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ABSTRACT. The geometric process (GP) is a stochastic process that was an extension of the renewal
process. It was introduced by Lam (1988) in 1988 with an intention to model the failure process of a re-
pairable system whose the times between failures become shorter and shorter after repairs and repair times
become longer and longer. The GP has been widely studied in the literature of reliability and maintenance
and applied in optimisation of maintenance policies. Some authors have proposed various versions of its
extensions (or the GP-like models), including the α-series process, the threshold GP, the extended Poisson
process, the doubly GP, and the doubly-ratio GP. Some papers also compare the performance of the GP with
that of other models, but not with the performance of the extensions of the GP. This paper therefore reviews
the GP-like models, compares the performance of the GP and its extensions in terms of the Akaike informa-
tion criterion (AIC), the corrected AIC (AICc) and the maximum likelihood (ML) based on 25 real-world
datasets. Besides, the least square methods for estimating the parameters in some models are discussed,
which is used for model performance of GP and GP-like models. The finding is useful for practitioners in
their selection of the GP-like models.

Keywords: Geometric process; failure process; recurrent event data analysis

1 INTRODUCTION

Modelling the failure process of a system is an important research topic in the reliability and maintenance
research community and is normally done by using stochastic processes. The geometric process (GP), which
is introduced by Lam (1988), is one of such stochastic processes. The GP has been widely used for mod-
elling system failure processes. It is able to describe a stochastically increasing or decreasing trend, which is
a characteristic in many practical applications in different fields Zhang (1999); Lam et al. (2004); Wang &
Yam (2017); Pekalp & Aydoğdu (2021). In fact, the GP has received a lot of attention and has been extended
into different variants, such as the general repair geometric process Finkelstein (1993), the α-series process
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Braun et al. (2005), the threshold geometric process Chan et al. (2006), the extended Possion process Wu &
Clements-Croome (2006), the doubly geometric process Wu (2018) and the doubly-ratio geometric process
Wu (2022). However, little research specifically compares the performance of these models based on real
world datasets. This paper aims to compare the performance of the GP and its extensions.

The remainder of this paper is structured as follows. Section 2 describes the background of the GP and its
extensions. Section 3 describes the least square estimation for models. Section 4 describes the test design
and methods for estimating the performance of the models. Section 5 describes datasets for comparison
in this paper and shows the result of the test for independence. Section 6 describes the comparison result
among datasets. Section 7 concludes the findings and proposes future research.

2 GP AND ITS EXTENSIONS

This section introduces the GP and its extensions in detail. Before that, relevant concepts are introduced.

Assume that X and Y are two random variables. If for every real number u, the inequality

P(X ⩾ u)⩾ P(Y ⩾ u)

holds, then X is stochastically greater than or equal to Y , or Y is stochastically less than or equal to X . Then,
the monotonicity of a stochastic process can be defined.

Definition 1. Ross et al. (1996) Given a stochastic process {Xk = 1,2...}, if Xk ≤st Xk+1 or Xk ≥st Xk+1

for k = 1,2... then {Xk,k = 1,2, ...} is stochastically increasing or decreasing.

Lam (1988) proposes the definition of the geometric process as shown below.

Definition 2. Lam (1988) Given a sequence of non-negative random variables {Xk,k = 1,2, . . .}, if they
are independent and the cdf of Xk is given by F(ak−1x) for k = 1,2, . . . , where a is a positive constant, then
{Xk,k = 1,2, · · ·} is called a geometric process (GP).

We refer to the random variable Xk as the kth inter-arrival time in what follows.

Remark 1

From Definitions 1 and 2, the following results have been obtained.

• If a > 1, then {Xk,k = 1,2, · · ·} is stochastically decreasing.

• If a < 1, then {Xk,k = 1,2, · · ·} is stochastically increasing.

• If a = 1, then {Xk,k = 1,2, · · ·} is a renewal process (RP).

As the GP has been extended into several variants Braun et al. (2005); Wu & Clements-Croome (2006);
Chan et al. (2006); Zhang & Wang (2016); Wu (2018, 2022), they can be regarded as as a special case of
the following definition Wu et al. (2020).

Definition 3. Given a sequence of non-negative variables {Xk,k = 1,2, ...}, if variables are independent
the distribution function of Xk is given by F(g(δ1,k)xh(δ2,k)) for k = 1,2, ..., where g(δ1,k) is a positive
function of δ1 and h(δ2,k) is a positive function of δ2 and k, and δ1 and δ2 are estimable parameter
vectors, then {Xk,k = 1,2, · · ·} is a generalized GP.

