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ABSTRACT. The control chart introduced by Shewhart is one of the most important quality control tech-
niques used to detect special causes. Real world data are complicated to interpret since they involve a certain
level of uncertainty that may be linked to human subjectivity or measurement device limitations. Fuzzy set
theory can deal with such uncertainty and can be applied to traditional control charts. In this work, the
values of the quality characteristic are fuzzified by the insertion of uncertainties and transformed into repre-
sentative values for a better comparison with traditional control charts. The performance of a control chart
can be measured by the average run length (ARL) and the extra quadratic loss (EQL). We observed in the
present work that the fuzzy control chart has greater efficiency than the traditional control charts. An illus-
trative example demonstrates the application of the fuzzy control chart for the measurement of the volume
contained in milk bags.

Keywords: control chart, fuzzy, average run length (ARL), extra quadratic loss (EQL).

1 INTRODUCTION

Control charts are used to monitor processes whose quality characteristic of interest is measur-
able. It consists of three lines, called upper control limit (UCL), central limit (CL) and lower
control limit (LCL). When one or more sample points are outside the control limits, the chart
indicates the presence of a change in the process and the user should look for the cause of the
sign (Masood & Shyen, 2016).

In addition to being able to monitor variables and attributes, control charts can be univariate
when they study only one process quality characteristic or multivariate when monitoring two or
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Engenharia Elétrica, Guaratinguetá-SP, Brazil.
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more such characteristics. Among the most used variable control charts are those that monitor
the mean and range of the process (Costa et al., 2005).

When human subjectivity plays an important role in defining quality characteristics, traditional
control charts cannot be applied since they require accurate data. By applying fuzzy logic to
control charts, flexibility in control limits is possible, which is not practicable in traditional con-
trol charts, where control limits are more stringent. This fact gives managers more options and
flexibility in dealing with production processes, markets and customers (Gulbay and Kahraman,
2007).

Traditional control charts are used when accurate data are available. However, data of this type
are not always available, due to the level of uncertainty present in measuring instruments and
human observations. Fuzzy logic, proposed by Zadeh (1965), is a branch of mathematics that
allows a computer to model the real world in the same way people do. It provides a simple way
of reasoning with vague, ambiguous and/or and imprecise information or knowledge. Therefore,
the use of fuzzy control charts instead of the traditional control charts to analyze the variability
in many processes is necessary (Kaya et al., 2017).

In one of the earliest studies of fuzzy control charts, Bradshaw Jr (1983) described the advantage
of applying fuzzy limits on the economic design of control charts instead to traditional control
charts. Wang & Raz (1990) proposed an approach based on fuzzy set theory to construct attribute
control charts from linguistic data. They presented four transformation methods that convert
fuzzy sets associated with linguistic values into scalars. The representative values are plotted on
the chart, maintaining the standard format of control charts, making it simpler to compare the
two types of charts.

Gülbay et al. (2004) developed control charts for attributes using α-cut. This approach enables
determining tightness in inspection by selecting an appropriate level: the larger, the more rigorous
the inspection. Senturk & Erginel (2009) used transformation methods more specific to the α-
level fuzzy midrange to construct control charts of variables, with the charts X-R and X-S using
α-cut.

Alizadeh & Ghomi (2011) developed fuzzy control charts for mean and range using four trans-
formation methods involving triangular fuzzy numbers. The performance of the control charts
was calculated in terms of average run length (ARL). They concluded that each transformation
method has a different influence on performance of control charts for mean and range. They also
found that the α-level value has a significant influence on the performance of the control charts
analyzed. The variation was considered only in the mean of the process and not in the magnitude
of perturbation of the variability.

Moraditadi & Avakhdarestani (2016) applied fuzzy set theory to control charts for individual val-
ues and moving range for fuzzy triangular and trapezoidal observations, and the results showed
that the fuzzy control chart was more sensitive than the classic one, and also showed more con-
sistent cases. In addition, the fuzzy method was more sensitive for trapezoidal than triangular

Pesquisa Operacional, Vol. 39(2), 2019



AMANDA S. MENDES, MARCELA A. G. MACHADO and PALOMA M. S. ROCHA RIZOL 341

numbers for this type of chart, which differs from the chart only for mean or mean and range that
use sample data rather than individual data.

