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Abstract 
 
A Bayesian binary regression model is developed to predict death of patients after acute myocardial 
infarction (AMI). Markov Chain Monte Carlo (MCMC) methods are used to make inference and to 
evaluate Bayesian binary regression models. A model building strategy based on Bayes factor is 
proposed and aspects of model validation are extensively discussed in the paper, including the posterior 
distribution for the c-index and the analysis of residuals. Risk assessment, based on variables easily 
available within minutes of the patients’ arrival at the hospital, is very important to decide the course of 
the treatment. The identified model reveals itself strongly reliable and accurate, with a rate of correct 
classification of 88% and a concordance index of 83%. 
 
Keywords:  mortality probability prediction; model selection in binary regression; model 
diagnostic and residual analysis. 
 
 

Resumo 
 
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes 
acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) 
são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no 
uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, 
incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A 
determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao 
hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo 
identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e 
um índice de concordância de 83%. 
 
Palavras-chave:  predição de probabilidade de óbito; seleção de modelos em regressão 
binária; diagnósticos e análise de resíduos. 
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1. Introduction 

The main objectives of the paper are to show how easy it is to handle Bayesian analysis of 
the binary regression model using Gibbs sampler and to illustrate some aspects of model 
building, diagnostic checking and residuals analysis. The new developments of stochastic 
simulation almost eliminate the difficulties associated to the Bayesian analysis of non-linear 
models, including binary regression models. 

A Bayesian model building strategy parallels to Hosmer & Lemeshow (1989) is proposed. 
Bayes factor is used for the selection of variables or to discriminate among competitive 
models. Numerical aspects of the evaluation of the predictive distribution are also 
considered. 

The main diagnosis measures presented in this paper are the c-index and the models rate of 
correct classification. Their full posterior distributions are easily assessed via MCMC. The 
c-index represents the proportion of times in which the probability of in-hospital death is 
smaller in the survivors group than in the deaths group. The predictive rate of correct 
classification is the proportion of patients correctly allocated to the death and survival 
groups. Jointly those measures allow to evaluate the predictive ability of the model. The 
Bayesian residual analysis is based on an approach proposed by Albert & Chib (1995), which 
consists in obtaining the posterior distribution of the parametric residual, represented by the 
difference between the individual’s answer for the variable of interest and his estimated 
probability. 

Several studies have assessed the factors related to mortality prognosis after acute 
myocardial infarction. The main problem the physician faces is to predict, in an emergency 
context, the death risk for a patient after arriving at the hospital having suffered from an 
acute myocardial infarction. The values of some variables easily available upon the patient’s 
admission are recorded together with clinical characteristics in order to precisely evaluate the 
in-hospital death probability. The assessment of such risk is very important for the decisions 
in the course of treatment, the alternative therapies and the use of clinical resources. 
Mortality predictors can allow physicians to be more efficient in assessing risk-benefit when 
faced with therapeutic decisions. 

In a prospective study involving 546 consecutive outpatients after acute myocardial 
infarction, variables related with mortality were observed and provide the data to be analyzed 
throughout this paper illustrating some methodological issues in binary regression. 

This paper is organized as follows. Bayesian binary regression model is summarized in the 
next section, including some aspects of Gibbs sampling. Model building strategy is 
introduced in Section 3. The data set and the main findings are carefully described in Section 
4. The diagnostic checking and a residual analysis are presented in Section 5 and the paper 
finalizes with some concluding remarks in Section 6. 