Based on Remark 1 and Definition 3, the following results can be obtained:
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• If g(δ1,k) increase over k and h(δ2,k) = 1, then {Xk,k = 1,2, · · ·n} is stochastically decreasing.

• If g(δ1,k) decrease over k and h(δ2,k) = 1, then {Xk,k = 1,2, · · ·n} is stochastically increasing.

• If a = 1, then {Xk,k = 1,2, · · ·} is a (RP).

According to Wu (2018), the GP has the following limitations

• Based on the definition of the GP, {Xk,k = 1,2, ...} always change monotonously over k. That means
the GP cannot be used to describe the situation with non-monotonous failure ratio/patterns.

• Suppose that X1 follows the Weibull distribution. The generalised GP has constant g(δ1,k) and
h(δ2,k) over k’s, which means both of scale and shape parameters of Xk are independent of k.
However, this may be too stringent that the GP may not be suitable for many real-world data.

In order to improve these limitations, several GP variants have been introduced and these will be discussed
in the following part.

2.1 Extensions of the GP

2.1.1 α-series process

The α-series process (α-series) is proposed by Braun et al. (2005). It considers that the expected number of
counts at an arbitrary time does not exist for the decreasing geometric process. Then the decreasing version
of the α-series process has a finite expected number of counts within certain conditions.

According to Braun et al. (2005), suppose Y1,Y2, ... is a sequence of independent and identically distributed
random variables, it defines

XA
k =

Yk

ka ,

where XA
k is a related process to XG

k , which is a GP. Then,

Yk = XA
k ka, (1)

where a is a real-valued parameter, then the sum of XA
k is given by

SA
n =

n

∑
k−1

XA
k ,

set
SA

0 = 0,

and the point process can be defined

NA(t) = sup{k : Sk
A ⩽ t},

where NA(t) is an α-series process.

Besides, it indicates that for the α-series process, E(NA(t)) < ∞ in the increasing case, as well as in the
decreasing case, provided that the random variable Y has a sufficient number of moments. Then

• if α < 0, then the E(NA(t)) is finite for all t > 0.

• if 0 ⩽ α ⩽ 1/2 and E(|Yn|2+ξ )< ∞, then the E(NA(t)) is finite for all t > 0.
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• if 1/2 ⩽ α ⩽ 1 and E(|Yn|(1+ξ )/(1−α))< ∞, then the E(NA(t)) is finite for all t > 0.

Then the definition of an α-series process can be obtained.

Definition 4. Braun et al. (2005) Given a sequence of non-negative random variables {Xk,k = 1,2, ...}, if
they are independent and the cdf of Xk is given by F(kax) for k = 1,2..., where a is a positive constant.

For an α-series process, based on Definitions 1 and 2, g(δ1,k) = ka and h(δ2,k) = 1 can be obtained.

2.1.2 Threshold geometric process

The threshold geometric process (TGP) is proposed by Chan et al. (2006). The main characterise of TGP
is that it can describe non-monotonous trends in a failure process. According to Chan et al. (2006), it has
separate GPs and the kth GP is denoted

GPk = {Xi,Tk ⩽ i < Tk+1},k = 1, ...,K,

to each trend with turning point Tk. Then each GP has its a and the following definition can be introduced

Definition 5. Chan et al. (2006) Given a sequence of non-negative random variables {Xk,k = 1,2, ...}, if
they are independent and the cdf of Xk is given by F(ai−Tk

k x) for k = 1,2..., where a is a positive constant,
then {Xk,k = 1,2, ...} is called a threshold geometric process.

Then, based on Definitions 1 and 2, g(δ1,k) = ai−Tk
k and h(δ2,k) = 1 can be obtained.

2.1.3 Extended Possion Process

The Extended Possion Process (EPP) is proposed by Wu & Clements-Croome (2006). Similar to the TGP
and DPG, the EPP can model a failure process with non-monotonous trends.

Definition 6. Wu & Clements-Croome (2006) Given a sequence of non-negative random variables {Xk,k =
1,2, ...}, if they are independent and the cdf of Xk is given by F((αak−1 +βbk−1)x) for k = 1,2..., where
α +β ̸= 0, α,β ≥ 0, a ≥ 0 and 0 < b ≤ 1, then {Xk,k = 1,2, ...} is called as an extended possion process
(EPP).

Besides, a EPP has these two main properties:

• if αak−1 ̸= 0 and b = 1,

(a) if a > 1, then the EPP can model a failure process with decreasing failure intensity functions
with respect to k;

(b) if a < 1, then the EPP can model a failure process with increasing failure intensity functions
with respect to k;

• if a= 1,b< 1 and βbk−1 ̸= 1, then {Xk,k = 1,2, ...} can model the process with increasing increasing
failure intensities over k.

