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ABSTRACT. This paper introduces a new variable depth search method for the Quadratic Assignment

Problem. The new method considers the cost of edges assignment as the criterion to decide which ver-

tices to exchange during local search moves. It also presents the results of an extensive experimental study

that compares the performance of local search and variable depth search algorithms for the Quadratic As-

signment Problem. The investigation presented here contributes to a better understanding of the potential

of these techniques, which are widely used as intensification tools in more sophisticated heuristic meth-

ods, such as evolutionary algorithms. Different algorithms presented in the literature were implemented

and compared to the proposed methods. The results of a computational experiment with 161 benchmark

instances are reported. Different statistical tests are applied in order to analyze the results provided by

the experiments.
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1 INTRODUCTION

Local search algorithms are popular methods to find approximate solutions to hard optimiza-
tion problems. At present many metaheuristics are extensions or generalizations of local search
procedures, such as Tabu Search, Simulated Annealing, GRASP and Variable Neighborhood
Search, among others (Glover & Kochenberger, 2003). Local search is also often embedded in
evolutionary algorithms to deal with intensification tasks, where the objective is to combine the
power of evolutionary operators in determining interesting regions of the search space with the
power of local search procedures to conduct a thorough search in a specified region (Grosan &
Abraham, 2007). In this sense, investigations of efficient local search methods contribute to the
development of better heuristics to hard optimization problems, since the development of more
efficient search strategies will result in more powerful heuristics. In its basic form, the local
search algorithm starts from an initial solution and searches among the neighboring solutions
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one that improves the starting solution. If such a neighbor is found, the process is re-started with
the new solution replacing the current one as the starting solution. The iterations continue until
no solution with better quality is found in the neighborhood of the current solution. The best
solution found by the algorithm is said to be a local optimum with respect to the neighborhood
structure used in the search. Usually, the neighborhood structure depends on the problem under
consideration and is a determinant factor for the performance of local search algorithms. Variable
Depth Search (VDS) is an important variation of local search. It was firstly presented for graph
partitioning (Kernighan & Lin, 1970) and for the Traveling Salesman Problem (Lin & Kernighan,
1973). Lin and Kernighan’s heuristic for the Traveling Salesman Problem is considered to be one
of the most effective methods to symmetric instances (Johnson & McGeoch, 2002). The main
feature of VDS is to perform subsequences of local search moves such that large portions of the
space of solutions are explored in reasonable processing times. Usually, the search is based on
simple neighborhood structures and a sequence of solutions is obtained with the application of
simple local search moves. The number of solutions generated in each sequence varies during
the search. In most cases, the effectiveness of variable depth searches is highly dependent on the
choices of the exchanged elements at each iteration step. Applications of VDS were proposed
for the generalized assignment problem (Yagiura et al., 1998) and for bi-partitioning signal flow
graphs (de Kock et al., 1995).

Given the trade-off between processing time and quality of solution, a question arises on whether
it is advantageous or not to use VDS instead of simple local search approaches. This is the first
point investigated in this paper that focuses on the Quadratic Assignment Problem (QAP) which
is a strong NP-hard combinatorial optimization problem (Sahni & Gonzalez, 1976) with exten-
sive practical application and an important test ground for most heuristics. A wide range of
algorithms based on metaheuristic strategies have been proposed for this problem, many of them
have local search methods as an important component (Loiola et al., 2007). Although a huge
number of papers are dedicated to the QAP, as far as the authors’ knowledge concerns, no paper
addressed the investigation of the benefits of using variable depth search methods rather than
simple local search methods. This is the first point examined in this paper that compares strate-
gies based on local search and on VDS for the QAP. Two VDS algorithms were proposed for
the investigated problem (Li et al., 1994; Rego et al., 2006) which use the 2-exchange neighbor-
hood structure. Those algorithms are compared to the VLSN (Very Large Scale Neighborhood)
(Ahuja et al., 2007) and to an iterated local search algorithm that uses the classical 2-exchange
neighborhood and was embedded on an efficient Evolution Strategies algorithm (Stützle, 2006).
The results of a computational experiment with 92 benchmark instances show that both VDS ap-
proaches outperform the local search methods and therefore are a better option as intensification
tools for other heuristics.

The VDS algorithms previously proposed in the literature exchange vertices systematically and
do not consider any other information besides the value of the objective function to determine
which vertices are exchanged. Since the elements that contribute in the computation of the objec-
tive function of the QAP are the costs of the assignment of edges resultant from the assignment
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of vertices, a new variable depth search heuristic that aims at taking advantage of the informa-
tion of the cost of edge assignments to choose which vertices are exchanged during the search
is proposed here. A computational experiment with 161 benchmark instances shows that the
consideration of the cost of the edge assignments is beneficial for several families of instances.

This paper is organized in other five sections besides this one. An overview of the Quadratic
Assignment Problem is presented in Section 2. Section 3 presents the methodology used in
the computational experiments reported in subsequent sections. Existing VDS and local search
algorithms are compared in Section 4. Section 5 introduces the new VDS algorithm and reports
the results of computational experiments. Concluding remarks are presented in Section 6.

2 THE QUADRATIC ASSIGNMENT PROBLEM

The Quadratic Assignment Problem was first introduced by Koopmans & Beckman (1957) in
the context of facility-location problems. Given square matrices of order n, F = ( fi j ) and
D = (di j ), the problem consists in finding a permutation ρ of the set N = {1, . . . , n} that
minimizes the cost c(ρ) given in equation 1.

c(ρ) =
∑

fρ(i)ρ( j)di j . (1)

In the location theory, the elements of matrix F represent flows of materials between facilities
and the elements of matrix D represent distances between locations. If matrices F and D are
symmetric then the QAP is said to be symmetric, otherwise it is asymmetric. In terms of Graph
Theory, the QAP can be thought as an assignment between the vertices of two complete graphs of
order n, whose weighted adjacency matrices correspond to F and D. The assignment of vertices
yields an assignment of the edges of the correspondent graphs. The cost of the assignment of
edge (ρ(i), ρ( j)) to edge (i, j) is represented by fρ(i)ρ( j)di j in equation (1). The objective is to
find an assignment of vertices which minimizes the cost of the assignment of edges given by the
sum of the costs of each edge assignment.

QAP applications arise in diverse areas such as electronics, chemistry, economy and archeol-
ogy, among others (Çela, 1998). Some recent applications comprise room allocation problems
(Ciriani et al., 2004), visualization of patterns of gene expression (Inostroza-Ponta et al., 2007),
web site design (Saremi et al., 2008), layout of machines and facilities in cellular manufacturing
(Ramkumar et al., 2008) and channel coding in communication systems (Wang & Wu, 2010).
Furthermore, several NP-hard combinatorial optimization problems, such as the traveling sales-
man, the bin-packing and the max clique problem, can be modeled as QAPs (Çela, 1998).

Algorithmic strategies for solving the QAP to optimality include Branch-and-Bound (Lawler,
1963; Hahn et al., 2001; Anstreicher et al., 2002; Anstreicher, 2003; Zhang et al., 2010), Dy-
namic Programming (Christofides & Benavent, 1989; Marzetta & Brüngger, 1999), Cutting
Plane methods (Bazaraa & Sherali, 1980; Burkard & Bonniger, 1983; Miranda et al., 2005),
combinations of Branch-and-Bound and Cutting Plane (Padberg & Rijal, 1996; Kaibel, 1998;
Jünger & Kaibel, 2001; Blanchard et al., 2003; Erdogan & Tansel, 2007). Although signifi-
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cant research effort has been made in this direction, the most challenging QAP instances solved
nowadays are still rather small, n ≤ 40. Optimal solutions for instances with size n = 36 were
first reported by Nyström (1999) who solved Ste36b and Ste36c. Anstreicher et al. (2002) imple-
mented a Branch-and-Bound algorithm based on a quadratic programming lower bound (Brixius
& Anstreicher, 2001) in a computational grid and solved instances up to 32 locations. Zhang et
al. (2010) propose constraint reductions in linear integer programming QAP formulations and
present a Branch-and-Bound algorithm that, although generate more nodes than previous ap-
proaches, is more efficient in terms of processing time. They solve instances up to 32 locations
on different computational platforms with time limit 4 hours.

Since, usually, real world problems modeled by the QAP are larger than the ones that exact algo-
rithms are able to solve, a wide variety of heuristic approaches were proposed for handling near
optimal solutions for this problem (Loiola et al., 2004, 2007). Heuristic algorithms developed
according to a myriad of metaheuristic techniques were proposed for the QAP. A review of such
algorithms is presented by Loiola et al. (2004, 2007). Some recent works include Tabu Search
(James et al., 2009a, 2009b; Fescioglu-Unver & Kokar, 2011), Differential Evolution (Davendra
et al., 2009), Iterated Local Search (Ramkumar et al., 2009), Ant Colony (Puris et al., 2010)
and Lagrangian Smoothing Algorithm (Xia, 2010). Paul (2010) presents a comparison between
Simulated Annealing and Tabu Search algorithms for the QAP.

Most successful heuristics presented for the QAP are based on, extend or embed local search
methods with the 2-exchange neighborhood structure (Drezner, 2005; Drezner, 2008; James et
al., 2009; Fescioglu-Unver & Kokar, 2011). Therefore, an investigation on the potential of local
search procedures and variations is very useful in the context of deciding which method to use to
compose more sophisticated heuristics.