Kaya et al. (2017) suggested the application of the fuzzy control chart to individual values in
order to increase the flexibility in the control limits, improving stock price variability analysis
in the financial market. Senturk & Antucheviciene (2017) presented the interval type-2 fuzzy
c-control chart with an application to a food company.

Fuzzy set theory applied to control charts has been used from different perspectives and with
different objectives, such as: to improve the performance of traditional control charts, since the
use of fuzzy theory allows dealing with uncertainty, randomness and imprecision; and to pro-
pose new control charts for quality characteristics defined by linguistic variables, both for the
univariate and multivariate cases (Fernández, 2017).

This article proposes a control chart based on fuzzy logic to monitor the mean and range of
univariate processes as well as studies the performance of the chart. Disturbances in both the
magnitude of the mean and the range are considered in order to obtain the average run length
(ARL). The performance of the control chart is also measured by another parameter, the extra
quadratic loss (EQL).

The comparisons between the traditional Shewhart control chart and the fuzzy control chart
are performed by simulations using the following transformations: fuzzy median; α-level
fuzzy midrange; fuzzy average; and fuzzy mode. In this study, the α-level fuzzy midrange
transformation is used for the fuzzy X-R control chart and the X-R control chart.

There are not many works in the literature examining the performance of fuzzy control charts.
Alizadeh & Ghomi (2011) obtained the ARL for the fuzzy X and R control charts, considering
only shifts in the process mean.

From the articles resulting from the database search for this work, we observed there were few
works that have analyzed the performance of fuzzy control charts. In the last ten years, in the
Scopus database, about 65 articles on the fuzzy control chart were found, and in relation to the
fuzzy X-R control chart studied here, only Alizadeh & Ghomi (2011) obtained the ARL for this
chart, but not in the correct way, because they took into account only the displacement in the
mean and not the variability.

The application of fuzzy logic to the traditional control chart is interesting since observations
close to control limits can cause false alarms with traditional control charts. Special causes that
traditional control charts did not detect were detected in the fuzzy control chart. Fuzzy obser-
vations and fuzzy control charts may provide more flexibility to control a process, since quality
experts can vary the degree of uncertainty inserted in the process and use α to vary the degree of
requirement for inspection

This paper is organized as follows: Section 2 introduces some concepts about the α-level fuzzy
midrange transformation. The fuzzy X-R control chart is presented in Section 3. Some concepts
about the efficiency of control charts are presented in Section 4. An example of application is
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illustrated in Section 5 and Section 6 presents the final considerations and suggestions for future
research.

2 FUZZY TRANSFORMATION TECHINIQUES

2.1 α-level fuzzy midrange transformation

To maintain the standard format of the control chart and to facilitate the plotting of observations,
it is necessary to convert the fuzzy observations into representative values. That conversion can be
accomplished by means of some transformation techniques. According to Wang & Raz (1990),
it can be performed as long as the result is intuitively representative of the range of the base
variable included in the fuzzy set. It is noteworthy that according to these authors, there is no
theoretical basis that supports the specific choice of any of the methods; the selection between
them should be based mainly on the ease of calculation or the preference of the user.

In this work, we use the α-level fuzzy midrange transformation for the fuzzy control charts X
and R (Senturk & Erginel, 2009).

The α-level fuzzy midrange transformation f α
mr can be defined as the midpoint of the ends of the

α-cut. The α-cut, denoted by Bα , is a set of values that have degrees of membership greater than
or equal to α , where aα and cα the endpoints. Equation (1) describes this transformation.

f α
mr =

1
2
(aα + cα) (1)

where aα and cα are given by equations (2) and (3).

aα = a+α(b−a) (2)

cα = c−α(c−b) (3)

Applying the transformation to a sample j gives the statistic for each sample, called Sα
mr. j,

according to equation (4).

Sα
mr. j =

(a j + c j)+α[(b j−a j)− (c j−b j)]

2
(4)

The α-cut is defined as the degree of requirement for inspection of the process under analysis,
so the higher the value of the α-cut, the more rigorous the the inspection will be. The value is
adopted according to the nature of the process and can vary from 0 to 1 (Gülbay et al., 2004).

In this paper, α = 0.55, α = 0.65 and α = 0.95 are used for the purpose of comparing the
performance between the fuzzy control chart and the traditional control chart.

3 FUZZY X AND R CONTROL CHARTS

In the traditional approach, the control of process averages or mean quality levels is usually
performed by X charts. The process variability or dispersion can be controlled by a control chart
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for the range, called R chart (Senturk & Erginel, 2009). In this section, fuzzy X-R control charts
are introduced.