Then, based on Definitions 1 and 2, g(δ1,k) = (αak−1 +βbk−1) and h(δ2,k) = 1 can be obtained.
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2.1.4 Doubly geometric process

The doubly geometric process (DGP) is proposed by Wu (2018). Different from the GP, the DGP can model
a situation that the shape parameters of the lifetime distributions of inter-arrival times Xk changes k. Besides,
it can model not only monotonously increasing or decreasing stochastic processes, but also a failure process
with different trends (stochastically increasing or decreasing), which is similar to TGP. The definition of a
DPG is given in the following definition.

Definition 7. wu2017doubly Given a sequence of non-negative random variables {Xk,k = 1,2, ...}, if they
are independent and the cdf of Xk is given by F(ak−1xh(k)) for k = 1,2..., where a is a positive constant,
h(k) is a function of k and the likelihood of the parameters in h(k) has a known closed form, and h(k)> 0,
then {Xk,k = 1,2, ...} is called as a doubly geometric process (DGP). The ak−1 is refereed as the scale
impact factor and h(k) as the shape impact factor.

The series {ak−1,k = 1,2...} and {h(k),k = 1,2...} can be two different geometric series. According to
Definition 7, if h(k) equals to 1, then the shape parameter becomes constant over k if X1 follows a Weibull
distribution. If h(k) is not 1, Wu (2018) uses

h(k) = (1+ log(k))b

where log is the logarithm with base 10 and b is a parameter. Based on Definition 7, a DGP can model more
flexible processes and it has the following properties

• if 0 < a < 1 and b < 0, then {Xk,k = 1,2, ...} is stochastically increasing.

• if a > 1 and b < 0, then {Xk,k = 1,2, ...} is stochastically decreasing.

• if 0 < a < 1 and 0 < b < 4.898226, then {Xk,k = 1,2, ...} is stochastically increasing.

• if a > 1 and 0 < b < 4.898226, then {Xk,k = 1,2, ...} is stochastically decreasing.

Then, based on Definitions 1 and 2, g(δ1,k) = ak−1 and h(δ2,k) = (1+ log(k))b can be obtained.

2.1.5 Doubly-ratio geometric process

The doubly-ratio geometric process (DRGP) is proposed by Wu (2022). Suppose that the hazard function
of Xk is denoted by rk(t) and that {Xk,k = 1,2, . . .} follows the GP, then

hk(t) = ahk−1(at), (2)

where the two a’s play different roles in and have different implications in describing maintenance effec-
tiveness: the first a describes the effectiveness on how the hazard function is affected and the second a
(i.e., the one multiplying t in the parentheses) describes the effectiveness on how the age of the item under
maintenance is affected. Therefore, the following definition of the DRGP can be given

Definition 8. (Wu, 2022) Given a sequence of non-negative random variables {Xk,k = 1,2, ...}, if they are
independent and the cdf of Xk is given by Fk(t) = 1− (1−F1(akt))bk/ak for k = 1,2..., where ak and bk are
positive parameters and a1 = b1 = 1. Then {Xk,k = 1,2, ...} is a double-ratio geometric process.

It has the following proprieties

• If both ak and bk are increasing in k, then the DRGP is stochastically decreasing,
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• If both ak and bk are decreasing in k, then the DRGP is stochastically increasing, and

• If ak or bk is increasing in k and bk or ak is decreasing in k, then the DRGP may not be stochastically
monotonic.

Based on Definitions 4, 5, 6, 7 and 8, the following table summarizes the characterises of the GP and its
extensions.

Table 1 – GP and its extensions.

g(δ1,k) h(δ2,k) Cd f Model Reference
1 1 F(x) Renewal

Process (RP)
Lam (1988)

ak−1 1 F(ak−1x) Geometric
process (GP)

Lam (1988)

ka 1 F(kax) α-series
process
(α-series)

Braun et al.
(2005)

ai−Mk 1 F(ai−Mk xi) Threshold
geometric
process (TGP)

Chan et al.
(2006)

αak−1 +βbk−1 1 F((αak−1 +

βbk−1)x)
Extended
Possion
process (EPP)

Wu &
Clements-
Croome (2006)

ak−1 (1+ log(n))b F(ak−1x(1+log(k))b
) Doubly

geometric
process (DGP)

Wu (2018)

ak bk 1− (1−
F(akx))bk/ak

Doubly ratio
geometric
process
(DRGP)

Wu (2022)

3 LEAST SQUARE ESTIMATION

In the Section 4.2 in Lam (2007), the least squares estimators of a GP is given. Similarly, the least square
method can be applied to other GP’s extensions.