3 MATERIALS AND METHODS

The next two sections present computational experiments that consider two sets of test cases:
QAPLIB (Burkard et al., 1991) (http://www.opt.math.tu-graz.ac.at/qaplib/inst.html), Taixxe and Dre
instances (Drezner et al., 2005) (http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html). The
QAPLIB is a benchmark library of QAP instances with different structures. Those instances
can be divided in four classes (Taillard, 1995): instances randomly generated from a uniform
distribution, instances whose distance matrix is based on the Manhattan distance on a grid and the
elements of the flow matrix are randomly generated, not necessarily from a uniform distribution,
instances that arise from practical applications and instances that have the same characteristics of
real-life problems, that is, they are randomly generated, but not from a uniform distribution and
the distance matrix corresponds to the Euclidean distance between n points in the plane. Taixxe
and Dre instances are introduced by Drezner et al. (2005). Those instances were designed to be
difficult to solve by algorithms that depend on transposition neighborhoods.

The VDS algorithms utilized in the computational experiments reported in this paper, including
the algorithms presented by Li et al. (1994) and Rego et al. (2006), were implemented under
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an Iterated Local Search (ILS) framework. ILS is an effective way of using repeated runs of
local search. This method has been proposed, independently, by several researchers who gave
it different names, such as iterated descent, large-step Markov chains, and iterated local search
among others (Lourenço et al., 2002). This search strategy leads to a randomized walk in the
space of local optima and, in many cases, is more effective than the random re-starts. In iterated
local search algorithms a starting solution, ρ0, is generated and a local search is applied to it.
The resulting solution, ρ1, is disturbed and the local search procedure is applied to ρ1, resulting
in ρ2. An acceptance criterion is applied to decide which solution will be the input for a new
application of the local search. These steps are repeated until a given condition is met.

The platform used to implement the iterated local search algorithms is an Intel Core 2, 2.4 GHz,
2 Gb RAM, running Linux. Twenty five independent executions of each algorithm were per-
formed for each instance. The stopping criterion adopted in the experiments is a pre-specified
maximum processing time.

In Section 4, existing VDS like algorithms (Li et al., 1994; Rego et al., 2006) are compared
to an effective ILS algorithm that uses the classical 2-exchange neighborhood (Stützle, 2006)
and to a multi-start algorithm that implements k-exchange neighborhoods (Ahuja et al., 2007).
Except for the latter, all algorithms were implemented by the authors. The results reported in the
experiments for the multi-start algorithm were presented by Ahuja et al. (2007). The experiments
were performed on 92 symmetric and asymmetric QAPLIB test cases, including all families of
instances.

The computational experiment concerning the VDS algorithms proposed in this paper were per-
formed on 161 symmetric and asymmetric QAP instances with n ranging from 20 to 150: 92
QAPLIB instances, 60 Taixxe instances and 9 Dre instances.

In general, the mean and the median costs of the solutions found by each algorithm on the
QAPLIB instances were close. It did not occur with Taixxe instances. Therefore, we opted to
present the mean when dealing to QAPLIB instances and the median to Taixxe and Dre instances.
The choice to present the median for the latter classes of instances was made since this statistic
presents an upper limit to the minimal values found in at least 50% of the independent executions.
The results are presented in terms of percent difference from the best known solution calculated
with equation 2, where val denotes the value of the mean, median or best solution accordingly and
best denotes the value of the optimal solution or the best known value reported in the literature
when the optimum is not known.

gap =
val− best

best
× 100 . (2)

Statistical analyses were done with the Kruskal-Wallis’ test, the Mann-Whitney U test (Conover,
1999) and the test for proportions comparison proposed by Taillard et al. (2008) (two-tailed
test). In the latter case the proportions refer to number of successes obtained by each heuristic
method considering a pre-specified computational effort. Success, here, means to achieve the
lowest value when average or median solutions are compared and to achieve the highest value
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when dealing with number of best solutions. Algorithms are compared in pairs. The input data
for proportions comparison tests are the number of instances considered in a given experiment
and the number of instances where each algorithm is successful in relation to the other.

To illustrate the potential of the proposed algorithms, their results are compared to the ones
produced with an exact algorithm proposed recently by Zhang et al. (2010). The comparison is
performed on 17 sparse instances with n up to 32.

4 LOCAL SEARCH AND VARIATIONS

This section reviews some approaches of local search and variations applied to the QAP. The
neighborhood structures used in these algorithms are based on the exchange of elements of a
current solution. The exchanges are done systematically, without any information, except for the
value of the objective function calculated with equation 1. The performances of these algorithms
are compared and conclusions are drawn. This section is divided into two parts. The differ-
ent heuristics are presented in Subsection 4.1 and the computational experiment is presented in
Subsection 4.2.

4.1 Local Search for the QAP

Exchange neighborhoods are very popular for problems that can be represented as permutations
of n elements, such as the QAP. The local search procedures used in the most successful heuris-
tics proposed to tackle the investigated problem rely on the 2-exchange neighborhood structure.
Given a solution ρ, the neighborhood ℵ(ρ) obtained through the 2-exchange structure, is defined
by the set of permutations which can be reached by exchanging two elements of ρ, as defined in
expression 3.

ℵ(ρ) =
{
ρ ′|ρ′[r ] = ρ[s], ρ ′[s] = ρ[r ], ρ ′[i] = ρ[i] ∀i, i 6= r, s

}
(3)

There are n(n − 1)/2 possible combinations of two locations of a permutation with n elements
and, given two elements, there is only one way of exchanging them. An advantage of this neigh-
borhood for the QAP is that the difference between the costs of two neighbor solutions can be
computed in O(n) (Taillard, 1991). This neighborhood is the most widely used in several heuris-
tic algorithms proposed for the examined problem.

The simplest way to use a local search algorithm is to perform several re-starts of the procedure
from different points of the search space. Multi-start applications with the 2-exchange neigh-
borhood are reported to the QAP in a number of papers (Fleurent & Glover, 1999; Misevicius,
1997; Misevicius & Riskus, 1999). Resende et al. (1996) present a greedy randomized adaptive
search (GRASP) for the QAP. An extension is presented by Oliveira et al. (2004) who improve
the performance of the GRASP algorithm with the inclusion of a path-relinking procedure. They
present experimental results for 92 instances of the QAPLIB (Burkard et al., 1991) with n up to
64. Lourenço et al. (2003) observe that as the instance size increases, the probability of random
re-starts methods to find solutions with significantly lower costs decreases. The Iterated Local

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:38 — page 171 — #7
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Search method, ILS, is an alternative to prevent that effect. The method is thought to perform
a biased sampling of the search space by performing small perturbations in the solution gener-
ated by the local search procedure and using this disturbed solution as the starting solution of
the next iteration (Lourenço et al., 2003). An ILS approach with the 2-exchange neighborhood
is proposed for the QAP by Stützle (2006). The general ILS framework and the ILS algorithm
proposed for the QAP are reviewed in the following, since the ILS algorithm proposed by Stützle
(2006) is tested in the computational experiments presented in this paper and also the ILS archi-
tecture is used in the implementation of the proposed methods. A general framework of the ILS
algorithm is presented in Figure 1.

Algorithm ILS

1. ρ0 ← initial solution( )
2. ρ0 ← local search(ρ0)
3. repeat
4. ρ1 ← disturb(ρ0, history)
5. ρ2 ← local search(ρ1)
6. ρ0 ← acceptance criterion(ρ0, ρ2, history)
7. until (stop criterion is met)

Figure 1 – General framework of ILS.

An initial solution is generated and a local search is applied to it in steps 1 and 2, respectively.
The ILS algorithm may use or not a set to store the history of the search, called history in
Figure 1. This set may contain, for example, interesting solutions generated during the search.
The history of the search may influence the decisions made in steps 4 and 6. Although history
can be considered, in many ILS implementations, the decisions regarding the perturbation of
the current solution (step 4) and acceptance criterion (step 6) do not depend on it. The solution
generated in the first two steps is disturbed and a local search is applied to the new solution in
steps 4 and 5, respectively. In order to re-start the search, an acceptance criterion chooses from
which solution the search will be continued. At least, two new decisions, beyond those of the
local search method, have to be made in order to use an iterated local search algorithm: the
method to disturb solutions and the criteria to accept a solution.

Four ILS algorithmic versions were investigated with the major difference between them regard-
ing the criterion to choose the starting solution of the next iteration, called acceptance criterion.
Those versions are called: Better, Restart, RandomWalk and LSMC. In Better, the best solution
among ρ0 and ρ2 is the input for the next iteration. The same acceptance criterion is used in
Restart, but a new random solution is returned by the acceptance criterion if an improved solu-
tion is not found for a fixed number of iterations. In RandomWalk, ρ0 is always replaced by ρ2

irrespective of the cost of the latter. Finally, in LSMC a simulated annealing based criterion is
used. In this version, ρ2 is accepted with a probability p that depends on the difference between
the costs of ρ0 and ρ2 and on a temperature. The latter version obtains the overall best solutions
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when compared to the other three versions and was implemented in our computational experi-
ments for the comparison with the other algorithms. The implementation followed the directions
given in the paper it was presented. The local search procedure uses the first pivoting rule and
“don’t look bits”. Stützle (2006) presents experimental results of the iterated local search algo-
rithms for 38 instances with n ranging from 20 to 100. The ILS algorithm is then embedded in
an evolutionary algorithm that presents high quality results.

Multi-exchange neighborhoods are natural extensions of the 2-exchange. Ahuja et al. (2007)
investigate multi-exchange neighborhoods for the QAP. They defined ρ ′, a k-exchange neighbor
of ρ, as the permutation obtained from ρ by a cyclic sequence of k elements. Given a sequence
of locations i1, . . . , ik , the multi-exchange move corresponds to assign facility ρ(i j ) to loca-
tion i j+1, for all j 6= k and to assign facility ρ(ik) to location i1. The local search algorithm
iteratively examines all cyclic sequences of increasing values for k, where the maximum is a
specified parameter. The size of the neighborhood grows exponentially with k, thus this neigh-
borhood structure is classified as a Very Large Scale Neighborhood, for which an exhaustive
examination of the whole neighborhood is impracticable in computational terms. With the use
of an improvement graph, Ahuja et al. (2007) show that, in average, they can compute the cost
of a k-exchange move in O(k). Due to the high processing times needed to the full enumeration
scheme the authors established a maximum value for k equals 4. They test multi-start imple-
mentations of the proposed neighborhood structure against a multi-start implementation of the
2-exchange neighborhood in 132 test cases of the QAPLIB, with fixed processing times. They
show that their neighborhood obtains consistently better results than the multi-start local search
with the 2-exchange neighborhood.