The upper (UCL), lower (LCL) and center line (CL) limits for the chart X can be obtained by
equations (5), (6) and (7).

UCLX = X +A2R (5)

CLX = X (6)

LCLX = X−A2R (7)

where A2 is a coefficient that depends on the sample size n and is defined by equation (8)
(Montgomery, 2009).

A2 =
3

d2
√

n
(8)

where d2 is a constant that depends on the sample size n; see Costa et al. (2005) for values.

The upper (UCL), lower (LCL) and the center line (CL) limits for the R chart can be obtained by
equations (9), (10) and (11).

UCLR = D4R (9)

CLR = R (10)

LCLR = D3R (11)

where D3 and D4 are coefficients defined by the following equations (Montgomery, 2009):

D3 = 1− 3d3

d2
(12)

D4 = 1+
3d3

d2
(13)

where d2 and d3 are constants that depend on the sample size n; see Costa et al. (2005) for values.

In fuzzy control charts, when one assumes that a quality characteristic is defined as “approxi-
mately x”, this value should be converted into a triangular type fuzzy number (a,b,c), as can be
seen in Figure 1 (Kahraman & Kaya, 2011).

In this study, the fuzzy numbers are represented as (Xa,Xb,Xc) for each observation and the
center line (CL) is calculated by means of the mean of these observations, as can be observed
respectively in equations (14), (15) and (16), where n is the size of the fuzzy sample and m is the
number of fuzzy samples.

Xk j =
∑

n
i=1 Xk ji

n
; k = a,b,c; i = 1.2, . . . , n; j = 1.2, . . .m, (14)

Xk j =
∑

m
j=1 Xk j

m
; k = a,b,c; j = 1.2, . . .m, (15)

CLX =
(

Xa,Xb,Xc

)
=

(
∑

m
j=1 Xa j

m
,

∑
m
j=1 Xb j

m
,

∑
m
j=1 Xc j

m

)
(16)
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Figure 1 – Representation of a triangular fuzzy number.
Source: Adapted from Senturk & Erginel (2009).

Once the maximum and minimum fuzzy observations have been determined, the range can be
obtained according to equations (17), (18) and (19) (Kahraman et al., 2016).

Ra j = Xmax,a j−Xmin,c j; j = 1.2, . . .m, (17)

Rb j = Xmax,b j−Xmin,b j; j = 1.2, . . .m, (18)

Rc j = Xmax,c j−Xmin,a j; j = 1.2, . . .m, (19)

where (Xmax,a j ,Xmax,b j ,Xmax,c j ) is the maximum fuzzy number of the sample and
(Xmin,a j ,Xmin,b j ,Xmin,c j ) is the minimum fuzzy number of the sample, so the mean range can
be obtained according to equations (20), (21) and (22) (Senturk & Erginel, 2009).

Ra =
∑Ra j

m
(20)

Rb =
∑Rb j

m
(21)

Rc =
∑Rc j

m
(22)

The UCL, CL and LCL for the fuzzy X control chart can be obtained by:

UCLX =
(

Xa,Xb,Xc

)
+A2(Ra,Rb,Rc) (23)

CLX =
(

Xa,Xb,Xc

)
(24)

LCLX =
(

Xa,Xb,Xc

)
−A2(Ra,Rb,Rc) (25)
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By applying the α-level fuzzy midrange transformation used in this study, it is possible to obtain
(UCL), (CL) and (LCL) respectively for the fuzzy X control chart.

UCLα

mr−X =

(
X

α

a +X
α

c

2

)
+A2

(
Rα

a +Rα

c

2

)
(26)

CLα

mr−X =

(
X

α

a +X
α

c

2

)
(27)

LCLα

mr−X =

(
X

α

a +X
α

c

2

)
−A2

(
Rα

a +Rα

c

2

)
(28)

The UCL, CL and LCL for the fuzzy control R chart can be obtained by:

UCLR = D4(Ra,Rb,Rc) (29)

CLR = (Ra,Rb,Rc) (30)

LCLR = D3(Ra,Rb,Rc) (31)

By applying the α-level fuzzy midrange transformation used in this study, it is possible to obtain
(UCL), (CL) and (LCL) respectively for the fuzzy control R chart.