3.1 Least square estimation of α-series

For the α-series process, let
Yk = kaXk,k = 1,2, ....n. (3)

Then {Yk,k = 1,2, ...} is a sequence of i.i.d random variables, so is {lnYk,k = 1,2, ...}. Taking logarithm on
the both sides of Eq (3) give

lnYk = a lnk+ lnXk,k = 1,2, ...n. (4)

Let
lnYk = µα + ek,k = 1,2, ...n, (5)
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then,
lnXk = µα −a lnk+ ek,k = 1,2, ...n. (6)

Lemma 1. Denote Qα as the sum squares of errors

Qα =
n

∑
k=1

(lnXk −µα +a lnk)2, (7)

minimising Qα then the least square estimator of µα is given by

µα =
1
n

n

∑
k=1

(lnXk +a lnk) . (8)

Proof. Set the derivatives of Qα to 0,

∂Qα

∂ µα

= 0,

then

−2
n

∑
k=1

(lnXk −µα +a ln(k)) = 0,

n

∑
k=1

µα =
n

∑
k=1

(lnXk +a ln(k)),

nµα =
n

∑
k=1

(lnXk +a ln(k)),

µα =
1
n

n

∑
k=1

(lnXk +a lnk) .

This completes the proof. □

3.2 Least square estimation of TGP

According to Chan et al. (2006), for the TGP, let

Y j = a1−k
j X j+Tk−1−1,k = 1,2, . . .n, j = Tk−1,Tk−1 +1, . . .Tk −1, (9)

where T0 = 0. Then taking logarithm on the both sides of Eq. (9) gives

lnY j = (1− k) lna+ lnX j+Tk−1−1,k = 1,2, . . .n, j = Tk−1,Tk−1 +1, . . .Tk −1. (10)

Let
lnY j = µ j + e j+Tk−1−1,k = 1,2, . . .n, j = Tk−1,Tk−1 +1, . . .Tk −1, (11)

then,

lnX j+Tk−1−1 = µ j − (1− k) lna+ e j+Tk−1−1,k = 1,2, . . .n, j = Tk−1,Tk−1 +1, . . .Tk −1. (12)
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Lemma 2. Denote Qtgp as the sum squares of errors

Qtgp =
Tk−1

∑
j=Tk−1

Q j, (13)

and
Tk−1

∑
j=Tk−1

Q j =
n

∑
k=1

Tk−1

∑
j=Tk−1

(X j+Tk−1−1 −µ ja1−k
j )2, (14)

minimising Qtgp then the least square estimator of µ j is given by

µ j =
∑

n
k=1 ∑

Tk−1
j=Tk−1

(X j+Tk−1−1)

∑
n
k=1 ∑

Tk−1
j=Tk−1

a1−k
j

. (15)

Proof. Set the derivative of Qtgp to 0, 

∂Q0

∂ µ0
= 0,

∂Q1

∂ µ1
= 0,

...

∂Q j

∂ µ j
= 0,

then

−2a1−k
j

n

∑
k=1

Tk−1

∑
j=Tk−1

(X j+Tk−1−1 −µ ja1−k
j ) = 0,

n

∑
k=1

Tk−1

∑
j=Tk−1

(X j+Tk−1−1 −µ ja1−k
j ) = 0,

n

∑
k=1

Tk−1

∑
j=Tk−1

(X j+Tk−1−1)−µ j

n

∑
k=1

Tk−1

∑
j=Tk−1

a1−k
j = 0,

µ j =
∑

n
k=1 ∑

Tk−1
j=Tk−1

(X j+Tk−1−1)

∑
n
k=1 ∑

Tk−1
j=Tk−1

a1−k
j

.

This completes the proof. □

3.3 Least square estimation of EPP

Similarly, for the EPP, let
Yk = (αak−1 +βbk−1)Xk,k = 1,2, ....n. (16)

Then {Yk,k = 1,2, ...} is a sequence of i.i.d random variables, so is {lnYk,k = 1,2, ...}. Taking logarithm on
the both sides of Eq. (16) give

lnYk = ln(αak−1 +βbk−1)+ lnXk,k = 1,2, ...n. (17)

Let
lnYk = µepp + ek,k = 1,2, ...n, (18)
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then,
lnXk = µepp − ln(αak−1 +βbk−1)+ ek,k = 1,2, ...n. (19)

Lemma 3. Denote Qepp as the sum squares of errors

Qepp =
n

∑
k=1

(lnXk −µepp + ln(αak−1 +βbk−1))2, (20)

minimising Qepp then the least square estimator of µepp is given by

µepp =
1
n

n

∑
k=1

(
lnXk + ln(αak−1 +βbk−1)) (21)

Proof. Set the derivatives of Qepp to 0,

∂Qepp

∂ µepp
= 0,

then

−2
n

∑
k=1

(lnXk −µepp + ln(αak−1 +βbk−1)) = 0,

n

∑
k=1

µepp =
n

∑
k=1

(lnXk + ln(αak−1 +βbk−1)),

nµepp =
n

∑
k=1

(lnXk + ln(αak−1 +βbk−1)),

µepp =
1
n

n

∑
k=1

(lnXk + ln(αak−1 +βbk−1)).