In general, for fixed values, as k grows, the computational effort to deal with k-exchange neigh-
borhoods rises rapidly and, usually, the improvement in the quality of solutions does not com-
pensate a greater effort. An effective alternative for the fixed size neighborhood structures is
presented by Kernighan & Lin (1970) and Lin & Kernighan (1973) for the Partitioning Problem
and the Traveling Salesman Problem, respectively. The idea is to perform sequences of moves,
such that each move is likely to lead to a better solution instead of testing all moves of a given
neighborhood. This method is called Variable Depth Search (VDS). The VDS algorithm exam-
ines iteratively, for growing values of k, whether exchanging k elements may result in a better
neighboring solution. A gain function is computed and if it is likely that the previous solution
can be improved, then the algorithm tests if k can be extended to k + 1. When no more gain can
be made, the algorithm performs the exchange of the k elements. The general framework of a
VDS algorithm is shown in Figure 2.

Similar to other local search algorithms, an initial solution ρ0 is generated in step 1. The current
best solution is stored in ρbest initially set to ρ0. The variable gain stores the result of the gain
function. The variable bestgain maintains the best value achieved by the gain function during
the iterations of the inner loop. Whenever bestgain is updated, variable k is set to the value of
variable i , the number of the current iteration. The value of k indicates the length of the best
sequence of exchanges the algorithm has to perform after the inner loop is executed. Lists Lout
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Algorithm VDS

1. ρ0 ← initial solution( ); ρbest ← ρ0

2. repeat
3. i ← 1; gain← best gain← 0; k ← 0
4. Lin← Lout← { }
5. ρ1 ← ρ0

6. repeat
7. xi ← element out(ρ1, Lout); Lout← Lout ∪ {xi }
8. yi ← element in(ρ1, Lin); Lin← Lin ∪ {yi }
9. ρ2 ← exchange(ρ1, xi , yi )

10. 1← c(ρ1)− c(ρ2)

11. gain← gain +1

12. if (gain is better than bestgain) bestgain← gain; k ← i
13. ρ1 ← ρ2; i ← i + 1
14. until ((gain meets condition) and (elements exist()))
15. ρ2 ← exchange sequence(ρ0, k)
16. if (ρ2 is better than ρbest) ρbest ← ρ2

17. ρ0 ← ρ2

18. until (stop criterion is met)

Figure 2 – General framework of VDS.

and Lin contain elements that were withdrawn and included in the current solution, respectively.
The choice of elements xi (that is withdrawn) and yi (that is included in the current solution) aims
at maximizing the improvement of the current solution within the sequence of moves. Variable
ρ1 stores the neighboring solutions found during the VDS iterations. A test is done in step
14 to find out if, given conditions established in advance, the value in gain still indicates that
an improvement exists with the current sequence of moves. The inner loop also finishes if no
elements exist to be exchanged due to the restrictions imposed by the lists of prohibited elements
what is verified in procedure element exist( ). In step 15 a new solution ρ2 is generated with
the replacement of elements x1, . . . , xk by y1, . . . , yk in solution ρ0. The main loop continues
iterating until a given stop criterion is met.

A VDS algorithm for the QAP was presented by Li et al. (1994) who investigated the com-
plexity of local search for the QAP with a 2-exchange neighborhood which they proved to
be PLS-complete. Their algorithm starts with a permutation generated at random, with uni-
form probability. For a current permutation ρ0, a sequence of permutations, ρ1, . . . , ρs , is
built, each of them obtained from the previous one with a 2-exchange move with cost lower
than the current permutation. They used a cumulative gain function, G(i), for permutation ρi ,
where G(i) = c(ρi ) − c(ρ0). At each re-start of the local search, ρ0 is replaced by the best ρi ,
the one with the best G(i). The stopping condition was the inexistence of a sequence for the
current permutation. Another VDS like method for the QAP is presented by Rego et al. (2006)
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who propose an ejection chain algorithm. Their method builds sequences of exchanges until no
promising permutations are likely to exist or until a maximum of n moves. Initially, the best
2-exchange move for each facility ρ(i), i = 1, . . . , n, is identified. Let j be the best location
for facility ρ(i), then this facility is assigned to location j . The facility that previously occupied
position j is said to be ejected and has to be assigned to other location. The method prohibits
elements to be moved twice. Thus the sequence can grow until all n facilities are moved. Each
element of the move sequence corresponds to one local search step in a QAP instance of q ele-
ments, where q varies from n to 1.

4.2 Experiments Comparing Local Search Algorithms

The algorithms by Li et al. (1994) and Rego et al. (2006) were implemented under an iterated
local search framework and are named IT-LPR and IT-EC, respectively. The solution generated
by the algorithm presented by Rego et al. (2006) is not guaranteed to be a local optimum for the
2-exchange neighborhood. Therefore, a final 2-exchange local search step was included at the
end of the iterated local search iterations. Preliminary experiments showed that this modifica-
tion improved significantly the performance of this algorithm.

The VDS algorithms are compared to the LSMC (Stützle, 2006) and to the VLSN (Ahuja et al.,
2007). For the experiments performed in this paper, we tested two methods to update the “don’t
look bits” in the LSMC. The first method followed the directions given in the reference paper
by Stützle (2006) where only the “don’t look bits” of exchanged elements are reset to 0. In the
second method all “don’t look bits” are reset to 0 after a solution is disturbed. The results of the
experimentation made to compare these methods showed that the first method produces worse
solutions than the second method for the majority of the tested instances. Thus, for compari-
son purposes, the best result found for each instance by one of these two versions is reported
for LSMC.

The results listed in columns related to the VLSN were reported by Ahuja et al. (2007) who
used an IBM RS6000 platform (333 MHz). Their stopping criterion was 1 hour for problems
with n ≥ 40 and 2 hours for problems greater than 40. The stop condition for LSMC, IT-
LPR and IT-EC is the maximum processing time (in seconds) shown in the last column of
Tables 1 and 2. These tables present the results for symmetric and asymmetric QAPLIB in-
stances, respectively. The name of the instance is presented in the first column followed by
the best known solution in the second column. Columns Av and %best present, respectively,
the average percent deviation from the best known solution and the percentage of best known
solutions obtained in 25 independent executions. The results obtained for instances Esc32x ,
Sko100x and Bur26x are grouped. In these cases the best known solution is not presented in
the correspondent column. The best result obtained for each instance by one of the compared
algorithms is bold.

VLSN produces the best average percent deviation on instances Esc32e, Esc32g and Tai100a.
The LSMC presents the best results on instances Esc32c, Esc32e, Esc32g and Esc64a. The
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Table 1 – Comparing local search methods and variants on symmetric QAP instances.

Instance BKS
VLSN LSMC IT-LPR IT-EC

T(s)
Av %best Av %best Av %best Av %best

Chr20a 2192 33.83 0.02 14.60 0 5.26 4 4.75 4 3

Chr20b 2298 27.59 0 11.22 0 7.42 0 5.71 4 3

Chr20c 14142 63.75 0.20 18.14 0 3.03 52 2.77 52 3

Chr22a 6156 10.03 0.02 6.46 0 2.92 0 1.56 8 4

Chr22b 6194 9.55 0 5.95 0 2.59 0 1.62 0 4

Chr25a 3796 44.08 0 18.78 0 13.87 0 4.40 36 6

Esc32a-h — 4.95 47.80 9.54 50.29 0.57 87.43 0.69 86.29 5

Esc64a 116 0.14 95.69 0 100 0 100 0 100 15

Esc128 64 5.61 33.89 0.91 28 1.38 64 0.88 80 20

Had20 6922 0.84 6.76 0.36 36 0 100 0 100 3

Kra30a 88900 5.99 0.2 4.73 0 1.22 16 1.05 32 10

Kra30b 91420 4.13 0.04 2.64 0 0.52 4 0.12 24 10

Nug20 2570 3.04 0.67 2.02 4 0.01 96 0 100 3

Nug21 2438 3.14 0.29 1.9 0 0.03 88 0.07 72 3

Nug22 3596 2.71 1.37 1.53 4 0 100 0.01 96 4

Nug24 3488 3.31 0.7 1.82 4 0.07 80 0.04 88 5

Nug25 3744 2.64 0.42 1.66 0 0.01 88 0.04 68 6

Nug27 5234 3.27 0.4 2.06 0 0.06 64 0.04 96 7

Nug28 5266 3.3 0.19 2.20 0 0.34 12 0.28 32 8

Nug30 6124 3.06 0.03 1.96 0 0.35 12 0.21 28 10

Rou20 725522 3.34 0.02 2.28 0 0.16 20 0.31 4 3

Scr20 110030 6.22 0.21 2.67 0 0.04 88 0.05 92 3

Sko42 15812 2.73 0.01 2.24 0 0.55 4 0.30 8 30

Sko49 23386 2.44 0 2.18 0 0.7 0 0.46 0 45

Sko56 34458 2.39 0 2.13 0 0.8 0 0.54 0 71

Sko64 48498 2.2 0 2.17 0 0.76 0 0.47 0 103

Sko72 66256 2.21 0 2.02 0 0.71 0 0.50 0 152

Sko81 90998 1.91 0 2.14 0 0.67 0 0.50 0 219

Sko90 115534 1.89 0 2.18 0 0.72 0 0.59 0 300

Sko100a-f — 1.80 0 2.37 0 0.70 0 0.55 0 415

Ste36a 9526 9.07 0.01 6.51 0 1.85 0 0.76 4 18

Ste36b 15852 15.95 0.18 7.70 4 1.4 4 0.08 88 18

Ste36c 8239110 7.24 0 6.12 0 1.17 0 0.25 12 18

Tai20a 703482 4.37 0.02 3.38 0 0.67 12 0.84 0 3

Tai25a 1167256 4.08 0 3.26 0 3.30 0 1.35 0 6

Tai30a 1818146 3.84 0 3.02 0 1.75 0 1.46 0 10

Tai35a 2422002 3.72 0 3.50 0 2.06 0 1.63 0 20

Tai40a 3139370 3.68 0 3.51 0 2.32 0 2.35 0 25

Tai50a 4938796 3.71 0 3.97 0 2.84 0 2.9 0 50
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Table 1 (continuation) – Comparing local search methods and variants on symmetric QAP instances.