UCLα
mr−R = D4

(
Rα

a +Rα

c

2

)
(32)

CLα
mr−R =

(
Rα

a +Rα

c

2

)
(33)

LCLα
mr−R = D3

(
Rα

a +Rα

c

2

)
(34)

The values of X
α

a , X
α

c , Rα

a and Rα

c can respectively be obtained by:

Xα
a = Xa +α(Xb−Xa) (35)

Xα
c = Xc−α

(
Xc−Xb

)
(36)

Rα
a = Ra +α(Rb−Ra) (37)

Rα
c = Rc−α(Rc−Rb) (38)

The monitoring statistic of the fuzzy chart X for a given sample j is given by:

Sα

mr−X j =

(
Xa j +Xc j

)
+α

[(
Xb j−Xa j

)
−
(
Xc j−Xb j

)]
2

(39)

Pesquisa Operacional, Vol. 39(2), 2019



346 FUZZY CONTROL CHART FOR MONITORING MEAN AND RANGE OF UNIVARIATE PROCESSES

Therefore, the process control condition can be defined as:In control for UCLα

mr−X≤Sα

mr−X j≤LCLα

mr−X

Outside control otherwise

The monitoring statistic of the fuzzy R chart for a given sample j is given by:

Sα
mr−R j =

(Ra j +Rc j)+α
[(

Rb j−Ra j
)
−
(
Rc j−Rb j

)]
2

(40)

Therefore, the process control condition can be defined as:{
In control for UCLα

mr−R≤Sα
mr−R j≤LCLα

mr−R

Outside control otherwise

4 CONTROL CHART PERFORMANCE

In this section, the traditional Shewhart control chart and the fuzzy control chart are com-
pared based on their performance. This is measured by the average run length (ARL) and extra
quadratic loss (EQL). The charts are more efficient the lower the ARL value, since in the control
charts of X-R the samples are collected at constant time intervals (Costa et al., 2005).

As an efficiency comparison between control chart types, one must first adjust the control factor
(k) of each chart separately, so that when the process is in control, the two charts have the same
number of samples until the false alarm (ARL0). From the moment that the values of (ARL0) are
equal, a difference of δ standard deviations in the process mean and a shift of λ in the process
range is simulated and the ARL values of the traditional control chart with the corresponding
fuzzy control chart. The one with the lowest ARL value is the most efficient for this particular
situation. Therefore, the most efficient charts must have high values of ARL0, that is, few false
alarms and low ARL values, to quickly detect perturbations in the mean and range of the process
(Fang et al., 2013).

In accordance with Costa & Rahim (2006) and Costa et al. (2009), the objective is to monitor
any assignable cause that shifts the in-control value of the process mean µ0 to µ1 = µ0± δσX
and/or increases the in-control standard deviation σ0 to σ1 = λσ0, where γ is the magnitude of
the increase in variability.

The performance of the X-R charts is also measured by the EQL, according to Wu et al. (2008),
given by equation (41):

EQL =
σ2

0

δmax.(λmax−1)
.
∫

δmax

0

∫
λmax

1

(
δ

2 +λ
2−1

)
ARL(δ ,λ ) .dδ .dλ (41)

where ARL(δ , λ ) is the ARL computed with µ1 and σ1, δmax is the upper bound of δ and λmax is
the upper bound of λ ; see Ou et al. (2011) and Machado & Costa (2014) for details.
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In this paper, the simulations to calculate the ARL were performed for sample size 5 and the
following values for alpha, α = 0.55, α = 0.65 and α = 0.95, considering the simulation of
10000 second replicates (Domangue & Patch, 1991).

For the calculation of the reduction percentage between the results obtained from the fuzzy
control chart and the results from the traditional chart, the following equation was used:

Percentage Reduction (PR) = 100%
ARLF −ARLT

ARLT
(42)

where ARLT is the average run length of the traditional chart signal and ARLF is the average run
length of the fuzzy control chart signal.

Tables 1, 2 and 3 report the ARL values of the traditional control chart and the ARL of the fuzzy
control chart for sample size 5 and values of α = 0.55, α = 0.65 and α = 0.95 respectively, where
δ is the magnitude of the perturbation of the mean and λ is the magnitude of the perturbation of
the variability.