This completes the proof. □

3.4 Least square estimation of DGP

Lemma 4. Denote Qdgp as the sum squares of errors, the Qdgp is

Qd pg =
n

∑
k=1

(lnXk −
µdgp − (k−1) lna

h(k)
)2,

where h(k) = (1+ log(k))b and minimising Qd pg, then, the µdgp is given by

µdgp =

∑
n
k=1(lnXk +

k−1
h(k)

lna)

n∑
n
k=1(

1
h(k)

)
. (22)
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Proof. Set the derivatives of Qdgp to 0,

∂Qdgp

∂ µdgp
= 0,

then

− 2
h(k)

n

∑
k=1

(lnXk −
1

h(k)
µdgp +

k−1
h(k)

lna) = 0,

n

∑
k=1

(lnXk −
1

h(k)
µdgp +

k−1
h(k)

lna) = 0,

n

∑
k=1

µdgp

h(k)
=

n

∑
k=1

lnXk +
n

∑
k=1

k−1
h(k)

lna,

nµdgp

n

∑
k=1

1
h(k)

=
n

∑
k=1

lnXk +
n

∑
k=1

k−1
h(k)

lna,

µepp =
1
n

n

∑
k=1

(lnXk + ln(αak−1 +βbk−1)).

This completes the proof. □

4 TEST DESIGN

4.1 Independent and identically distributed test

One important assumption of the GP and its extension is that {Xn,n = 1,2, ...} are independent and iden-
tically distributed (i.i.d) random variables. According to Theorem 4.2.1, Equations 4.2.1 and 4.2.2 in Lam
(2007), if denote

Yk =
X2k

X2k−1
,k = 1,2...,

and
Y ′

k =
X2k+1
X2k

,k = 1,2...,

if {Xk,k = 1,2, ...} is a GP, then {Yk,k = 1,2, ...} and {Y ′
k ,k = 1,2, ...} are respectively two sequence of i.i.d

random variable.

The statistical R package ”spgs” is used in this paper for the i.i.d test (download at https://cran.r-project.
org/web/packages/spgs/index.html).

4.2 Evaluation of the model performance

In this paper, the Akaike information criterion (AIC), the corrected AIC (AICc) will be used as index to
compare the fitness among different GPs. The model with lower AIC score is better in this test.

AIC =−2ln(L)+2q

and

AICc = AIC+
2q(q+1)
n−q−1
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where q is the number of parameters in a model, L is the maximum likelihood (ML) and n is the number of
observations in a dataset. Among the candidate model with the smallest AIC and AICc is regarded the best
model.

The ML will be used to estimate the performance of a model. The model with the largest ML score regarded
the best.

The statistical R package ”GenSA” is used in this paper for optimization strategy of parameters (download
at https://cran.r-project.org/web/packages/GenSA/index.html).

5 DATASETS

The following table shows the datasets and their reference.

Table 2 – Summary of datasets.

Dataset n Description Reference
1 23 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
2 25 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
3 27 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
4 28 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
5 26 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
6 23 Failures of a load-haul-dump (LHD) machine Kumar & Klefsjö (1992)
7 69 Failures of the Armoured Flexible Conveyor (AFC) Gupta et al. (2009)
8 33 Failures of the Powertrain System of bus Guida & Pulcini (2009)
9 54 Failures of the Powertrain System of bus Guida & Pulcini (2009)
10 30 Failures of the air conditioning system of aircraft Proschan (2000)
11 29 Failures of the air conditioning system of aircraft Proschan (2000)
12 24 Failures of the air conditioning system of aircraft Proschan (2000)
13 24 Failures of the air conditioning system of aircraft Proschan (2000)
14 65 Failures of the main pumps at oil refineries Percy & Alkali (2007)
15 51 Failures of the main pumps at oil refineries Percy & Alkali (2007)
16 18 Failures of material fatigue or component aging Xie & Lai (1996)
17 128 Failures of computer break down Chakraborty & Chakravarty (2012)
18 135 Failures of software reliability Musa (1979)
19 190 Failures of the coal-mining disaster Andrews & Herzberg (2012)
20 40 Failures of the car Hand et al. (1993)
21 92 Spread of SARS epidemic Chan et al. (2006)
22 68 Spread of SARS epidemic Chan et al. (2006)
23 30 Arrival and inter-arrival for the valve Modarres (2006)
24 71 Failure data related to the U.S.S. Halfbeak motor Ascher & Feingold (1984)
25 56 Failure data of diesel engine Lee (1980)

In Table 2, 25 datasets are used in this paper. The following Table 3 shows independence test for each
dataset. The dataset with a p-value lower than 0.05 means that it does not follow the independence
assumption, therefore, such datasets will not be used for further comparisons.
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Table 3 – Summary of independence test.