Instance BKS
VLSN LSMC IT-LPR IT-EC

T(s)
Av %best Av %best Av %best Av %best

Tai60a 7205962 3.54 0 3.83 0 2.87 0 3.03 0 89

Tai80a 13511780 2.78 0 3.32 0 2.74 0 2.58 0 223

Tai100a 21052466 2.49 0 3.16 0 2.57 0 2.71 0 1000

Tho30 149936 3.72 0.03 3.34 0 0.43 16 0.3 20 10

Tho40 240516 3.70 0 2.97 0 1.01 0 0.52 0 25

Tho150 8133398 2.12 0 3.64 0 0.79 0 0.68 0 1000

Wil50 48816 1.37 0 1.07 0 0.20 0 0.11 0 120

Wil100 273038 0.95 0 3.12 0 0.35 0 0.25 0 1000

Table 2 – Results for asymmetric instances.

Instance BKS
VLSN LSMC IT-LPR IT-EC

T(s)
Av %best Av %best Av %best Av %best

Bur26a-h —– 0.27 1.99 0.26 0.13 0.08 0 0.00 85.50 15

Lipa20a 3683 2.52 1.37 1.93 12 0 100 0 100 3

Lipa30a 13178 1.83 0.24 1.77 0 1.01 24 0.56 60 4

Lipa40a 31538 1.36 0.01 1.23 0 1.13 0 0.80 28 25

Lipa50a 62093 1.17 0 1.14 0 1.02 0 0.93 8 50

Lipa60a 107218 0.99 0 0.99 0 0.90 0 0.90 0 89

Lipa70a 169755 0.86 0 0.88 0 0.80 0 0.80 0 150

Lipa80a 253195 0.75 0 0.77 0 0.71 0 0.72 0 225

Lipa90a 360630 0.69 0 0.73 0 0.67 0 0.67 0 300

Lipa20b 27076 12.66 12.94 9.67 32 0 100 0 100 3

Lipa30b 151426 14.96 7.34 14.05 12 0 100 1.80 88 4

Lipa40b 476581 16.9 5.8 17.20 0 0.66 96 1.39 92 5

Lipa50b 1210244 17.52 2.33 18.90 0 8.26 52 5.61 68 10

Lipa60b 2520135 19.22 0.42 20.66 0 16.66 12 17.57 8 17

Lipa70b 4603200 19.94 0.53 21.07 0 16.65 16 18.32 8 30

Lipa80b 7763962 20.92 0.08 21.74 0 19.94 4 20.92 0 45

Lipa90b 12490441 — — 26.61 0 19.43 8 20.38 4 60

Tai20b 122455319 14.22 6.3 0.79 28 0 100 0 100 3

Tai25b 344355646 12.1 0.59 4.66 0 0.07 48 0 100 15

Tai30b 637117113 9.06 0.13 2.60 0 0.20 4 0 100 25

Tai35b 283315445 6.47 0.03 4.86 0 0.25 4 0.09 60 39

Tai40b 637250948 8.29 0.24 6.26 0 0.05 12 0.00 96 59

Tai50b 458821517 5.73 0 4.15 0 0.27 0 0.27 24 116

Tai60b 608215054 6.16 0 4.80 0 0.30 0 0.54 4 211

Tai80b 818415043 5.27 0 3.84 0 1.09 0 0.92 0 500

Tai100b 1185996137 4.43 0 2.05 0 0.64 0 0.46 0 1000

Tai150b 498896643 3.1 0 3.3 0 1.50 0 1.38 0 1000
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results in Table 1 show that the two VDS algorithms present, in general, the best performance
for the 58 symmetric instances of the computational experiment. The IT-LPR presents the best
average results on 18 instances. The IT-EC presents the overall best performance regarding qual-
ity of solution. It presents 46 best average results including instances Esc32c, Esc32d, Esc32e,
Esc32g and the whole Sko100 set. The number of best known solutions produced by the two
VDS algorithms is similar with some advantage for the IT-EC. The average concerning the 58
symmetric instances and the 25 independent executions are 4.02, 4.90, 23.65 and 28.39 for the
VLSN, LSMC, IT-LPR and IT-EC, respectively.

The Kruskal-Wallis’ statistical test was applied to determine if significant differences exist be-
tween the results presented by the three ILS algorithms. The VLSN could not be tested, once the
results for each instance are not available. The results of the statistical test considering signif-
icance level 0.05 showed that the null hypothesis (samples come from identical populations)
cannot be rejected only for instances Esc32c, Esc32e, Esc32g, Esc64a and Esc128, indicat-
ing that for the other 53 instances the results produced by at least one algorithm were signif-
icantly different from the other two. In all cases the test indicated that the LSMC performed
significantly worse than the other algorithms. The Mann-Whitney U-test was applied to the re-
sults of the two VDS algorithms. With significance level 0.05, the test showed that the IT-EC
produced significantly superior results on instances Chr22a, Chr22b, Chr25a, Kra30b, Nug27,
Nug28, Tai25a, Tai35a, Sko42, Sko49, Sko56, Sko64, Sko72, Sko81, Sko90, Sko100a-f, Ste36a-
c, Tho30, Tho40, Tho150, Wil50 and Wil100. Significant better results were presented by the
IT-LPR on instances: Rou20, Tai50a, Tai60a, Tai80a and Tai100a.

In order to apply the test for proportions comparison (Taillard et al., 2008) it is necessary to define
“success” In this paper, one algorithm is considered successful on one instance when compared
to other, if the former produces a better average value than the latter. With significance level
0.01, the statistical test showed that the IT-EC was the best approach when compared to each
of the other three algorithms. The VLSN performed conclusively worse than the others. The
comparison between the IT-LPR and to the LSMC showed that that the former outperformed
the latter.

Similar results were observed on the asymmetric instances presented in Table 2. The best re-
sults for these instances were produced by the IT-LPR and the IT-EC. The IT-LPR presented
the best average results on 15 instances and the IT-EC presented 26 best average results includ-
ing Bur26 instances. The average of best known solutions found by each algorithm on the 34
asymmetric instances are 1.55, 3.12, 25.19 and 41.98 for the VLSN, LSMC, IT-LPR and IT-
EC, respectively. With significance level 0.05, the Kruskal-Wallis’ test showed that the results
of, at least, one algorithm is significantly different from the others. The statistical test showed
that the two VDS algorithms performed significantly better than the LSMC. Concerning the
comparison of the two VDS algorithms, significant best results were obtained by the IT-EC on
instances Bur26a-h, Tai25b, Tai30b, Tai35b, Tai40b and Tai100b. IT-LPR presented significant
best results on instances Lipa80a, Lipa80b and Lipa90b.
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The test for proportions comparison with significance level 0.01 showed that the two VDS algo-
rithms outperform the VLSN and the LSMC. The null hypothesis cannot be rejected (even with
significance level 0.05) in the comparison between VLSN and LSMC. The test also pointed out
a significant better result of the IT-EC over the IT-LPR.

5 GUIDING VDS WITH THE COSTS OF EDGE ASSIGNMENTS

In terms of Graph Theory, each parcel of equation 1 corresponds to the cost of an assignment
of two edges of complete graphs of order n. From this viewpoint, the objective function seeks
at minimizing the sum of products of edge weights. The problem of assigning edges is solved
in polynomial time, but only few assignments of edges, regarding the total number of such as-
signments, lead to feasible solutions concerning the assignment of vertices when n > 3 (Rangel
& Abreu, 2007). Nevertheless, the costs of the edges assignments can be used to guide the
search indicating good candidates to be exchanged. In this sense, the edges are thought as the
exchanging elements, taking due care to maintain feasibility of the solutions produced during
the search. Given a solution, ρ, the flow edge e f with terminal vertices ρ(i) and ρ( j) and
the location edge ed with terminal vertices i and j , the assignment of edges is represented
by (e f , ed).

Consider that edge e f is assigned to ed , the assignment of e f to a new location e′d implies in
freeing the edge e′f , previously assigned to e′d . Therefore, the basic idea consists in, iteratively,
canceling an edge assignment and to re-assign the freed flow edge to another distance edge.

In this paper, two alternatives are considered for the new assignment. In the first alternative,
the assignment of one terminal vertex of e f is undone and the assignment of the other terminal
vertex remains fixed. In the other alternative both assignments of the terminal vertices of edge
e f are undone. In both cases, the freed vertex(vertices) is(are) assigned to a new location(s).
This new assignment induces a new solution, ρ1. The difference between the costs of the origi-
nal solution, ρ, and the solution induced by the basic move, ρ1, is calculated and the gain func-
tion is updated. The first and the second alternatives lead to one and two algorithmic versions,
respectively. The general framework of the variable-depth search based on the first alternative
is presented in algorithm VDS QAP.