 

2. The Bayesian Binary Regression Model 

The binary regression model (Collet, 1994), is used to explain the probability of a binary 
response variable as function of some covariates. The model is specified by: 

| ( ),i i iy Ber=π π             t
iPr( 1) ( ),i iy F= = = xπ β  
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where 1iy =  if the response of interest is observed for the thi  individual and zero otherwise, 

iπ  is the probability that the thi  individual presents the response under investigation, β is the 

K vector of unknown parameters, 1( ,..., )t
i i iKx x=x  the K vector of known covariates 

associated to the thi  individual and F any transformation assuming values in (0, 1). For 
instance, the function F can be any arbitrary cumulative distribution function. The most 
useful specifications of F includes the logistic, the normal and the extreme value, that is: 

t t
i i

t t
i i

t
i

exp( ) /[1 exp( ], ( )
( ) ( ), ( )

exp[ exp( )].

logistic
F probit

(complementary log - log)

 +
= Φ
 −

x x

x x

x

β β)

β β

1− β

 

The link function defines the linear predictor as: 

 1
1 1( ) ...i i i K iKF x x−= = + +η π β β . (1) 

For each of the three models stated above the linear predictor is respectively: 
log( /(1 ))i i−π π , ( )iΦ π  and log( log(1 ))i− −π . The model choice depends on the relation 
between the response variable and the covariates. Some practical recommendations about the 
model choice and numerical examples can be found in Collet (1994) and Dobson (2002). 

The likelihood function for data t= ( )1 ny ,..., yy  is: 

 (1 )t t
i i

1
( | ) [ ( )] [1 ( )] .i i

n
y y

i
p F Fy β −

=

= −∏ x xβ β  (2) 

To progress with the Bayesian analysis it is necessary to provide a joint prior distribution 
over the parameter space. This is very hard to do as far as the relationship between the data 
and the parameters is very complex. The easiest way to circumvent this difficult is to propose 
a informative prior, but with small precision, avoiding any complaint about the specification 
of subjective beliefs (O’Hagan et al., 1991). In this paper, informative independent normal 
priors, with extremely small precisions, were set to the parameters. Therefore, 

 (1 )t t
i i

1
( ) ( ) [ ( )] [1 ( )] .i i

n
y y

i
p p F Fyβ β −

=

| ∝ −∏ x xβ β  (3) 

Clearly (3) is a complex function of the parameters and numerical methods are needed in 
order to obtain the marginal posterior distribution for each of the model parameters. 
Approximations can be obtained via Laplace methods (Tierney, Kass & Kadane, 1989) or 
numerical integration (Naylor & Smith, 1982). Simulation based methods have proliferated 
in the last ten years or so yielding two popular approaches known as importance sampling 
(Zellner & Rossi, 1984) and Gibbs sampling (Dellaportas & Smith, 1993, and Albert & Chib, 
1993). Resampling techniques, applied to logistic regression for randomized response data, 
were alternatively proposed by Tachibana & Migon (1995). 

The Gibbs sampling methodology (Gilks, Richardson & Spiegelhalter, 1996), very used in 
the literature in the past ten years, will be applied to this paper. Roughly speaking, to obtain a 
sample for β  we must generate from the complete conditional distributions. Since the 
densities involved are log-concave we can use an exact, relatively efficient procedure, 
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denominated adaptive rejection method, (Gilks & Wild, 1992) to obtain , 1,...,r
k k K=β  and 

1,...,r R= , where R  is the Monte Carlo sample size. The posterior distribution of any 
statistic of interest, function of the parameters, for instance the probability of death, the 
concordance probability (c-index) or the rate of correct classification, is easily obtained from 
the sample drawn via the MCMC methodology. 

The Gibbs sampler was implemented easily through the software BUGS – Bayesian 
Inference Using Gibbs Sampler (Spiegelhalter et al., 1995). The number of iterations 
demanded for the indication of convergence of the sampler was defined through the 
diagnostics of Raftery & Lewis (1992). The diagnostics of Geweke (1992) and an analysis of 
the behavior of the chains along the iterations were also used for this end. Considering these 
criteria, the results presented in the next sections are based on a long run, with the 10 initial 
iterations discarded to allow the burn-in and the next 6000 stored for the sample. 

