 for i ∈ {1,2}.

Proof. Due to the previous lemma, we can find ψ ∈ {0,1, . . . ,ξ1ξ2−ξ1} with ξ1 | ψ and ψ ≡
1−ξ1 mod ξ2. We define

a1 :=
ξ1ξ2−ξ1−ξ2 +1−ψ

ξ2
and a2 :=

ψ

ξ1

and claim that this is a feasible solution of (12). Indeed, we have:

1. Equation (12) is satisfied due to

a1ξ2 +a2ξ1 = (ξ1ξ2−ξ1−ξ2 +1−ψ)+ψ = ξ1ξ2−ξ1−ξ2 +1.

2. At first, note that a1 ∈Z is true since we have

ξ1ξ2−ξ1−ξ2 +1−ψ ≡ ξ1ξ2−ξ1−ξ2 +1− (1−ξ1)≡ ξ1ξ2−ξ2 ≡ 0 mod ξ2.

Additionally, the definition of a1 meets the box constraints due to

a1 =
ξ1ξ2−ξ1−ξ2 +1−ψ

ξ2
≤ ξ1ξ2−ξ1−ξ2 +1

ξ2
= ξ1−1+

1−ξ1

ξ2︸ ︷︷ ︸
<0

< ξ1−1

where ψ ≥ 0 has been used, and

a1 =
ξ1ξ2−ξ1−ξ2 +1−ψ

ξ2
≥ ξ1ξ2−ξ1−ξ2 +1− (ξ1ξ2−ξ1)

ξ2
>−1

where the latter is equivalent to a1 ≥ 0 according to the integrality of a1.

3. At first, note that a2 ∈ Z is true since we have ξ1 | ψ . Additionally, the definition of a2

meets the box constraints due to a2 = ψ/ξ1 ≥ 0 and

a2 =
ψ

ξ1
≤ ξ1ξ2−ξ1

ξ1
= ξ2−1.

�
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Now we can state the main result of this consideration.

Proposition 3. Let 2≤ ξ1 < ξ2 be relatively prime. Then the minimum in (11) is given by

f (ξ1,ξ2) = 1+
ξ1ξ2−ξ1−ξ2 +1

ξ1ξ2(ξ1ξ2 +1)
. (13)

Proof. Note that, due to the first part of Theorem 8, we already have

f (ξ1,ξ2)≥ 1+
ξ1ξ2−ξ1−ξ2 +1

ξ1ξ2(ξ1ξ2 +1)
.

Hence, it suffices to find a feasible triple (a1,a2,a3) that attains this lower bound. To this end,
we claim that there exists such a triple with a3 = ξ1 +ξ2 ≤ b3, i.e., we claim that the equation

a1

ξ1
+

a2

ξ2
+

ξ1 +ξ2

ξ1ξ2 +1
= 1+

ξ1ξ2−ξ1−ξ2 +1
ξ1ξ2(ξ1ξ2 +1)

has a solution with a1,a2 ∈Z+ and ai ≤ bi for i ∈ {1,2}. Multiplying with the common denom-
inator and rearranging the terms lead to the equivalent formulations

a1

ξ1
+

a2

ξ2
+

ξ1 +ξ2

ξ1ξ2 +1
= 1+

ξ1ξ2−ξ1−ξ2 +1
ξ1ξ2(ξ1ξ2 +1)

⇐⇒

{
a1ξ2(ξ1ξ2 +1)+a2ξ1(ξ1ξ2 +1)+(ξ1 +ξ2)ξ1ξ2

= ξ1ξ2(ξ1ξ2 +1)+ξ1ξ2−ξ1−ξ2 +1

⇐⇒ [a1ξ2 +a2ξ1−ξ1ξ2] (ξ1ξ2 +1)+ξ1ξ2(ξ1 +ξ2)+(ξ1 +ξ2) = ξ1ξ2 +1

⇐⇒ [a1ξ2 +a2ξ1−ξ1ξ2 +ξ1 +ξ2−1] (ξ1ξ2 +1) = 0

⇐⇒ a1ξ2 +a2ξ1−ξ1ξ2 +ξ1 +ξ2−1 = 0

where ξ1ξ2 + 1 > 0 has been used in the last line. Then, the last equation can be solved due to
the previous lemma. Hence equality (13) is true. �

Consequently, we obtain

ε := ε(ξ1,ξ2) = f (ξ1,ξ2)−
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
=

1
ξ1ξ2(ξ1ξ2 +1)

.