After the initial solution, ρ0, is generated, the first assignment of edges to be undone is chosen
in procedure edge assignment( ). A list of prohibited moves, LProhib, stores the pair of edges
(e f , ed) of the assignment that is undone. This list is initialized with (e f , ed). Its maximum
size is limited to #sizelist elements. Inside the loop a new distance edge, e′d , is chosen. The
flow edge e f is assigned to e′d in procedure new edge( ). The edge e′f previously assigned to e′d
is set free. A new solution, ρ2, is generated by exchanging edges e f and e′f . Clearly, the edge
assignments depend on the terminal vertices of the corresponding edges. The distinct algorithmic
versions proposed in this paper differ in this step, where different strategies to exchange the
edges and to assign the terminal vertices are adopted. The variation between the costs of the two
solutions is calculated and incremented in variable gain. The best value of this variable is stored
in variable bestgain and the position in the sequence of exchanges is stored in variable k. The
list of prohibited assignments is updated with (e′f , e′d). If there are less than #sizelist elements
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Algorithm VDS QAP

ρ0 ← random solution()

(e f , ed)← edge assignment(ρ0)

LProhib←
{
(e f , ed)

}
; i ← 1; bestgain← 0

ρ1 ← ρ0

repeat
e′d ← new edge(ρ1, e f )

ρ2 ← exchange(ρ1, e f , e′f )

1← c(ρ1)− c(ρ2)

gain← gain+1

if (gain > bestgain)

bestgain← gain; k ← i
LProhib← LProhib ∪

{
(e′f , e′d)

}

e f ← e′f
ρ1 ← ρ2; i ← i + 1

until (gain > 0)
ρ1 ← exchange sequence(k, ρ0)

Figure 3 – General framework of VDS QAP.

in LProhib, then the new pair is added to it. Otherwise, the new element replaces the “oldest”
element of LProhib. The main loop iterates while positive gains exist (variable gain is greater than
0). Alternatively a stopping criterion can also consider a maximum number of iterations of the
main loop. Finally, the initial solution, ρ0, is updated with the best sequence of edges exchange
in procedure exchange sequence( ).

Two important decisions to be made when implementing VDS QAP are: to define how many
and which assignments are canceled at each iteration step and to define how the new locations
for the freed edges are chosen. A number of alternatives exist for these and other implementa-
tion issues. Depending on the decisions made by the developer, algorithms with wide varying
behaviors are expected to be created. In the next two sections, three algorithmic versions are
presented where the details concerning those decisions are explained.

In the algorithms presented in the next sections, the choice of the first edge assignment that is
undone is based on the cost of the assignments of each pair of edges in the initial solution. Given
a solution, ρ, the weight of the assignment (e f , ed) of edge ef with terminal vertices ρ(i) and
ρ( j) to edge ed with terminal vertices i and j is given by w(e f , ed) = fρ(i)ρ( j)di j . In order to
select the first pair, (e f , ed), a restricted list of candidates is built with the lsize% pairs with the
greatest weights. One element of that list is randomly chosen with a probability that is directly
proportional to the weight of the correspondent assignment.

In order to determine the best value for lsize, a preliminary experiment was done with 42 QAPLIB
instances with n between 20 and 150. Four values were investigated for lsize: 10, 30, 50 and 70.
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It was observed that the best results were obtained with 10 or 30, with the latter value yielding
slightly better results than the former.

The sequence of movements is terminated if gain ≤ 0. In the implementations reported here an
additional stopping criterion was added to establish a maximum number of iterations being twice
the size of LProhib without the improvement of the best solution found up to the current iteration.
The size of LProhib was set to 150 after preliminary experiments.

5.1 One Terminal Vertex is set Free – VDS1

In the first variant of the proposed algorithm, denoted as VDS1, only one terminal vertex of edge
e f is set free. Thus, it is necessary to decide which terminal vertex assignment remains fixed and
which is undone. It corresponds to choose which location of edge ed becomes unoccupied. This
decision is made simultaneously with the choice of the new location for the free facility. Both
terminal vertices of edge e f are tested.

In a first experiment to examine the potential of the variant VDS1 in relation to the 2-exchange
neighborhood, 100 random re-starts of each method were applied to all QAPLIB instances with
n ranging from 20 to 30. In this experiment, each released vertex was tested in all locations
not prohibited for it. The minimal, average and median solution reached by each method were
computed, as well as the average processing time. The results are shown in Table 3 where the
values of the minimal, average and median solutions are reported in columns Min, Av and Med,
respectively. The average processing time in seconds is exhibited in column T .

The results presented in Table 3 show that the minimal values obtained by VDS1 are better than
the ones produced by the 2-exchange on 32 of the 38 instances, there are 4 ties and the latter
method finds 2 minimal values better than the former. The proposed method also finds the best
average solutions on 36 instances. All median values produced by the VDS1 are lower than
the median values obtained with the other method. A summary of the improvements in average
solutions obtained by VDS1 over the other algorithm per instance class is shown in Table 4. The
values exhibited in Table 4 were calculated on classes with at least three instances. Columns
Class, Best and Improvement show, respectively, the class name, which algorithm produced the
best average value and the improvement of the average solution over the other algorithm.

Table 4 shows that the 2-exchange local search exhibits better results on Taixxb class, where an
improvement of 4.01% is obtained. The proposed approach outperforms the 2-exchange algo-
rithm on the remaining instances with the lowest improvement being 16.67% on class Lipa.

Once normality cannot be assumed, the Mann-Whitney test was applied to the results produced
by the investigated methods to test whether or not significant differences exist. With significance
level 0.01, the null hypothesis cannot be rejected only for four instances: the three Taixxb in-
stances and the Chr20c. Statistical significant differences were found on the remaining instances.
Table 3 also shows that smallest processing times are, in general, obtained with the 2-exchange
local search. Nevertheless, when the same statistical investigation is applied to the processing
times, with significance level 0.05, significant differences exist in favor of the 2-exchange on 10
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Table 3 – Results of 100 random starts of methods VDS1 and 2-exchange local search.

Instance
VDS1 2-exchange

Min Av Med T(s) Min Av Med T(s)

Bur26a 0.37 0.87 0.88 0.040 0.60 1.31 1.35 0.010

Bur26b 0.39 0.97 0.94 0.000 0.71 1.43 1.45 0.010

Bur26c 0.49 1.20 1.19 0.050 0.74 1.53 1.47 0.010

Bur26d 0.66 1.50 1.43 0.040 0.97 1.94 2.13 0.020

Bur26e 0.26 1.08 1.06 0.050 0.88 1.77 1.69 0.000

Bur26f 0.25 1.16 1.09 0.030 0.38 1.56 1.47 0.000

Bur26g 0.57 1.37 1.35 0.090 0.59 1.95 1.95 0.000

Bur26h 0.47 1.47 1.35 0.030 0.98 2.15 1.98 0.000

Chr20a 9.40 37.66 37.59 0.040 20.53 48.34 45.76 0.000

Chr20b 8.01 26.50 24.59 0.050 17.84 44.11 42.38 0.000

Chr20c 17.83 74.53 77.99 0.010 16.39 82.24 80.92 0.000

Chr22a 1.88 11.73 12.02 0.020 5.29 13.47 13.09 0.000

Chr22b 2.91 10.16 9.27 0.040 7.85 13.81 14.08 0.000

Chr25a 14.81 47.82 47.10 0.030 27.24 53.65 54.16 0.000

Had20 0 0.94 0.62 0.000 0 1.43 1.33 0.000

Kra30a 1.82 7.03 6.85 0.080 2.14 8.12 8.59 0.000

Kra30b 0.97 4.93 4.71 0.030 2.43 5.61 5.52 0.000

Lipa20a 0 2.47 2.49 0.020 2.25 2.83 2.73 0.000

Lipa20b 0 11.43 14.14 0.030 0 14.97 16.12 0.000

Lipa30a 1.52 1.84 1.83 0.050 1.71 2.00 1.95 0.000

Lipa30b 0 14.62 16.21 0.050 0 15.62 16.72 0.000

Nug20 0.70 2.78 2.80 0.000 0 4.22 4.28 0.000

Nug21 0.16 2.99 2.54 0.030 0.74 5.20 5.08 0.000

Nug22 0 2.39 1.97 0.020 0.95 3.42 3.05 0.000

Nug24 0 3.00 3.04 0.030 0.92 4.13 4.07 0.000

Nug25 0 2.31 2.22 0.070 1.07 3.74 3.50 0.010

Nug27 0 3.25 2.94 0.040 0.04 4.27 3.97 0.000

Nug28 0.19 3.21 3.06 0.040 0.62 3.98 4.14 0.010

Nug30 0.20 2.49 2.27 0.040 0.94 3.76 4.15 0.000

Rou20 0.08 3.05 3.08 0.020 1.64 4.47 4.76 0.000

Scr20 0.03 6.29 5.47 0.060 3.02 11.69 12.61 0.000

Tai20a 0.53 4.24 4.05 0.040 3.64 6.43 6.47 0.000

Tai20b 0 17.82 12.00 0.010 0 15.34 12.29 0.000

Tai25a 1.45 3.91 3.86 0.040 2.81 4.96 4.97 0.000

Tai25b 0.08 15.66 16.46 0.020 0.33 16.32 16.62 0.000

Tai30a 1.57 3.61 3.64 0.050 3.34 5.10 5.04 0.010

Tai30b 0.19 13.50 13.07 0.060 0.93 13.51 13.29 0.010

Tho30 0.53 3.37 3.19 0.090 1.01 4.51 4.63 0.000
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Table 4 – Improvements on average solutions per instance class.

Class Best Improv

Bur VDS1 41.79

Chr VDS1 23.18

Lipa VDS1 16.67

Nug VDS1 45.94

Taixxa VDS1 40.22

Taixxb 2-exchange 4.01

of the 38 instances only. It means that on the majority of instances, 28 of 38, the statistical test
did not indicate significant differences regarding computational times.