 

3. Model Building 

Strategy for model building usually involves seeking the most parsimonious model that still 
is able to explain the data. Overfitting a model could produce numerically unstable estimates 
characterized by large estimated standard errors. In binary regression, model building 
involves the selection among non-nested models (the link function), besides the choice of the 
best subset of variables. Furthermore, in a full Bayesian approach, we should elicit prior 
information on the regression coefficients. The easiest way to do that is, firstly, to elicit prior 
information about the in-hospital mortality and later on to derive a prior distribution on the 
regression coefficients, as proposed by Bedrick, Christensen & Johnson (1997). This 
approach assures that the prior effect is in some sense invariant to the link function selection. 

Although the above described strategy is completely general and can be applied to binary 
regression with any chosen link function, we will illustrate in this paper only a variable 
selection strategy in the case of the logit link function. The main reason why logistic 
regression has proven to be such a powerful analytic tool for medical research is the 
interpretability of the regression coefficients as log odds. 

Selection procedures like stepwise, best subset, etc., have been criticized in the literature 
because they can yield a medical implausible model and can select irrelevant variables. In this 
paper, the Hosmer & Lemeshow (1989) strategy is applied after slight modifications giving a 
Bayesian flavor to the previous variable selection proposal. The main steps involved are: 

i) begin with univariate analysis to select the main risk factors; 
ii) fit a multivariate logistic regression to the covariates previously selected; 
iii) fit new multivariate models excluding in each step, one at a time, the covariates with high 

posterior density interval (HDI) including zero; 
iv) test, one at a time, the variables excluded in step (i) as well as other relevant clinical 

covariates using the same criterion as above; 
v) evaluate the need to add non-linear terms and interactions; 
vi) compare competitive multivariate models using the Bayes factor. 

It is worth noting that relevant clinical covariates could be included even with HDI covering 
zero. 
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Bayes factor for comparing models lM  e SM  are numbers ,l SB  such that 

 ,( | ) / ( | ) ( ) / ( )l S l S l Sp M p M B p M P My y = , 

where ( )lp M  and ( )Sp M  indicate the priori odds for each model. The Bayes factor is a 
multiplier that changes the priori odds for the models into the posterior odds. Applying the 
theorem of Bayes it can be shown that 

, ( | ) / ( | )l S l SB p M p My y= , 

where ( | )p My  is the marginal probability of obtaining y  from model M . Computing 
( | )p My  for a model M involves integrating the corresponding likelihood function with 

respect to the induced prior on β  for that model. 

 

4. The Data Set and the Main Findings 

A sample of 546 outpatients with 73 deaths were consecutively observed in the admission of 
Procardiaco Hospital at Rio de Janeiro, Brazil, from January 91 up to December 95. The data 
set consists of demographic and medical variables observed at the admission of patients after 
AMI. The primary end point of the trial was in-hospital death from any cause. Additional 
details about the protocol guiding this experiment can be found in Bassan et al. (1996). 

The models developed in this paper are based on a set of eleven variables previously selected 
from the main study. These are the factors usually recommended in the medical literature to 
predict the in-hospital mortality (Greenland et al., 1991). Most of these variables can be 
evaluated as soon as the patient arrives at the hospital. The variable AGE is continuously 
measured by years. The others, are mainly dichotomous variables: SEX coded as 1 for male 
and 0 for female, HAS, IAMP, DIAB and SMOKE set as 1 meaning the presence of history 
of arterial hypertension, previous myocardial infarction, diabetes and the habit of smoking, 
respectively, and 0 meaning absence. From the admission electromagnetic exam the AMI 
was classified as non-inferior, inferior or lateral and described by the following zero-one 
variables: PAREA – non-inferior, PAREI – inferior and PAREL – lateral. An alternative way 
is to classify the AMI by the absence of the Q-waves (PARES). Additionally, the congestive 
failure scaling known as class Killip on admission (KILLIP), an ordinal measure of the 
intensity of the infarction, is measured in a scale varying from 1 to 4. 