Dataset independence p-value uniformity p-value
1 0.29 1.00
2 0.35 1.00
3 0.53 1.00
4 0.92 0.99
5 0.25 1.00
6 0.87 1.00
7 0.98 1.00
8 0.01 1.00
9 0.40 1.00
10 0.91 0.99
11 0.80 0.99
12 0.68 1.00
13 0.61 1.00
14 0.19 1.00
15 0.19 1.00
16 0.00 0.94
17 0.84 0.99
18 0.87 1.00
19 0.08 1.00
20 0.97 0.99
21 0.00 0.94
22 0.00 0.99
23 0.28 1.00
24 0.50 1.00
25 0.28 1.00

According to the above result, the following findings can be obtained:

• The size of our most dataset is not huge enough (n ≦ 30) so that it is impossible to use Chi-square
test.

• Datasets 8, 16, 21 and 22 (BUS510, Xie, Hong Kong SARA and Singapore SARA) are not satis-
fied with the conditions of independence as the independence p-value is less than 0.05. Thus, there
datasets will be ignored in this paper.

It is worth noticing that the Section 5 in Lam (2007) briefly studies the model performance by the GP,
the RP or the homogeneous Poisson process (HPP) model, the Cox-Lewis model and the Weibull process
(WP) model based on ten real datasets. Among them, six datasets, which are 11, 13, 19, 21, 22 and 24, will
be used in this paper. To compare the fitness of models, the mean squared error (MSE) and the maximum
percentage error (MPE) will be used to evaluate the model performance. In Lam (2007), the GP model is
the best model among these four models.
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In this paper, more different datasets, which have been shown in Table 2 will be used for comparison of the
performance among more GP’s extensions in this paper. AIC, AICc and ML will be used to evaluate the
model performance. The next section describes numerical results in this paper.

6 CASE STUDIES

The following Table 4 shows the model performance based on 25 datasets. The order of data in each sheet
from top to bottom is AIC, AICc and ML.

It is worth noticing that the results are shown in the sequence in the rank of model performance.

Table 4 – The values of AIC, AICc, and ML of the models.

Dataset RP GP EPP α-series DGP TGP DRGP

1
263.97 263.03 267.02 263.51 265.01 260.12 265.03
264.57 264.29 270.55 264.78 267.23 261.38 267.25

-129.99 -128.52 -128.51 -128.75 -128.51 -124.06 -128.52

2
301.45 303.04 307.04 301.28 299.35 297.33 298.23
301.99 304.18 310.20 302.42 301.35 298.47 300.23

-148.72 -148.52 -148.52 -147.64 -145.67 -142.66 -145.11

3
337.10 334.33 338.32 334.18 336.21 324.12 336.08
337.60 335.37 341.18 335.23 338.03 325.16 337.89

-166.55 -164.16 -164.16 -164.09 -164.10 -156.06 -164.04

4
320.10 322.06 326.06 321.24 321.97 320.27 319.57
320.58 323.06 328.79 322.24 323.71 321.27 321.31

-158.05 -158.03 -158.03 -157.62 -156.99 -154.13 -155.79

5
306.41 306.65 310.65 306.24 308.38 308.63 308.23
306.92 307.74 313.65 307.32 310.28 309.72 310.14

-151.20 -150.33 -150.33 -150.12 -150.19 -148.31 150.11

6
278.53 280.52 284.52 280.35 281.93 279.29 281.43
279.13 281.79 288.05 281.61 284.15 280.56 283.65

-137.27 -137.26 -137.26 -137.17 -136.96 -133.65 -136.71

7
783.58 785.21 787.59 785.13 787.06 785.18 787.13
783.76 785.58 788.54 785.50 787.69 785.55 787.76

-389.79 -389.61 -388.80 -389.57 -389.53 -386.59 -389.57

9
716.36 717.20 715.78 718.05 716.88 720.44 717.28
716.36 717.20 715.78 718.05 716.88 720.44 717.28