Hence, by adding sufficiently small items, we can construct gaps arbitrarily close to

1+
ξ1ξ2−ξ1−ξ2 +1

ξ1ξ2(ξ1ξ2 +1)
.

As a last contribution of this subsection, we aim at computing the maximum gap that can be
(approximately) achieved in this way.

Proposition 4. The equation

max
{

ξ1ξ2− (ξ1 +ξ2)+1
ξ1ξ2(ξ1ξ2 +1)

∣∣∣∣2≤ ξ1 < ξ2,ξ1,ξ2 ∈N relatively prime
}
=

1
21

holds. The unique solution is given by ξ1 = 2 and ξ2 = 3.
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Proof. At first, observe that ξ1 = 2 and ξ2 = 3, actually, lead to the objective value 1/21.
Furthermore, we have

ξ1ξ2− (ξ1 +ξ2)+1
ξ1ξ2(ξ1ξ2 +1)

<
1

ξ1ξ2
(14)

due to
ξ1ξ2− (ξ1 +ξ2)+1

ξ1ξ2(ξ1ξ2 +1)
<

1
ξ1ξ2

⇐⇒ ξ1ξ2− (ξ1 +ξ2)+1 < ξ1ξ2 +1

where the latter is certainly true, since −(ξ1 +ξ2)< 0 is satisfied. Consequently, if (ξ1,ξ2) is a
solution of the considered maximization problem, 1/21 < 1/ξ1ξ2 has to hold due to (14). This
is equivalent to ξ1ξ2 < 21. The only remaining pairs (ξ1,ξ2) with ξ1 < ξ2 relatively prime and
ξ1ξ2 ≤ 20 are given in Table 2. Obviously, we cannot obtain an objective value larger than 1/21.
Thus, the unique solution is given by ξ1 = 2 and ξ2 = 3.

Table 2 – Objective values for the remaining pairs (ξ1,ξ2), where the crossed cells are not feasible. The

cell (ξ1,ξ2) = (2,3) represents the maximum value.

ξ2
ξ1 3 4 5 7 9

2 1
21

2
55

1
35

4
171

3 1
26

1
30

4 1
35

�

Unfortunately, this approach does not provide gaps of the divisible case greater than or equal
to 22/21 and, hence, does not improve our max-gap considerations of [22, Corollary 15]. Nev-
ertheless, we have found a new construction principle for non-IRDP instances of the divisible
case. As we have stated, this method can be interpreted as a generalization of the case K = 2
in [22, Theorem 14]. Additionally, one of the new instances has a gap of 1+ 5/156 without
the addition of further small items which surpassed the previous maximum of 1+ 1/42. Al-
together, as mentioned earlier, note that any kind of non-IRDP instance can be valuable when
looking for larger gaps (maybe in the sense of constructions similar to those of Rietz [32]), so
that this new approach not only provides some interesting results on non-IRDP instances and
their corresponding gaps, but may also be relevant for further scientific research in that particular
field.

7 CONCLUSIONS

In this paper we reported on the skiving stock problem with special respect to the quality of its
continuous relaxation. At first, we showed how upper bounds for the gap of arbitrary instances
can be found by means of the concept of residual instances. In particular, we improved the best
known upper bound to (at least) ∆(E)< dm/2e, and provided additional upper bounds that make
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use of all problem-specific input data. In the remainder we focused on IRDP and non-IRDP
instances and were able to apply the first-fit decreasing heuristic in order to prove ∆(E) < 1
for two new classes of instances. By investigating the relationships between the cutting stock
problem and the skiving stock problem, we presented several construction principles to obtain
non-IRDP instances that do not belong to the divisible case. In a final step, we introduced a new
method to construct large gaps of the skiving stock problem and obtained an alternative way to
build instances with gaps arbitrarily close to 22/21, which represents the currently best known
value for the divisible case.