Note that the ARLF values are smaller than the ARLT values. From equation (42), it can be seen
that the largest reduction percentage between ARLF for α = 0.55 and ARLT is 2.26% for δ of 0.6
and λ = 1.4. For α = 0.65, the greatest reduction percentage between ARLF and ARLT is 1.87%
for δ of 0.4 and λ = 1 and for α = 0.95 it is 1.90% for δ of 1.2 and λ = 1.3.

Tables 1, 2 and 3 show that the reduction of ARL values is not very significant, but it still true that
the application of fuzzy logic to traditional control charts is interesting because fuzzy numbers
and fuzzy control charts offer more flexibility in process control, since the expert can give an
opinion and vary the degree of uncertainty, as well as choose which α to use in the process
according to the importance of the inspection, where the closer to 1, the more demanding the
inspection will be.

Regarding EQL, Tables 1, 2 and 3 show that the value the of EQL of the fuzzy control chart for
any α value is smaller than the EQL value of the traditional control chart. Also, the value of EQL
of the traditional chart is about 269.5 and of the fuzzy control chart it is on average around 267.3
for α values = 0.55, 0.65 and 0.95. The difference in the values of ARL and EQL for fuzzy charts
and traditional Shewhart charts is subtle, but it does exist, and applying fuzzy logic to traditional
control charts makes process monitoring closer to reality, since uncertainty is always present in
measurements

Such application is valid because it allows the operator to be more confident in making the
decision whether the process is in or outside control.

5 ILLUSTRATIVE EXAMPLE

In this section, an example is provided to illustrate the detection capability of the fuzzy X -R
control chart in relation to the traditional chart. In order to do this, we consider a milk bag filling
process where the volume of the product of each bag must be permanently monitored in order to
avoid the occurrence of excesses (which increase the risk of the bags bursting during handling
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Table 1 – Comparison of ARL of traditional control chart and fuzzy control for α = 0.55.

α = 0.55

ARLt

λ δ

0 0.2 0.4 0.6 0.8 1.0 1.2
1 370.6 228.1 84.9 30.8 12.6 6.0 3.3

1.1 117.7 87.4 43.9 20.1 9.7 5.2 3.1
1.2 48.1 39.8 24.8 13.7 7.6 4.5 2.9
1.3 24.1 21.2 15.2 9.8 6.2 4.0 2.8
1.4 13.8 12.6 10.0 7.2 5.0 3.5 2.6
1.5 8.9 8.4 7.1 5.5 4.1 3.1 2.4
2 2.6 2.5 2.4 2.3 2.1 1.9 1.7

2.5 1.6 1.6 1.5 1.5 1.5 1.4 1.3
EQLt 269.5

0 0.2 0.4 0.6 0.8 1 1.2

ARL f

1 370.0 225.8 83.9 30.3 12.5 5.9 3.3
1.1 116.8 86.6 43.1 19.9 9.5 5.1 3.1
1.2 47.7 39.6 24.3 13.6 7.6 4.5 2.9
1.3 23.7 21.1 15.1 9.7 6.0 4.0 2.7
1.4 13.7 12.5 9.9 7.0 4.9 3.5 2.5
1.5 8.8 8.3 7.0 5.4 4.1 3.1 2.4
2 2.5 2.5 2.4 2.2 2.1 1.9 1.7

2.5 1.6 1.5 1.5 1.5 1.5 1.4 1.3
EQL f 267.1

0 0.2 0.4 0.6 0.8 1 1.2

PR(%)

1 -0.17% -0.99% -1.16% -1.42% -0.51% -1.04% -0.89%
1.1 -0.83% -0.92% -1.70% -0.53% -1.63% -1.20% -0.45%
1.2 -0.82% -0.40% -1.83% -0.89% -0.28% -0.23% -1.30%
1.3 -1.47% -0.74% -1.14% -0.88% -1.97% -1.14% -1.34%
1.4 -0.26% -0.99% -0.42% -2.26% -1.69% -0.62% -1.08%
1.5 -1.05% -1.21% -1.13% -1.18% -0.45% -0.24% -1.00%
2 -0.81% -0.86% -0.90% -0.33% -0.33% -0.91% -0.62%

2.5 -0.48% -0.96% -0.80% -0.34% -0.21% -0.60% -0.25%

and transportation) or insufficiency (which leads to the risk of the company being fined). The
main tool used to monitor processes and signals the presence of special causes is the control
chart. When the process is in control, the mean is 1000 ml and the standard deviation is 4 ml
(Costa et al., 2005).