The main findings obtained following the proposed model building strategy were: 

i) the covariates AGE, SEX, IAMP, PAREI, SMOKE e KILLIP were firstly selected to 
explain the in-hospital death, based on an univariate analysis; 

ii) the multivariate logistic regression model including the above covariates was fitted to the 
data ( 1M ). The 95% HDI calculated for the coefficient of the covariate PAREI contained 
the null value, indicating that it is not statistically significant to predict in-hospital 
mortality, in the presence of the other mentioned variables; 

iii) a new model, excluding the covariate PAREI, was then fitted to the data ( 2M ). The 
posterior distributions of the parameters in both models were found to be similar 
confirming that the contribution of PAREI is not relevant; 
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iv) the next step involved the fit of multivariate models including, one at a time, the 
covariate excluded from the previous step, HAS, DIAB, PAREA, PAREL and PARES. 
At this stage, only the covariate HAS is statistically relevant in the presence of the others 
( 3M ); 

v) an investigation for non-linearity in the relationship involving AGE and KILLIP 
confirmed the linearity found in the fit of the model. 

Models including second, third and fourth order interactions were also analyzed. One of the 
selected models ( 4M ) includes the main effects and interactions terms like AGE x HAS, 
SEX x HAS and HAS x IAMP. The model ( 5M ) exploring third order interactions, involves 
the terms HAS x IAMP, HAS x SMOKE, IAMP x SMOKE and HAS x IAMP x SMOKE. 

The Bayes factor used to choose the best model is presented in Table 1. As suggested by 
Kass & Raftery (1995) there is a substantial (subs) evidence against model SM  (in favor of 

lM ), when 10 ,log ( ) (0.5,1.0)l SB ∈ . When 10 ,log ( ) (1.0, 2.0)l SB ∈  the evidence is called 
strong (str) and if it is bigger than 2, decisive (dec). It is easy to see that model 1M  is not 
preferred to 2M , confirming that PAREI is not an effective risk factor. On the other hand, 
the model 3M  is better than 2M  showing how significant the variable HAS is. Finally, the 
model 4M  is preferred when compared with 3M  and 5M . 

Although the coefficients of the covariates AGE and SMOKE are not statistically different 
from zero (the 95% HDI are (-0.002, 0.051) and (-1.410, 0.107), respectively for AGE and 
SMOKE) these two covariates are kept in our basic model ( 3M ) because they are clinically 
relevant. Furthermore, using the sampled values of the β ’s we evaluate the probability of 

smokeβ  being greater than or equal to 0 as 0.052, and the probability of ageβ  being less than 
or equal to 1 as 0.035. These figures clearly show that the HDI must be used with caution. 

The model selection computations were performed approximating the marginal probability 
for the harmonic mean of the likelihood with sampled parameters values of the posterior 
distribution. In agreement with Kass & Raftery (1995), this approach is very easy to 
calculate, and experience to date suggests that although it is indeed unstable, it often results 
that are accurate enough for interpretation on the logarithmic scale. Thus, given a sample 

, 1,...,r r R=β  from posterior, for model ,M  
1

1

1

1( | ) ( | )
R

r

r
p M p

R
y y β

−
−

=

 
=  
 
∑ . 

 
Table 1 – Approximate Bayes Factor for Model i Against Model j. 

Model 
(l,S) 10 ,log l SB  Evidence 

Against SM  
2, 1 0.328 null 
3, 2 0.564 subs 
4, 3 0.960 subs 
4, 5 0.999 subs 
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In Table 2, the posterior mean for the parameters of the selected model ( 4M ) obtained via 
Gibbs sampler and also the maximum likelihood estimate are presented including its 
standard deviation. There are no strong differences between the MCMC and the MLE 
estimates certainly because the sample size is large enough and the prior is informative, but 
with smaller precision. In Figure 1 the entire posterior distribution can be appreciated 
including the corresponding HDI. The Bayesian analysis presents the advantage of allowing 
the obtaining of distributions of functions of the parameters, such as the c-index and the rate 
correct classification presented in the section 5. 