In the ILS version of VDS1, two matrices are used to establish a preference order among the
localities to which a free facility can be assigned. In a pre-processing phase, two matrices n×n−1
of ranks, RF and RD , are built from F and D, respectively. In order to generate these matrices,
a list is created for each facility(location) that contains the remaining facilities(locations) in non-
decreasing(non-increasing) order of flow(distance). Element RF [p][q] is the position of facility
q in the list built for facility p. Element RD[p][q] is the locality that is in the q-th position of
the list correspondent to location p.

Let ρ(i) and ρ( j) be the free and the fixed vertices, respectively, of edge e f . A list of possible
locations for ρ(i), Lposs, is built with basis on RD and element RF [ρ( j)][ρ(i)]. Since j is the
occupied location, the first candidate as the new location of facility ρ(i) to be included in Lposs

is the element in position RF [ρ( j)][ρ(i)] of the list of locations corresponding to j , that is,
element RD[ j][RF [ρ( j)][ρ(i)]]. The other elements of Lposs are RD[ j][RF [ρ( j)][ρ(i) + 1],
RD[ j][RF [ρ( j)][ρ(i) − 1], . . . , RD[ j][RF [ρ( j)][ρ(i) + k], RD[ j][RF [ρ( j)][ρ(i) − k]. If it
is the case that ρ(i) − k = 0 and ρ(i) + k < n − 1 or ρ(i)] − k > 0 and ρ(i) + k = n − 1,
Lposs is completed with elements RD[ j][RF [ρ( j)][ρ(i)+k+1], . . . , RD[ j][RF [ρ( j)][n−1], or
RD[ j][RF [ρ( j)][ρ(i) − k], . . . , RD[ j][RF [ρ( j)][1], respectively. Therefore, Lposs is mounted
with the locations with best chance of being a good location for ρ(i) according to the values of
the corresponding edges. The algorithm seeks the new location for ρ(i), analyzing the exchange
of ρ(i) and ρ(h), h being the current location examined of list Lposs. In the algorithm described
in this paper, a first improvement rule was used. Let bestloc be the best location found for
ρ(i). Then a new solution ρ1 with cost c(ρ1) is induced by the interchange of vertices ρ(i) and
ρ(bestloc). The same analysis is done for vertex ρ( j) resulting in solution ρ2 with cost c(ρ2).
The assignment that induces the solution with the lowest cost among ρ1 and ρ2 is assumed as the
exchange move.

5.2 Two Terminal Vertexes are Set Free – VDS2

In this second variant, denoted as VDS2, both terminal vertices of edge e f are re-assigned to
other locations. The strategy adopted in VDS1 to define the new location for the free vertex, tends
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to be time consuming in this case, once two vertices need to be re-located. Thus, in the VDS2
versions, the choice of the distance edge e′d to which e f is assigned has a random element. Two
versions of VDS2 are investigated. These variants do not use the list of forbidden movements.
This occurs because the probability of undoing previous movements is very small due to the
randomness on the choice of the new assignments.

The first version, named VDS2A, in order to define e′d , one location is selected at random. Let us
consider that edge ed has no facilities assigned to its terminal vertices, since the current facilities
will be removed. One facility, fac1, is chosen at random with equal probability to be assigned to
one terminal vertex of ed . Let i and j be the terminal vertices of edge ed and suppose that fac1

is assigned to location i . If j is the k-th element in the list of vertex i , regarding the distances
between i and the other locations, then the candidate facilities to be assigned to the second
free location are close to the k-th element of the corresponding list of fac1. In the algorithm
implemented in this paper, the facilities in positions k ± a in the list of fac1 are the candidates to
be the facility that will be assigned to location j . In this version, one of these facilities is selected
at random with uniform probability. Preliminary tests evaluated values 0, 1 and 2 for variable a.
The experiments showed that the results with a = 0 were inferior to both a = 1 and a = 2. A
small advantage was observed for a = 2 with no significant difference in processing time. Once
the two new facilities are chosen, the algorithm determines the best assignment among the two
pair of facilities, the ones that left the locations and the new ones.

In the second VDS2 version, VDS2R, e′d is selected at random among the possible distance
edges.

The absence of the best improvement criterion employed in VDS1 reflects on the quality of solu-
tions, but a gain regarding the processing times is obtained. Like in the IT-EC, to guarantee that
the solution produced by each algorithm is a local optimum for the 2-exchange neighborhood, a
final 2-exchange local search step was included at the end of each ILS iteration.

Tables 5 and 6 present the results of the computational experiments regarding symmetric and
asymmetric QAPLIB instances for the iterated local search versions of the three proposed VDS
algorithms. The Kruskal-Wallis’ statistical test with significance level 0.05 was applied to de-
termine if differences exist between the results presented by the three new algorithms.

The results showed that significant favorable results occur for IT-VDS1 against the other two
algorithms on all Bur26 instances. This is also the case for instances Chr20b, Esc128, Sko100a,
Tai20a, Tai30a, Tai80a and Tai100b concerning the IT-VDS2A and for instances Lipa80a, Tai40a
and Tho150 regarding the IT-VDS2R. The algorithm IT-VDS2A presented significant better re-
sults than the algorithm IT-VDS2R on all Bur26 instances and on instances Esc32a, Tai40a and
Lipa60a. Better results than the IT-VDS1 were presented by the IT-VDS2A on instances Nug21,
Nug24 and Tai100a. Superior results for IT-VDS2R against IT-VDS1 were pointed out on in-
stances Nug24, Sko100d and Lipa30a, and against IT-VDS2A on instances Chr20b, Esc128,
Scr20, Sko56, Sko72, Sko100a, Sko100d, Ste36a, Tai80a, Tho40 and Lipa40b.
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Table 5 – Edge assignment based VDS for QAPLIB symmetric instances.

Instance BKS
IT-VDS1 IT-VDS2A IT-VDS2R

T(s)
Av %best Av %best Av %best

Chr20a 2192 3.38 28 2.62 8 3.05 16 3

Chr20b 2298 5.52 8 6.44 0 5.36 0 3

Chr20c 14142 1.76 68 2.43 76 1.49 76 3

Chr22a 6156 1.29 8 1.06 32 1.17 20 4

Chr22b 6194 1.72 0 1.82 4 1.60 20 4

Chr25a 3796 3.73 28 5.81 32 5.37 12 6

Esc32a-h — 0.85 83.43 1.32 82.29 1.16 83.43 5

Esc64a 116 0 100 0.21 92 0 100 15

Esc128 64 0.88 76 4.25 32 2.63 60 20

Had20 6922 0 100 0 100 0 100 3

Kra30a 88900 1.18 20 1.28 28 1.10 24 10

Kra30b 91420 0.13 32 0.21 24 0.21 24 10

Nug20 2570 0 100 0 100 0 100 3

Nug21 2438 0.09 60 0.02 88 0.03 84 3

Nug22 3596 0 100 0 100 0 100 4

Nug24 3488 0.13 68 0.04 92 0.01 96 5

Nug25 3744 0.01 80 0.02 76 0.02 80 6

Nug27 5234 0 100 0 100 0 100 7

Nug28 5166 0.17 48 0.26 48 0.22 52 8

Nug30 6124 0.20 20 0.28 8 0.13 40 10

Rou20 725522 0.22 4 0.20 4 0.20 16 3

Scr20 110030 0.05 88 0.14 72 0.01 96 3

Sko42 15812 0.24 20 0.37 4 0.27 4 30

Sko49 23386 0.41 0 0.37 0 0.40 0 45

Sko56 34458 0.48 0 0.56 0 0.42 0 71

Sko64 48498 0.5 0 0.47 0 0.49 0 103

Sko72 66256 0.49 0 0.56 0 0.51 0 152

Sko81 90998 0.47 0 0.47 0 0.44 0 219

Sko90 115534 0.61 0 0.58 0 0.55 0 300

Sko100a-f — 0.54 0 0.58 0 0.55 0 415

Ste36a 9526 0.56 12 0.86 8 0.52 20 18

Ste36b 15852 0.01 96 0.11 88 0.01 96 18

Ste36c 8239110 0.22 12 0.31 32 0.32 12 18

Tai20a 703482 0.72 2 0.52 3 0.60 3 3

Tai25a 1167256 1.29 1 1.30 0 1.47 0 6

Tai30a 1818146 1.52 0 1.79 0 1.55 0 10

Tai35a 2422002 1.76 0 1.90 0 1.73 0 20

Tai40a 3139370 2.22 0 2.45 0 2.73 0 25

Tai50a 4938796 2.85 0 2.97 0 3.06 0 50
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Table 5 (continuation) – Edge assignment based VDS for QAPLIB symmetric instances.

Instance BKS
IT-VDS1 IT-VDS2A IT-VDS2R

T(s)
Av %best Av %best Av %best

Tai60a 7205962 2.95 0 3.05 0 3.10 0 89

Tai80a 13511780 2.48 0 2.95 0 2.89 0 223

Tai100a 21052466 2.77 0 2.69 0 2.73 0 1000

Tho30 149936 0.21 40 0.24 28 0.27 32 10

Tho40 240516 0.65 0 0.62 0 0.45 0 25

Tho150 8133398 0.66 0 0.77 0 0.75 0 1000

Wil50 48816 0.12 4 0.11 0 0.09 0 120

Wil100 273038 0.26 0 0.25 0 0.25 0 1000

Table 6 – Edge assignment based VDS for QAPLIB asymmetric instances.