Twenty-five sample bags were removed and the volume of each item was measured, as shown in
Table 4. First, the traditional control chart was constructed to monitor the volume of the bags.
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Table 2 – Comparison of ARL between traditional control chart and fuzzy control chart for α = 0.65.

α = 0.65

ARLt

λ δ

0 0.2 0.4 0.6 0.8 1 1.2
1 370.6 228.1 84.9 30.8 12.6 6.0 3.3

1.1 117.7 87.4 43.9 20.1 9.7 5.2 3.1
1.2 48.1 39.8 24.8 13.7 7.6 4.5 2.9
1.3 24.1 21.2 15.2 9.8 6.2 4.0 2.8
1.4 13.8 12.6 10.0 7.2 5.0 3.5 2.6
1.5 8.9 8.4 7.1 5.5 4.1 3.1 2.4
2 2.6 2.5 2.4 2.3 2.1 1.9 1.7

2.5 1.6 1.6 1.5 1.5 1.5 1.4 1.3
0 0.2 0.4 0.6 0.8 1 1.2

EQLt 269.5

ARL f

1 370.3 227.4 83.3 30.4 12.4 5.9 3.3
1.1 116.9 86.3 43.4 19.9 9.6 5.1 3.1
1.2 47.7 39.4 24.5 13.6 7.6 4.5 2.9
1.3 24.0 21.1 15.0 9.7 6.1 4.0 2.7
1.4 13.6 12.6 9.9 7.1 4.9 3.5 2.6
1.5 8.8 8.3 7.0 5.5 4.1 3.1 2.4
2 2.5 2.5 2.4 2.2 2.0 1.9 1.7

2.5 1.6 1.6 1.5 1.5 1.4 1.4 1.3
0 0.2 0.4 0.6 0.8 1 1.2

EQL f 267.3

PR(%)

1 -0.08% -0.31% -1.87% -1.28% -1.19% -0.76% -1.11%
1.1 -0.73% -1.22% -1.19% -0.56% -0.90% -1.46% -0.41%
1.2 -0.86% -0.93% -1.18% -0.79% -0.34% -1.40% -1.08%
1.3 -0.42% -0.80% -1.47% -1.22% -0.87% -0.94% -1.46%
1.4 -1.09% -0.53% -0.49% -1.31% -1.19% 0.50% -0.51%
1.5 -1.35% -1.47% -1.08% -0.74% -0.30% -0.68% -0.58%
2 -1.39% -0.34% -0.53% -0.57% -0.78% -0.53% -0.48%

2.5 -0.41% -0.24% -0.30% -0.32% -0.27% -0.54% -0.35%

According to Costa et al. (2005), the mean chart is affected by both special causes that alter the
mean of the process, and by special causes that affect the dispersion, so the mean chart can only
be constructed when the process is stable and adjusted.

For the process of the present work, the 12th and 13th samples must be withdrawn, since they are
above the control limit of the range and the limit of control of the mean. Thus, the limits are recal-
culated with the remaining 23 observations for the mean control chart and with 24 observations
for the range control chart, obtaining the final values for the mean and range limits by equations
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Table 3 – Comparison of ARL between traditional control chart and fuzzy control chart for α = 0.95.

α = 0.95

ARLt

λ δ

0 0.2 0.4 0.6 0.8 1 1.2
1 370.6 228.1 84.9 30.8 12.6 6.0 3.3

1.1 117.7 87.4 43.9 20.1 9.7 5.2 3.1
1.2 48.1 39.8 24.8 13.7 7.6 4.5 2.9
1.3 24.1 21.2 15.2 9.8 6.2 4.0 2.8
1.4 13.8 12.6 10.0 7.2 5.0 3.5 2.6
1.5 8.9 8.4 7.1 5.5 4.1 3.1 2.4
2 2.6 2.5 2.4 2.3 2.1 1.9 1.7

2.5 1.6 1.6 1.5 1.5 1.5 1.4 1.3
EQLt 269.5

0 0.2 0.4 0.6 0.8 1 1.2

ARL f

1 370.5 226.9 84.5 30.5 12.4 5.9 3.3
1.1 116.9 86.8 43.5 19.9 9.5 5.1 3.1
1.2 47.9 39.3 24.6 13.6 7.5 4.5 2.9
1.3 23.7 21.1 15.0 9.7 6.1 4.0 2.7
1.4 13.7 12.5 9.9 7.2 5.0 3.5 2.5
1.5 8.9 8.3 7.0 5.5 4.1 3.1 2.4
2 2.6 2.5 2.4 2.2 2.0 1.8 1.7