-356.18 -355.60 -352.89 -356.03 -354.44 -354.22 -354.64

10
307.87 306.42 309.81 306.53 308.42 308.35 308.52
308.32 307.35 312.31 307.46 310.02 309.27 310.12

-151.94 -150.21 -149.91 -150.27 -150.21 -148.18 -150.26

11
313.39 315.00 318.75 315.00 317.0014 320.31 295.31
313.85 315.96 321.36 315.96 318.67 321.27 297.13

-154.69 -154.50 -154.38 -154.50 -154.50 -154.15 -143.65

12
251.70 253.62 255.47 253.69 253.76 242.03 246.84
252.27 254.82 258.80 254.89 255.86 243.24 249.06

-123.85 -123.81 -122.73 -123.84 -122.88 -115.02 -119.42

13
254.73 256.32 260.04 256.53 258.25 261.65 258.11
255.30 257.52 263.38 257.73 260.35 262.85 260.21

-125.37 -125.16 -125.02 -125.26 -125.12 -124.82 -125.05
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Table 4 – The values of AIC, AICc, and ML of the models.

Dataset RP GP EPP α-series DGP TGP DRGP

14
607.28 606.41 610.01 605.46 607.94 606.46 606.92
607.47 606.80 611.03 605.85 608.61 607.70 607.59

-301.64 -300.20 -300.01 -299.73 -299.97 -297.23 -299.46

15
497.91 628.00 631.65 628.69 630.00 628.09 500.95
498.16 628.51 632.99 629.21 630.87 628.60 501.82

-246.96 -311.00 -310.83 -311.35 -311.00 -308.05 -246.48

17
615.81 617.43 616.58 617.77 618.75 617.89 617.73
615.90 617.63 617.08 617.97 619.07 618.09 618.06

-305.90 -305.72 -303.29 -305.89 -305.37 -299.95 -304.87

18
1981.17 1925.02 1928.17 1935.15 1925.49 1927.94 1926.09
1981.26 1925.21 1928.64 1935.33 1925.80 1928.12 1926.40
-988.58 -959.51 -959.09 -964.58 -958.74 -957.97 -959.04

19
2347.00 2324.06 2328.06 2334.13 2322.68 2320.82 2324.50
2347.06 2324.19 2328.38 2334.26 2322.89 2320.95 2324.72

-1171.50 -1159.03 -1159.03 -1164.07 -1157.34 -1151.41 -1158.25

23
385.73 381.66 384.23 381.21 382.340 379.50 383.39
386.17 382.59 386.73 382.13 384.00 380.42 384.99

-190.86 -187.83 -187.12 -187.60 -187.20 -180.75 -187.70

24
949.35 926.44 930.44 919.76 925.66 918.82 922.19
386.17 382.59 386.73 382.13 384.00 380.42 384.99

-472.67 -460.22 -460.22 -456.88 -458.83 -450.41 -457.09

25
742.58 743.53 746.61 743.48 745.50 744.95 745.44
742.80 743.99 747.81 743.94 746.28 745.41 746.23

-369.29 -368.77 -368.31 -368.74 -368.75 -366.47 -368.72

Average
650.12 651.80 654.88 652. 33 652.65 643.50 644.9943
589.06 590.09 594.07 591.04 589.53 589.23 623.80

-323.06 -322.90 -322.44 -323.17 -322.32 -315.18 -318.50

According to the above table, the following result can be obtained:

• In terms of the AIC result
– Based on the rank of model performance, the result shows that AICTGP > AICRP >

AICα-series > AICGP = AICDRGP > AICEPP > AICDGP.

– Based on the rank of the average AIC score, AICTGP > AICDRGP > AICRP > AICGP >

AICα-series > AICDRGP > AICEPP.

– The TGP has the best performance (6 best scores),the second one is the RP (5 best scores),
then the α-series (4 best scores), EPP (2 best scores) and DRGP (2 best scores) have similar
performance.

– The EPP works better than the DGP in these 23 datasets. However, the DGP model has lower
average AIC score than the EPP.

– The DRGP has the second lowest average AIC score, its combined performance is better than
other five models and is second only to the TGP.
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• In terms of the AICc result
– Based on the rank of model performance, the result shows that AICcRP > AICcTGP >

AICcα-series = AICcGP = AICcDGP = AICcDRGP > AICcEPP.

– Based on the rank of the average AICc score, the result shows that AICcRP > AICcTGP >

AICcDGP > AICcGP > AICcEPP > AICcα-series > AICcDRGP.

– The RP has the best performance (9 best scores), second one is the TGP (7 best scores). The
performance of these two models is more pronounced in terms of AICc.

– In terms of AICc, TGP has the best performance, which is different from the result of AIC.