Instance BKS
IT-VDS1 IT-VDS2A IT-VDS2R

T(s)
Av %best Av %best Av %best

Bur26a-h —– 0.01 95.5 0.05 0.13 0.30 0 15

Lipa20a 3683 0 100 0 100 0 100 3

Lipa30a 13178 0.79 44 0.54 64 0.24 84 4

Lipa40a 31538 0.83 28 0.94 16 0.73 36 25

Lipa50a 62093 1.03 0 0.9 12 0.92 8 50

Lipa60a 107218 0.91 0 0.89 0 0.92 0 89

Lipa70a 169755 0.81 0 0.81 0 0.80 0 150

Lipa80a 253195 0.72 0 0.73 0 0.73 0 225

Lipa90a 360630 0.68 0 0.67 0 0.67 0 300

Lipa20b 27076 0 100 0 100 0 100 3

Lipa30b 151426 0.59 96 0.62 96 0 100 4

Lipa40b 476581 2.04 88 3.60 76 0 100 5

Lipa50b 1210244 7.71 56 8.82 48 5.64 68 10

Lipa60b 2520135 16.84 12 16.11 16 15.32 20 17

Lipa70b 4603200 15.94 20 15.96 20 16.75 16 30

Lipa80b 7763962 20.06 4 20.08 4 19.27 8 45

Lipa90b 12490441 21.23 0 21.31 0 18.73 12 60

Tai20b 122455319 0 100 0 100 0 100 3

Tai25b 344355646 0 100 0 100 0 100 15

Tai30b 637117113 0 100 0 100 0 100 25

Tai35b 283315445 0.07 72 0.09 52 0.10 56 39

Tai40b 637250948 0.24 88 0.15 84 0 100 59

Tai50b 458821517 0.22 36 0.23 16 0.21 28 116

Tai60b 608215054 0.72 0 0.72 4 0.48 4 211

Tai80b 818415043 0.75 0 0.79 0 0.71 0 500

Tai100b 1185996137 0.29 0 0.54 0 0.35 0 1000

Tai150b 498896643 1.42 0 1.43 0 1.52 0 1000
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The test for proportions comparison with significance level 0.05 shows that, except for the pair
IT-VDS1 and IT-VDS2R, significant differences do exist among the other pairs of algorithms.
Considering the averages presented in Tables 1 and 5, that test also shows that the IT-LPR
presents significant worse results than the three proposed VDS algorithms in the symmetric
QAPLIB instances. IT-VDS2A is outperformed by IT-VDS1, IT-VDS2R and IT-EC. The algo-
rithms ITVDS1 and ITVDS2R present better results than the IT-EC. The algorithm IT-VDS1
shows a particular good performance on instances Taixxa where the algorithm presents the best
results on six of the nine instances. The algorithms IT-VDS2R and IT-VDS2A present 22 and
13 best average results and 13 and 11 best percentages of the best known solution, respectively.
Considering the 25 independent executions of each algorithm for each instance of the experi-
ment, the algorithm ITVDS2R obtains, in average, 31.12 % of the best known solutions, fol-
lowed by IT-VDS1, 29.92% and IT-VDS2A, 28.90%. These three results are better than the ones
presented by algorithms IT-LPR and IT-EC.

Considering the average values presented in Table 6, the test for proportions comparison with
significance level 0.05 shows that, the algorithm IT-VDS2R presents significantly better results
than the other VDS algorithms on the set of asymmetric instances. The test also points out the
best performance of IT-VDS2R over IT-LPR and IT-EC and that the latter outperforms the IT-
VDS1. A significant difference is also found in favor of IT-VDS1 against IT-VDS2A. With the
specified significance level, it is not possible to point out differences between the other results.

The results concerning the number of best known solutions of the asymmetric instances obtained
by the proposed algorithms show that, in average, the algorithm ITVDS2R obtains the best per-
formance with 42.22% of the best known solutions, followed by IT-VDS1 with 42.20%, IT-EC
with 41.98%, IT-VDS2A with 38.77% and IT-LPR with 25.19%.

5.3 Comparison of the proposed VDS heuristics with an exact algorithm

To illustrate the difference between the results obtained with exact algorithms and those obtained
with the methods proposed in this paper, a comparison is presented in Table 7. The comparison
is made with an exact algorithm recently proposed by Zhang et al. (2010) to solve sparse QAP
instances. Columns Min present the percent difference from the optimal solution and the best
solution found by the corresponding algorithm. Column T (s) of the exact algorithm shows the
processing time to obtain the optimal solution or the maximum processing time given as stop
criterion for the algorithm. An asterisk means that the exact algorithm reached the maximum
processing time without solving the corresponding instance. The exact algorithm was executed
by its authors on a laptop Intel Pentium M-1.70GHz processor, 1.23Gb RAM. Columns T (s) of
the VDS algorithms show the average processing time to find the optimal solution. An asterisk
in those columns means that the corresponding heuristic algorithm reached the maximum pro-
cessing time without finding the optimal solution. Values 0.00 in columns T (s) mean that the
average processing time was less than 0.01s. Columns %best show the percentage of best known
solutions obtained in the 25 independent executions.
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Table 7 – Comparison with the results of an exact algorithm.

Instance
Exact Algorithm IT-VDS1 IT-VDS2A IT-VDS2R

Min T(s) Min %best T(s) Min %best T(s) Min %best T(s)

Chr20a 0 28.27 0 28 0.88 0 8 1.04 0 16 1.04

Chr20b 0 56.00 0 8 1.00 2.35 0 *3.00 2.35 0 *3.00

Chr20c 0 313.60 0 68 0.36 0 76 0.68 0 76 0.33

Chr22a 0 21.40 0 8 2.16 0 32 1.96 0 20 1.83

Chr22b 0 15.10 0 4 1.80 0 4 1.88 0 20 2.13

Chr25a 0 274.00 0 28 3.32 0 32 3.13 0 12 4.00

Esc32a 49.23 *14400.00 1.54 0 *5.00 1.54 0 *5.00 1.54 0 *5.00

Esc32b 78.57 *14400.00 0 100 0.84 0 76 2.16 0 84 1.84

Esc32c 11.53 *14400.00 0 100 0.00 0 100 0.00 0 100 0.00

Esc32d 18.00 *14400.00 0 100 0.00 0 100 0.64 0 100 0.72

Esc32e 0 5.90 0 100 0.00 0 100 0.00 0 100 0.00

Esc32g 0 100.20 0 100 0.00 0 100 0.00 0 100 0.00

Esc32h 0 14400.00 0 100 0.00 0 100 0.84 0 100 0.56

Scr20 0.59 *14400.00 0 88 0.40 0 72 0.52 0 96 0.83

Kra30a 20.75 *14400.00 0 20 2.56 0 28 2.72 0 24 4.04

Kra30b 23.23 *14400.00 0 32 4.40 0 24 4.32 0 24 6.00

Kra32 34.71 *14400.00 0 44 4.96 0 44 6.40 0 28 5.04

The two ITVDS2 algorithms did not find the optimal solution of the Chr20b instance and no
algorithm found the optimal solution of Esc32a instance. The results produced by the exact
algorithm on Chr instances are very effective, as shown in Table 7. However on the remain-
ing instances, the heuristic algorithms are always preferable to the exact algorithm. Even on
the Esc32e instance, where the exact algorithm takes only 5.9s to solve it, the heuristic algo-
rithms take, in average, less than 0.01s to find the optimal solution and find the optimum in all
executions. The exact algorithm cannot find the optimal solution of eight instances. From those
instances, the heuristic algorithm misses the optimum only on instance Esc32a, yet the differ-
ence to the optimal value is much smaller as well as the processing time. Another point to
consider is that the heuristic algorithms find optimal solutions on instances larger than those
considered by the exact algorithms currently proposed for the QAP.

5.4 Testing with Drexx instances

Instances with n between 15 and 72 were tested. Table 8 shows averages and percentage of
optimal solutions obtained by each algorithm. The maximum processing times in seconds are
presented in column T (s).

As shown in Table 8, IT-LPR behaves poorly on this set of instances presenting results signif-
icantly inferior to the other algorithms. The Kruskal-Wallis’ test performed on the results of
the other four algorithms show that, with significance level 0.05, no significant differences were
found between their performances on instances Dre from 15 to 30. Significant differences in
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Table 8 – Results for Drexx instances.

Id BKS

IT-EC IT-LPR IT-VDS1 IT-VDS2A IT-VDS2R

T(s)
Av

%
Av

%
Av

%
Av

%
Av

%

best best best best best

Dre15 306 0 100 381.83 0 0 100 0 100 0 100 15

Dre18 332 0 100 414.65 0 0 100 0 100 0 100 18

Dre21 356 8.18 68 428.54 0 4.36 80 5.39 76 4.97 76 21

Dre24 396 23.23 16 443.76 0 21.41 16 20.60 24 24.67 4 24

Dre28 476 26.74 12 450.72 0 30.24 0 26.32 16 29.03 8 28

Dre30 508 40.39 0 448.71 0 38.25 0 44.83 0 45.98 0 30

Dre42 764 62.39 0 471.19 0 67.33 0 67.52 0 69.46 0 42

Dre56 1086 82.42 0 470.85 0 89.22 0 88.53 0 90.12 0 56

Dre72 1452 92.70 0 474.42 0 98.37 0 99.11 0 99.24 0 152

favor of IT-EC were found on instances Dre42, 56 and 72 in comparison to the other three al-
gorithms. The test for proportions comparison confirms the best performance of IT-EC on Dre
instances in comparison to the IT-VDS2R. Evidences of significant differences are not pointed
out by the proportions comparison test in pairwise comparisons of the other algorithms.

5.5 Testing with Taixxe instances

Instances with n = 27, 45 and 75 are tested. The maximum processing times given to the
algorithms are 10 seconds (n = 27), 30 seconds (n = 45) and 200 seconds (n = 75). Tables 9,
10 and 11 show the results for classes n = 27, 45 and 75, respectively. The first column contains
the identification of each test case. The second column shows the optimum or the best known
solution of each instance. Columns Md show the percent deviation of the median from the
optimum or best known solution. Columns %best show the percentage of optimal or best known
solutions found by each algorithm.