One of the main parts of our future research is given by improving the upper bound dm/2e for
the gap of the skiving stock problem, since for the related cutting stock problem estimates like
O(m/4) (see [35]) are already available. Additionally, we will focus on proving the IRDP or
the MIRDP for further classes of instances, and the development of other construction principles
that may lead to larger gaps. Alternatively, also the investigation of asymptotic polynomial time
approximation schemes (APTAS) for the dual bin packing or the skiving stock problem, maybe
based on the observations in [6, 14], could be of interest to obtain approximate solutions of
reasonable quality.
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[27] MARTINOVIC J, SCHEITHAUER G & VALÉRIO DE CARVALHO JM. 2018. A Comparative Study of
the Arcflow Model and the One-Cut Model for one-dimensional Cutting Stock Problems. European
Journal of Operational Research, 266(2): 458–471.

[28] MILLER CE, TUCKER AW & ZEMLIN RA. 1960. Integer Programming Formulation of Traveling
Salesman Problems. Journal of the ACM, 7(4): 326–329.

[29] NEMHAUSER GL & WOLSEY LA. 1988. Integer and Combinatorial Optimization. Wiley, New York.

[30] NICA V. 1994. A General counterxample to the Integer Round-Up property, working paper, Depart-
ment of Economic Cybernetics, Academy of Economic Studies, Bucharest.

[31] PEETERS M & DEGRAEVE Z. 2006. Branch-and-price algorithms for the dual bin packing and maxi-
mum cardinality bin packing problem. European Journal of Operational Research, 170(2): 416–439.

Pesquisa Operacional, Vol. 39(1), 2019



JOHN MARTINOVIC and GUNTRAM SCHEITHAUER 31

[32] RIETZ J. 2003. Untersuchungen zu MIRUP für Vektorpackprobleme. Ph.D. thesis, Technische Uni-
versität Dresden.

[33] RIETZ J & DEMPE S. 2008. Large gaps in one-dimensional cutting stock problems. Discrete Applied
Mathematics, 156(10): 1929–1935.

[34] RIETZ J, SCHEITHAUER G & TERNO J. 2002. Families of non-IRUP instances of the one-
dimensional cutting stock problem. Discrete Applied Mathematics, 121: 229–245.

[35] RIETZ J, SCHEITHAUER G & TERNO J. 2002. Tighter Bounds for the Gap and Non-IRUP Construc-
tions in the One-dimensional Cutting Stock Problem. Optimization, 51(6): 927–963.

[36] ROBERTI R & TOTH P. 2012. Models and algorithms for the Asymmetric Traveling Salesman Prob-
lem: an experimental comparison. EURO Journal on Transportation and Logistics, 1(1–2): 113–133.

[37] SCHEITHAUER G. 2018. Introduction to Cutting and Packing Optimization – Problems, Modeling
Approaches, Solution Methods. International Series in Operations Research & Management Science
263, Springer, 1 ed.

[38] SHERALI HD, SARIN SC & TSAI PF. 2006. A class of lifted path and flow-based formulations
for the asymmetric traveling salesman problem with and without precedence constraints. Discrete
Optimization, 3(1): 20–32.

[39] TRAGOS EZ, ZEADALLY S, FRAGKIADAKIS AG & SIRIS VA. 2013. Spectrum Assignment in Cog-
nitive Radio Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 15(3):
1108–1135.

[40] VALÉRIO DE CARVALHO JM. 2002. Lp models for bin packing and cutting stock problems. European
Journal of Operations Research, 141(2): 253–273.
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APPENDIX: PROOF OF THEOREM 6

We consider the decomposition of point (ii) in Remark 8 and apply Phase I of Algorithm 1 on E1

and E2 separately. Let qi (i ∈ {1,2}) denote the number of bins of subinstance Ei, then we either
have Ri(qi) = 0 or 0 < Ri(qi) < L, where Ri(qi) denotes the remaining capacity of the last bin
Bqi of instance Ei.

Case 1: The equality R1(q1) = R2(q2) = 0 holds.
In this case, both instances possess only bins that are filled exactly, i.e., we have

(
li
)> bi =

qi ·L for i ∈ {1,2}. Hence we obtain z?(E)≥ q1 +q2 leading to

∆(E) = z?c(E)− z?(E)≤ l>b
L
− (q1 +q2) =

2

∑
i=1

((
li
)> bi

L
−qi

)
= 0,

i.e., the IRDP of E.

Case 2: There is exactly one index i ∈ {1,2} with Ri(qi) = 0.
Without loss of generality we assume R1(q1) = 0. Then we have

(
l1
)> b1 = q1 ·L, and due

to the observations in the proof of Theorem 5 we further obtain

0 <

(
l2
)> b2

L
− (q2−1)< 1.