2.5 1.6 1.5 1.5 1.5 1.4 1.4 1.3
EQL f 267.3

0 0.2 0.4 0.6 0.8 1 1.2

PR(%)

1 -0.04% -0.52% -0.49% -0.93% -1.15% -1.13% -1.68%
1.1 -0.73% -0.72% -0.81% -0.59% -1.70% -1.67% -0.61%
1.2 -0.38% -1.15% -0.49% -0.77% -1.79% -0.94% -1.48%
1.3 -1.42% -0.64% -1.41% -1.07% -0.75% -1.32% -1.90%
1.4 -0.80% -1.13% -0.62% -0.41% -0.83% -1.36% -1.38%
1.5 -0.31% -1.21% -0.84% -0.78% -0.93% -0.58% -0.85%
2 -0.22% -0.53% -0.46% -0.84% -1.12% -1.41% -0.88%

2.5 -0.36% -0.42% -0.53% -0.68% -0.34% -0.29% -1.14%

(5), (7), (9) and (11), respectively: UCLX = 1005.7323, LCLX = 993.6538, UCLR = 22.1265
and LCLR = 0.

In order to study the behavior of the chart in an outside control situation, a further 10 samples
were generated with δ of 1 in the process mean and λ of 1.5 in the range. Table 5 reports the set
of observations.
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Table 4 – Volume of milk bags, their mean and range.

Sample Number X1 X2 X3 X4 X5 Mean Range
1 1004.6 997.3 1003 1005.9 995.8 1001.3 10.1
2 1001.6 1008.6 997.9 1001.3 999.1 1001.7 10.7
3 999.1 992.6 1001.1 1001.6 1002.9 999.5 10.3
4 1007.9 997.5 991.3 997.8 1000.8 999.1 16.6
5 999.5 995.6 1004.3 995.6 991.4 997.3 12.9
6 1003.3 996.8 997.2 993.6 1000.1 998.2 9.7
7 999.7 1012.1 995.2 1001.8 1002.2 1002.2 16.9
8 1000.1 995.3 990 997.5 1003.2 997.2 13.2
9 1004.3 1001.4 1001.6 999.1 996.4 1000.6 7.9

10 999 995.8 989.9 995.1 1002.8 996.5 12.9
11 1003.2 1004.4 993.5 994.6 997.6 998.7 10.9
12 996.2 1017.3 993.6 996.5 1003.7 1001.5 23.7
13 1014 1008.9 1004.1 1007.9 1000.7 1007.1 13.3
14 1002.2 996.6 1002.7 1004.2 1001.8 1001.5 7.6
15 998.3 997.5 1006.1 996.5 998.1 999.3 9.6
16 995.8 1000.8 999.1 1002.5 1001 999.8 6.7
17 1004.1 1003 1004.8 997.9 999.9 1001.9 6.9
18 1000.1 994.9 1000.1 1004.9 997.3 999.5 10.0
19 1000.2 996.1 998 1006.1 999.4 1000.0 10.0
20 1002.3 999 1000.8 1000.7 998 1000.2 4.3
21 998.3 998.1 1004.2 1002.1 991.3 998.8 12.9
22 997.1 1000.7 999.8 1000.6 1001.7 1000.0 4.6
23 1003.6 996.1 1001.4 998 991.8 998.2 11.8
24 999.9 1006.4 1005.1 999.8 1003 1002.8 6.6
25 1007.3 999.8 992.5 996.2 998.2 998.8 14.8

Source: Costa et al. (2005).

By calculating the mean and range of the observations, it was possible to elaborate Tables 6 and
7, which demonstrate the process control conditions. Table 6 shows that samples 27, 30 and 32
exceed the value of the upper control limit and therefore are outside control; in addition, sample
35 is near the upper limit.

For Table 7, which represents the process control conditions for the range control chart, all the
sample points are within the previously calculated control limits.

In order to construct the fuzzy control charts and compare them with the traditional chart, fuzzy
numbers were generated based on the set of observations in Tables 4 and 5. Uncertainty was
added, which can be attributed to the measuring instrument, randomly following the uniform
distribution ranging from 0 to 1, according to experts, as can be seen in Table 8.