– The performance of the GP is better in terms of AICc (comparing to the AIC).

– The performance of the DRGP has obvious disadvantage in terms of AICc. It is 623.80 which
is much higher than other six models.

• In terms of the ML result
– The TGP has significant advantage on model performance.

– Based on the rank of model performance, the result shows that MLTGP >MLDRGP >MLEPP >

MLRP = MLGP = MLα-series = MLDGP.

– Based on the rank of the average ML score, the result shows that MLTGP > MLDRGP >

MLDGP > MLEPP > MLGP > MLRP > MLα-series.

– The performance of both DRGP and DGP has significant increase comparing with the result
in terms of AIC and AICc.

The following table shows the best model for each dataset in terms of different index.

Table 5 – Result of the performance for datasets.

Dataset AIC AICc ML
1 TGP TGP TGP
2 TGP TGP TGP
3 TGP TGP TGP
4 DRGP RP TGP
5 α-series RP TGP
6 RP RP TGP
7 RP RP TGP
9 EPP EPP EPP
10 GP GP TGP
11 DRGP DRGP DRGP
12 TGP TGP TGP
13 RP RP TGP
14 α-series α-series TGP
15 RP RP DRGP
17 RP RP TGP
18 GP DGP TGP
19 TGP TGP TGP
20 α-series TGP TGP
24 α-series RP TGP
25 TGP RP α-series
Best TGP RP TGP
Second Best RP TGP DRGP
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7 CONCLUSIONS

This paper compared the performances of the geometric process (GP) and its extensions based on 25 real-
world datasets. These extensions, the α-series process, the threshold geometric process (TGP), the ex-
tended possion process (EPP), the doubly geometric process (DGP) and the doubly-ratio geometric process
(DRGP), have been used in this paper. Three performances metrics, AIC (Akaike Information Criterion),
AICc (correction of AIC) and ML (Maximum Likelihood) were used. Besides, it discussed the LSE (least
square estimation) as an alternative method to estimate the model parameters.

According to the comparison results, based on the AIC, the best model is the TGP and the second best is
RP. Then in terms of the AICc, the best model is the DRGP and the second best is the TGP. Based on the
result of the ML, the best model is the TGP and the second best is the DRGP. These results would give
supports for choosing the best model in practical applications.
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PEKALP MH & AYDOĞDU H. 2021. Power series expansions for the probability distribution, mean value
and variance functions of a geometric process with gamma interarrival times. Journal of Computational and
Applied Mathematics, 388: 113287.

PERCY DF & ALKALI BM. 2007. Scheduling preventive maintenance for oil pumps using generalized
proportional intensities models. International Transactions in Operational Research, 14(6): 547–563.

PROSCHAN F. 2000. Theoretical explanation of observed decreasing failure rate. Technometrics, 42(1):
7–11.

ROSS SM, KELLY JJ, SULLIVAN RJ, PERRY WJ, MERCER D, DAVIS RM, WASHBURN TD, SAGER

EV, BOYCE JB & BRISTOW VL. 1996. Stochastic processes. vol. 2. Wiley New York.

WANG GJ & YAM RC. 2017. Generalized geometric process and its application in maintenance problems.
Applied Mathematical Modelling, 49: 554–567.

WU D, PENG R & WU S. 2020. A review of the extensions of the geometric process, applications, and
challenges. Quality and Reliability Engineering International, 36(2): 436–446.

WU S. 2018. Doubly geometric processes and applications. Journal of the Operational Research Society,
pp. 1–13.

WU S. 2022. The double ratio geometric process for the analysis of recurrent events. Naval Research
Logistics (NRL), pp. 484–495.

WU S & CLEMENTS-CROOME D. 2006. A novel repair model for imperfect maintenance. IMA Journal of
Management Mathematics, 17(3): 235–243.

XIE M & LAI CD. 1996. Reliability analysis using an additive Weibull model with bathtub-shaped failure
rate function. Reliability Engineering & System Safety, 52(1): 87–93.

ZHANG YL. 1999. An optimal geometric process model for a cold standby repairable system. Reliability
Engineering & System Safety, 63(1): 107–110.

ZHANG YL & WANG GJ. 2016. An extended geometric process repair model for a cold standby repairable
system with imperfect delayed repair. International Journal of Systems Science: Operations & Logistics,
3(3): 163–175.

How to cite
JIAQI Y & SHAOMIN W. 2022. A Comparison of the Performance of the Geometric Process and Its Exten-
sions. Pesquisa Operacional, 42 (nspe1): e262123. doi: 10.1590/0101-7438.2022.042nspe1.00262123.

Pesquisa Operacional, Vol. 42(nspe1), 2022: e262123