With significance level 0.05, the Kruskal-Wallis’ test pointed out significant differences on the
performance of the algorithms for all instances of class 27, where the inferior performance of
IT-LPR was identified. Due to this fact, other comparisons were carried on the results obtained
only with the other four algorithms. The success for this set of instances is established on the
number of best solutions found by each algorithm. With significance level 0.05, the test for
proportion comparison showed that IT-EC and IT-VDS1 are outperformed by IT-VDS2R. In
general, IT-VDS1 is outperformed by IT-EC and IT-VDS2A, although the hypothesis test does
not point out significant differences. IT-VDS2A and IT-EC performs similarly.

Significant differences between the results presented by the IT-LPR and the other algorithms in
class Tai45e instances were also pointed out by the Kruskal-Wallis’ test. The Mann-Whitney
test with significance level 0.05 indicated that better results were found by algorithm IT-VDS2A
against IT-EC on instances 7 and 11, by algorithm IT-EC against IT-VDS2A on instance 9, by
IT-VDS1 against IT-EC on instance 9, and by algorithm IT-VDS2R against IT-VDS2A on in-
stances 6 and 14. In average, the best performance regarding the number of solutions with cost
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Table 9 – Results for Tai27e instances.

Id BKS
IT-EC IT-LPR IT-VDS1 IT-VDS2A IT-VDS2R

Md %best Md %best Md %best Md %best Md %best

1 2558 0 96 1.17 32 0 84 0 84 0 84

2 2850 0 88 9.02 0 0 72 0 88 0 76

3 3258 0 100 4.79 4 0 88 0 100 0 100

4 2822 0 100 3.54 16 0 100 0 100 0 100

5 3074 0 84 7.61 4 0 92 0 84 0 100

6 2814 0 100 3.62 48 0 96 0 92 0 88

7 3428 0 84 1.98 32 0 88 0 88 0 84

8 2430 0 100 5.69 20 0 96 0 100 0 100

9 2902 0 80 5.31 12 0 68 0 76 0 88

10 2994 0 100 7.82 12 0 96 0 92 0 100

11 2906 0 80 1.38 48 0 72 0 72 0 80

12 3070 0 80 9.45 8 0 88 0 92 0 84

13 2966 0 68 0.27 44 0 76 0 80 0 88

14 3568 0 88 4.34 16 0 96 0 88 0 96

15 2628 0 76 9.09 8 0 80 0 80 0 80

16 3124 0 100 0 60 0 100 0 96 0 100

17 3840 0 80 1.95 20 0 96 0 96 0 92

18 2758 0 76 3.63 28 0 68 0 96 0 68

19 2514 0 80 7.92 0 0 60 0 76 0 88

20 2638 0 60 3.94 24 0 68 0 68 0 80

equals to BKS is obtained by the IT-VDS1, followed by the IT-VDS2A, IT-EC and IT-VDS2R as
shown in Table 10. The test for proportions comparison indicated that IT-VDS1 performs better
than IT-VDS2R in the Tai45e instances with confidence level 93.38%. The test did not detect
significant differences among the performances of the remaining algorithms.

The Kruskal-Wallis’ test pointed out significant differences between the results presented by
at least one algorithm on class Tai75e instances. The Mann-Whitney U-test showed that the
IT-LPR performed worse than the IT-VDS1 and IT-VDS2R on 13 instances, the IT-EC on 14
instances and the IT-VDS2A on 17 instances. The test for proportions comparison considering
the medians also showed significant differences in favor of IT-VDS1, IT-VDS2A, IT-VDS2R and
IT-EC against IT-LPR. At significance level 0.05, the test for proportions comparison showed
that IT-EC, IT-VDS2R and IT-VDS2A are outperformed by IT-VDS1. The test does not indicate
significant differences among the other three algorithms.

In general, it was observed that the relative performance of IT-VDS1 improves for growing sizes
of Taixxe instances, being better than IT-LPR on all sets and better than the IT-EC on the set n =
75. Moreover, the relative performance of the IT-VDS2R worsens as the sizes of the instances
grow. This fact shows that the systematic search produces better results on these classes for
increasing sizes of instances. All VDS algorithms performed better than the IT-LPR.
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Table 10 – Results for Tai45e instances.

Id BKS
IT-EC IT-LPR IT-VDS1 IT-VDS2A IT-VDS2R

Md %best Md %best Md %best Md %best Md %best

1 6412 7.29 44 10.01 0 0 52 0 52 0 52

2 5734 0 76 14.82 0 0 64 0 68 0 60

3 7438 0.40 48 15.86 0 8.71 32 1.64 36 8.71 36

4 6698 0 52 12.57 0 7.61 44 6.99 32 7.61 28

5 7274 8.33 28 15.04 0 8.33 40 0 32 8.33 52

6 6612 1.75 48 20.75 0 7.56 40 7.56 52 0 28

7 7526 3.96 40 7.28 4 0 60 0 60 0 72

8 6554 0 60 13.7 0 0 56 5.98 32 5.98 44

9 6648 4.51 36 15.4 0 0 68 0 44 4.51 56

10 8286 0 76 8.35 8 0 60 1.71 60 0 44

11 6510 5.87 32 14.1 0 0 52 0 56 0 64

12 7510 0 64 13.36 8 0.27 48 0 52 0 52

13 6120 7.91 48 11.99 4 8.50 44 4.34 44 1.41 40

14 6854 0 72 18.76 4 0 72 0.09 84 0 48

15 7394 4.00 36 14.66 0 4.00 44 4.00 40 4.00 40

16 6520 6.9 44 12.02 4 0 56 0 52 0 60

17 8806 6.45 36 13.83 0 0 56 4.36 64 0 40

18 6906 0 56 15.32 8 0 56 0 48 0.32 64

19 7170 0 52 8.01 4 0 64 0 60 0 60

20 6510 5.1 40 16.84 0 0 60 5.1 36 5.1 24

6 CONCLUDING REMARKS

This paper presented an extensive experimental investigation that compared local search and
variable depth search algorithms for the Quadratic Assignment Problem. Moreover, variable
depth search algorithms that use information concerning the cost of the edges assignments were
presented. This study contributes to a better understanding of the potential of these techniques,
which are widely used as intensification tools in more sophisticated heuristic methods, such as
evolutionary algorithms. The experiments were performed with 161 benchmark QAP instances
belonging to classes designed with different structures. Nonparametric statistical tests were
applied to the data generated by the computational experiments to support conclusion about the
performance of the algorithms.

Existing VDS-like algorithms for the QAP (Li et al., 1994; Rego et al., 2006) were implemented
under an iterated local search framework and submitted to a computational experiment more
extensive than the ones reported in their original papers. These algorithms were compared with
recent approaches that use the classical 2-exchange neighborhood (Stützle, 2006) and k-exchange
neighborhoods Ahuja et al. (2007). They were also compared to the VDS algorithms proposed
in this paper.
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Table 11 – Results for Tai75e instances.

Id BKS
IT-EC IT-LPR IT-VDS1 IT-VDS2A IT-VDS2R

Md %best Md %best Md %best Md %best Md %best

1 14488 274.76 0 24.67 0 274.23 0 12.00 0 19.16 4

2 14444 285.11 0 291.86 0 27.25 0 12.73 0 15.58 0

3 14154 265.11 0 274.4 0 18.68 8 265.21 4 13.34 0

4 13694 280.2 4 287.72 0 280.04 0 62.39 0 19.18 4

5 12884 16.80 0 27.86 0 16.38 8 15.34 0 274.39 0

6 12554 24.91 0 31.29 0 15.62 4 27.33 0 21.48 0

7 13782 310.17 0 317.28 0 9.11 0 11.8 0 10.85 0

8 13948 286.81 0 292.63 0 12.46 0 284.01 0 13.64 0

9 12650 7.18 4 24.52 0 17.14 4 18.78 0 17.74 0

10 14192 11.95 0 289.18 0 281.47 0 14.40 0 16.69 0

11 15250 17.15 0 21.73 0 282.20 0 11.99 8 17.65 0

12 12760 14.12 0 296.08 0 15.09 0 16.24 0 16.69 0

13 13024 268.20 4 24.55 0 17.06 4 14.00 0 268.49 0

14 12604 16.41 4 290.81 0 19.95 0 279.21 0 279.21 0

15 14294 13.67 0 51.14 0 14.57 0 17.76 0 16.09 4

16 14204 281.32 0 24.25 0 282.13 4 10.46 4 283.62 0

17 13210 21.89 8 23.56 0 266.19 8 270.84 0 15.28 4

18 13500 289.59 0 23.69 0 289.66 0 16.25 0 18.53 0

19 12060 15.39 0 27.23 0 13.17 4 22.32 0 24.28 4

20 15260 24.67 0 26.54 0 14.34 4 16.22 4 46.16 4

The experiments showed that, given the same computational effort, variable depth search is al-
ways preferable to pure local search approaches. The test showed that both previously proposed
variable depth search methods outperformed LSMC (Stützle, 2006) and VLSN (Ahuja et al.,
2007). Among these four methods, the best performance was obtained by the iterated local
search version of the algorithm presented by Rego et al. (2006).

The paper introduced VDS like algorithms that consider the cost of edge assignments as a cri-
terion to decide which elements are exchanged while searching the space of solutions of QAP
instances. The experiments showed that the proposed criterion was beneficial for several classes
of benchmark instances, indicating that the approaches introduced here are preferable to the
existing ones on those classes. Statistical tests showed that the proposed algorithms are al-
ways preferable to the approach presented by Li et al. (1994). Those tests also confirmed that
the IT-VDS1 version is better than an ILS version of the algorithm presented by Rego et al.
(2006) on QAPLIB classes Ste, Chr, Taixxa, Nug and Tai75e being outperformed by the latter on
Lipaxxa class.

Future works will investigate statistical indicators in the choice of edges to be exchanged in
variable depth search algorithms.
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abordagens do problema quadrático de alocação. Pesquisa Operacional, 24(1): 73–110.
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