The inclusion of the interaction terms made the model more powerful as can be seen in Table 1. 
It is important to emphasize that although for some covariates the null value pertains to the 
95% HDI, they are considered clinically relevant and, therefore, maintained in the model. 
 

Table 2 – Model 4M  Estimated Coefficients and Standard Deviation. 

Variable Gibbs Sampler 
Coef (se) 

MLE 
Coef (se) 

CONST -5.80  (1.46) -5.74  (1.41) 
AGE 0.05  (0.02) 0.05  (0.02) 
SEX -1.45  (0.44) -1.41  (0.43) 
HAS 2.22  (2.08) 2.45  (1.95) 
IAMP 0.19  (0.49) 0.20  (0.48) 

SMOKE -0.67  (0.40) -0.61  (0.38) 
KILLIP 1.47  (0.20) 1.42  (0.20) 

AGE x HAS -0.05  (0.03) -0.06  (0.03) 
SEX x HAS 0.63  (0.66) 0.61  (0.64) 

IAMP x HAS 1.09  (0.70) 1.05  (0.68) 
 

The odds ratio, adjusted to other factors in the model, is defined by 

1 1 1 1 1 1

1 1 1 1 1 1

exp( ... ... )
( ) exp( )

exp( ... ... )
k k k k k K K

k k
k k k k K K

x x x x
x

x x x x
− − + +

− − + +

+ + + + + +
Ψ = =

+ + + + +
β β β β β

β
β β β β

, 

where 0kx =  or 1 represents an unit variation in kx , for the continuous case, or the presence 
or absence of the factor, in the discrete case. It is mainly used in the medical literature as a 
useful measure to interpret the parameters. The posterior distributions of the odds ratios for 
the main factors in this application are presented in Figure 2 (full line) together with the 
asymptotic distributions of the maximum likelihood estimators (broken line). Although the 
posterior distributions for the odds ratios for AGE, SEX (female) and IAMP are slightly 
skewed, its mode and the high posterior density intervals are similar to the asymptotic one. 

The simultaneous effect of each of those factors and HAS can also be examined in Figure 2. 
The following comments are based on the mean value of the odds ratios and on the 95% 
probability intervals presented inside brackets: 

i) AGE is a risk factor with Ψ = 1.63 (1.12, 2.37), meaning that the risk of death increases 
63% in mean at each ten years. The width of the 95% probability interval is so large 
mainly due to the odds ratio distribution be asymmetrical and to the risk of death be 
calculated for 10 years. 
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ii) the effect of AGE decreases to Ψ = 0.97 (0.64, 1.44) in the presence of hypertension; 
iii) the mean odds ratio for female SEX is Ψ = 4.69 (1.75, 9.93) indicating that in-hospital 

mortality is 4.69 times more frequent among women. This figure reduces to 2.56 (0.87, 
6.01) in the group of hypertension women; 

iv) IAMP, in the presence of hypertension has mean odds ratio, Ψ = 4.068 (1.41, 9.50), 
while for non-hypertension patients this figure decays to 1.36 (0.45, 3.00); 

v) considering a 60-years-old patient, the odds ratio for HAS is Ψ = 0.48 (0.12, 1.35), 
providing evidence that the presence of hypertension is somewhat like a protection factor. 
The same happened with SMOKE, Ψ = 0.555 (0.230, 1.10); 

vi) the risk of death increases by a factor of 4.45 (Ψ = 4.45 (2.97, 6.56)) for each unitary 
variation on Killip. 

Those results permit to conclude that AGE, IAMP in the presence of hypertension, the 
female sex and Killip measured at admission are risk factors while the male sex and the habit 
of smoking represent protection for the in-hospital death. 