Combining these feasible solutions of the subinstances results to z?(E) ≥ q1 +q2−1 im-
plying that

∆(E) = z?c(E)− z?(E)≤ l>b
L
− (q1 +q2−1) =

(
l2
)> b2

L
− (q2−1)< 1

has to hold, i.e., E has the IRDP.

Case 3: The inequalities R1(q1)> 0 and R2(q2)> 0 hold.
As in the previous case, the proof of Theorem 5 leads to

0 <

(
li
)> bi

L
− (qi−1)< 1.

for i ∈ {1,2}. Now there are again two cases

Subcase 3.1:
Let

2

∑
i=1

((
li
)> bi

L
− (qi−1)

)
< 1

be satisfied. Then a combination of the feasible solutions of the two subinstances
leads to z?(E)≥ (q1−1)+(q2−1). Thus we obtain

∆(E) = z?c(E)− z?(E)≤ l>b
L
− (q1−1+q2−1)

=
2

∑
i=1

((
li
)> bi

L
− (qi−1)

)
< 1,
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i.e. the IRDP of E.

Subcase 3.2:
Let

2 >
2

∑
i=1

((
li
)> bi

L
− (qi−1)

)
≥ 1

be satisfied. By joining the items of the bins q1 from E1 and q2 from E2 we obtain
an additional filled bin. A combination of all bins leads to z?(E)≥ (q1−1)+(q2−
1)+1 = q1 +q2−1, implying that

∆(E) = z?c(E)− z?(E)≤ l>b
L
− (q1 +q2−1)

=
2

∑
i=1

((
li
)> bi

L
− (qi−1)

)
−1 < 2−1 = 1,

i.e., E has the IRDP. �

APPENDIX: PROOF OF THEOREM 8

Let E := E(ξ1,ξ2) be defined as in (8).

1. For the sake of contradiction, we assume that there is a pattern a ∈ P?(E) with a ≤ b
satisfying

1≤ a1

ξ1
+

a2

ξ2
+

a3

ξ3
≤ 1+

ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
. (15)

Part 1: Finding a necessary condition for (15):

By multiplying (15) with the common denominator ξ1ξ2(ξ1ξ2 + 1) and rearranging the
terms, we obtain

1≤ a1

ξ1
+

a2

ξ2
+

a3

ξ3
≤ 1+

ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

⇐⇒

{
ξ1ξ2(ξ1ξ2 +1)≤ a1ξ2(ξ1ξ2 +1)+a2ξ1(ξ1ξ2 +1)+a3ξ1ξ2

≤ ξ1ξ2(ξ1ξ2 +1)+ξ1ξ2−ξ1−ξ2

⇐⇒

{
ξ1ξ2−a1ξ2−a2ξ1 ≤ a1ξ1ξ

2
2 +a2ξ

2
1 ξ2 +a3ξ1ξ2− (ξ1ξ2)

2

≤ 2ξ1ξ2−ξ1−ξ2−a1ξ2−a2ξ1

⇐⇒

{
−a1ξ2 +(ξ2−a2)ξ1 ≤ ξ1ξ2 (a1ξ2 +a2ξ1 +a3−ξ1ξ2)

≤ (ξ1−a1)ξ2 +(ξ2−a2)ξ1−ξ1−ξ2

⇐⇒

{
−a1ξ2 +(ξ2−a2)ξ1︸ ︷︷ ︸

=:βl

≤ ξ1ξ2(a1ξ2− (ξ2−a2)ξ1 +a3)

≤ (ξ1−a1−1)ξ2 +(ξ2−a2−1)ξ1︸ ︷︷ ︸
:=βu

(16)
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Now we aim at finding a lower bound for βl and an upper bound for βu in order to derive a
necessary condition for the components a1,a2,a3 of the considered pattern a ∈ P?(E). At
first, note that we have

βu = (ξ1−a1−1)ξ2 +(ξ2−a2−1)ξ1 < 2ξ1ξ2

due to a1 ≥ 0 and a2 ≥ 0. On the other hand, we also obtain

βl =−a1ξ2 +(ξ2−a2)ξ1 ≥−(ξ1−1)ξ2 +ξ1 =−ξ1ξ2 +ξ1 +ξ2 >−ξ1ξ2

due to a1 ≤ b1 = ξ1−1 and a2 ≤ b2 = ξ2−1. Altogether, these estimates imply that

−ξ1ξ2 < ξ1ξ2(a1ξ2− (ξ2−a2)ξ1 +a3)< 2ξ1ξ2

or, equivalently,
−1 < a1ξ2− (ξ2−a2)ξ1 +a3 < 2 (17)

is a necessary condition for (15).