 

AGE

0.0 0.10

0

10

20

SEX

-4 -3 -2 -1 0 1

0.0

0.4

0.8

HAS

-5 0 5 10

0.0

0.10

0.20

IAMP

-2 0 1 2 3

0.0

0.4

0.8

SMOKE

-2 -1 0 1

0.0

0.4

0.8

KILLIP

0.5 1.5 2.5

0.0

1.0

2.0

AGE and HAS

-0.15 -0.05 0.05

0
5

10
15

SEX and HAS

-2 0 2 4

0.0
0.2
0.4
0.6

IAMP and HAS

-2 0 2 4

0.0

0.2

0.4

0.6

 
Figure 1 – Posterior Densities of the Model 4M  coefficients. Gibbs Sampler (full line); 

Asymptotic distribution (broken line). 
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Figure 2 – Posterior Densities of the model 4M  Odds Ratios. Gibbs Sampler (full line); 

Asymptotic distribution (broken line). 

 

5. Model Diagnostic and Residual Analysis 

Typically a fitted model must be evaluated by its predictive capacity. A well-known measure 
for this purpose is the concordance index, which will be defined in this Section. Its posterior 
distribution will be assessed from the MCMC sample. Additionally, the posterior distribution 
of the rate of correct classification based on a particular cut-off point is also presented. To 
illustrate the strength of the selected model, a comparative boxplot of the π ’s for the two 
groups: survival and non-survival is exhibited. 

These statistics are functions of the estimated probability of hospital death for each patient, 
which is, in its turn, obtained as function of the simulated β ’s via Gibbs Sampler. 

The MCMC approach straightforwardly permits the evaluation of the true posterior 
probability distribution of these statistics as soon as the chains have converged to the ergodic 
distribution. In this application we prefer to use one long run after a burn in period. All the 
results presented in this paper are based on a really large sequence of about 6000 sampled 
points, according to the comments made at the end of Section 2. 
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5.1 The c-index 

Let 1iπ  and 2jπ , 1 21,..., , 1,...,i n j n= =  be the death probabilities for the thi  non-survival 

patient (group 1) and thj  survival patient (group 2), respectively. The ‘c-index’ (Pryor, 
1993) is defined as [ | ]death survivalC P y= >π π . In order to estimate this quantity let 

1 2

1 2

1 if 
0 if 

i j
ij

i j
C

>
=  <

π π
π π

, 

where 1iπ  and 2jπ  are the sampled death probabilities for each of the two groups. The 
‘c-index’ posterior distribution can be evaluated using Gibbs sampling as: 

1 2

1 1

1 , 1,...,
n n

r r
ij

i j
C C r R

n = =

= =∑∑ , 

where 1 2n n n= +  and R  is the MCMC sample size. 

In this application the posterior mean of the ‘c-index’ was C = 0.83, with a 95% high 
posterior density interval (0.82, 0.84). These results can be better appreciated in Figure 3(a), 
where the exact posterior density obtained via MCMC can be compared with the asymptotic 
normal approximation for the distribution of a jackknife estimator. It is worth pointing out 
that the confidence interval based on jackknife is much wider than that one based on Gibbs 
sampler. The Bayesian approach considers all of the involved uncertainties and allows to 
obtain the true posterior distribution. 

The c-index is a measure of the area under the curve ROC – Receiver Operating 
Characteristic (Hanley & MacNeil, 1982), that is, it represents the relationship between the 
conditional probabilities denominated sensibility and specificity. The sensibility represents 
the probability of predicting death given that the patient died and specificity the probability 
of predicting survival given that the patient survived 

 
5.2 The rate of correct decisions 

The distributions of the fitted π ’s for the two groups: survival and non-survival are 
presented in the boxplots of Figure 4. For the first group, the first quartile, the median and 
the third quartile are respectively (0.024, 0.044, 0.086), meanwhile for the second group the 
corresponding quantities are (0.093, 0.291, 0.704), providing evidence for the model capacity 
to separate the patients with different outcomes. Moreover, the outliers that appear in the 
survivors’ group represent incorrect classifications, which could be justified for 
complications occurred during the internment period and not detected in the patient’s 
admission. 