Part 2: Case Studies:

Note that (17) is equivalent to a1ξ2− (ξ2−a2)ξ1 +a3 ∈ {0,1}.

(a) Case 1: a1ξ2− (ξ2−a2)ξ1 +a3 = 0
In this case, the first inequality of (16) leads to −a1ξ2 +(ξ2− a2)ξ1 ≤ 0 implying
that

0 = a1ξ2− (ξ2−a2)ξ1 +a3 ≥ a3 ≥ 0

has to hold. Consequently, we have a3 = 0 and a1ξ2 = (ξ2−a2)ξ1. Due to a1 ∈Z+,
we further have

a1 =
(ξ2−a2)ξ1

ξ2
∈Z+⇐⇒ (ξ2−a2)ξ1 ≡ 0 mod ξ2. (18)

But then, note that

0≡ (ξ2−a2)ξ1 ≡ 0−a2ξ1 ≡−a2ξ1 mod ξ2

has to hold which is true if and only if a2 ≡ 0 mod ξ2 due to the fact that ξ1 and ξ2

are relatively prime. Since we have 0 ≤ a2 ≤ b2 = ξ2− 1 the only possible choice
is a2 = 0. But this implies a1 = ξ1 by means of the left side of (18) which gives the
contradiction since a1 ≤ b1 = ξ1−1 has to be satisfied.

(b) Case 2: a1ξ2− (ξ2−a2)ξ1 +a3 = 1
In this case, the second inequality of (16) leads to

ξ1ξ2 ≤ 2ξ1ξ2−ξ1−ξ2−a1ξ2−a2ξ1⇐⇒ a1ξ2 +ξ1 +ξ2 ≤ (ξ2−a2)ξ1
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implying that
1 = a3 +a1ξ2− (ξ2−a2)ξ1︸ ︷︷ ︸

≥a1ξ2+ξ1+ξ2

≤ a3−ξ1−ξ2 ≤ 1

has to hold due to a3 ≤ b3 = ξ1 + ξ2 + 1. Consequently, we have a3 = ξ1 + ξ2 + 1
and, due to the assumption of this case, a1ξ2 = (ξ2−a2)ξ1−ξ1−ξ2. According to
a1 ∈Z+, we further have

a1 =
(ξ2−a2)ξ1−ξ1−ξ2

ξ2
∈Z+⇐⇒ (ξ2−a2)ξ1−ξ1−ξ2 ≡ 0 mod ξ2. (19)

But then, note that

0≡ (ξ2−a2)ξ1−ξ1−ξ2 ≡−a2ξ1−ξ1 ≡−ξ1(a2 +1) mod ξ2

has to hold which is true if and only if a2 +1≡ 0 mod ξ2 due to the fact that ξ1 and
ξ2 are relatively prime. Since we have 0≤ a2 ≤ b2 = ξ2−1 the only possible choice
is a2 = ξ2−1. But this implies a1 =−1 by means of the left side of (19) which gives
the contradiction since 0≤ a1 has to be satisfied.

Consequently, there is no pattern that satisfies the necessary condition (17) which gives the
contradiction to the initial assumption.

2. For the sake of contradiction, we assume that z?(E) = 2 is true. Hence, we can find two
patterns a1,a2 ∈ P?(E) with a1 +a2 ≤ b. Due to the first part of this theorem, we have

l>a j > 1+
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

for j ∈ {1,2}. But then, also

2+
ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)
= l>b≥ l>a1 + l>a2 > 2+2 · ξ1ξ2− (ξ1 +ξ2)

ξ1ξ2(ξ1ξ2 +1)

has to be satisfied which is not possible. Hence, we have z?(E)≤ 1 and, due to l>b≥ L= 1,
z?(E) = 1. Consequently, the gap of the instance E can be computed as in (9) and the proof
is complete. �
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