With the same purpose, the distributions of the rate of correct decisions, Figure 3(b), shows 
that 88% of the patients were correctly classified assuming a cut-off point 0π = 0.40. This 
rate represents the proportion of survival patients with 0<π π  plus non-survival patients 
with 0>π π , among the total number of patients involved in the study. 
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Evidently, incorrect classifications in the two directions have different costs. To predict high 
death probability erroneously can take to applications of unnecessary clinical resources, 
offering risks to the patient and elevating the cost of the treatment. On the other hand, to 
predict small death probability erroneously can take for the not use of necessary resources 
and unfortunately to the patient’s death. 
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Figure 3 – (a) Posterior Densities of the model 4M  c-index. Gibbs Sampler (full line); Jackknife 
Method (broken line); (b) Posterior Density of the Model 4M  Rate of Correct Classification via 

Gibbs Sampler. 
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Figure 4 – Fitted Probabilities Boxplots: survival and non-survival patients. 
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5.3 The residual analysis 

Figures 5 and 6 present the marginal posterior densities of the residuals i i ir y= −π , for each 
patient in randomly selected sample of size 30. The range of values of the posterior 
distribution of ir  is determined by the observed iy , the interval (0, 1) when 1iy =  and the 
interval (-1, 0) when 0iy = . In Figure 6, the boxplots of the residuals are plotted against the 
fitted probabilities. The general aspect of the graphic in Figure 6 is similar to the one 
obtained when the frequentist residuals for binary data are plotted. The posterior medians fall 
inside the two parallel lines corresponding respectively to the responses 1iy = , the upper 
one, and 0iy = , the lower one. 

The shape of the distribution of the residuals depends on its location. Outlier observations 
correspond to marginal densities located far away from zero, concentrated at the extremes of 
the possible value range of the residuals and showing strong asymmetry. 

Albert & Chib (1995) suggested to evaluate the posterior probabilities of ir k= , for some 
arbitrary constant k . The boxplots for the patients number 46, 48 e 59, with extreme 
probabilities 0.9543, 0.9915 and 1.000, respectively, cross the parallels corresponding to 
the 0.75 (Figure 6). For the other patients this probability are smaller than 0.005. Although 
these probabilities are efficient in the identification of candidates to be outliers, the choice of 
the k  value is subjective. 

The files of these patients with high probability were carefully investigated and some 
mistakes were sorted out. Patient number 59 was wrongly registered as an in-hospital death 
and the class Killip for patient number 48 was assessed as being smaller than it really was. 
After considering these modifications, keeping the records of patient 46 unaltered, the final 
model ( 4M ) was refitted providing almost the same results. 
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Figure 5 – Residuals Posterior Densities for each of 30 patients randomly selected. 
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Figure 6 – Boxplots of the Residuals versus Fitted Probabilities for each of 30 patients 

randomly selected. 

 
6. Concluding Remarks 

A simple approach to a Bayesian analysis of the Bernoulli regression was presented in this 
paper. A slight modification on the variable selection strategy proposed by Hosmer and 
Lemeshow was outlined based on the Bayes factor and high posterior density interval 
concepts. Another practical contribution for model diagnostic was the evaluation of the 
posterior distribution for the c-index based on the simulated sample. The residual analysis 
follows the suggestion made by Albert & Chib (1995). Some alternative proposals were 
under consideration at the time this paper was being written. 

The model developed is capable to predict in-hospital mortality of patients with AMI 
accurately. Mortality prediction can allow physicians to be more efficient in assessing risk-
benefit ratios in these patients. The selected risk variables, all easily available in the 
admission, including female gender, age, absence of history of hypertension, history of 
previous infarction and Killip class. The cumulative effect of those variables indicates 
increasing mortality rate. The preferred model includes some second order interaction factors 
involving HAS, SMOKE and AGE, making it strongly non-linear. The model reliability was 
assessed through a careful residual analysis. The ability of the model to discriminate between 
patients with and without the outcome of interest was assessed by a c-index of 0.83 and a 
rate of correct classification as large as 0.88. 
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