Pesquisa Operacional, Vol. 39(2), 2019



352 FUZZY CONTROL CHART FOR MONITORING MEAN AND RANGE OF UNIVARIATE PROCESSES

Table 5 – Samples with process outside control.

Sample Number X1 X2 X3 X4 X5

1 996.0657 999.3373 994.6958 1001.5817 998.3923
2 1009.4533 1003.0522 1004.7023 1016.5194 1011.7945
3 1002.6980 1006.9822 992.1539 1000.1566 997.9927
4 998.4566 1011.0536 1000.9139 1004.0916 1008.8012
5 1010.1670 1007.5547 996.7948 1010.0667 1005.1272
6 999.7326 1001.7451 998.2166 1000.9928 1003.3693
7 1009.8046 996.6570 1013.1134 1002.4216 1017.8025
8 1003.0475 1003.3703 1006.6138 1005.7635 1001.5398
9 994.8559 1011.7320 1008.2916 1002.1707 1003.2524

10 1002.2537 1011.7732 1005.6364 1004.8856 1004.0810
Source: Adapted from Costa et al. (2005).

Table 6 – Mean values and comparison with control limits.

Sample
Mean

993.6538≤ Sample
Mean

993.6538≤
Number Mean ≤ 1005.7323 Number Mean ≤ 1005.7323

1 1001.3200 In control 19 999.9600 In control
2 1001.7000 In control 20 1000.1600 In control
3 999.4600 In control 21 998.8000 In control
4 999.0600 In control 22 999.9800 In control
5 997.2800 In control 23 998.1800 In control
6 998.2000 In control 24 1002.8400 In control
7 1002.2000 In control 25 998.8000 In control
8 997.2200 In control 26 998.0146 In control
9 1000.5600 In control 27 1009.1043 Outside control

10 996.5200 In control 28 999.9967 In control
11 998.6600 In control 29 1004.6634 In control
12 – – 30 1005.9421 Outside control
13 – – 31 1000.8113 In control
14 1001.5000 In control 32 1007.9598 Outside control
15 999.3000 In control 33 1004.0670 In control
16 999.8400 In control 34 1004.0605 In control
17 1001.9400 In control 35 1005.7260 In control
18 999.4600 In control – – –

From this dataset, the limits were calculated using the first 23 samples in control using equations
(26), (28), (32) and (34) for α = 0.95, since like in the traditional chart it was necessary to
withdraw samples number 12 and 13 because they made the process unstable, thus obtaining
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Table 7 – Range values and comparison with control limits.

Sample
Range 0≤ Range ≤ 22.1265

Sample
Range 0≤ Range ≤ 22.1265

Number Number
1 10.1000 In control 19 10.0000 In control
2 10.7000 In control 20 4.3000 In control
3 10.3000 In control 21 12.9000 In control
4 16.6000 In control 22 4.6000 In control
5 12.9000 In control 23 11.8000 In control
6 9.7000 In control 24 6.6000 In control
7 16.9000 In control 25 14.8000 In control
8 13.2000 In control 26 6.8858 In control
9 7.9000 In control 27 13.4672 In control

10 12.9000 In control 28 14.8283 In control
11 10.9000 In control 29 12.5970 In control
12 – – 30 13.3722 In control
13 13.3000 In control 31 5.1528 In control
14 7.6000 In control 32 21.1455 In control
15 9.6000 In control 33 5.0740 In control
16 6.7000 In control 34 16.8760 In control
17 6.9000 In control 35 9.5195 In control
18 10.0000 In control – – –

the following values of control limits for mean and range respectively: UCL0.95
X = 1005.7229,

LCL0.95
X = 993.6406, UCL0.95

R = 22.1334 and LCL0.95
R = 0.

By means of equations (39) and (40), it was possible to calculate the values of the statistics
Sα

mr−X j and Sα
mr−R j and thus construct Tables 9 and 10, which demonstrate the process control

conditions of the fuzzy control chart for the mean and range with α = 0.95 respectively.

Table 9 shows that samples 27, 30, 32 and 35 exceed the value of the upper control limit. Table 6
shows that sample 35 does is not outside control in the traditional chart, whereas in the fuzzy
control chart for α = 0.95 it exceeds the upper control limit.

Table 10 indicates that for the fuzzy control chart for range, all the sample points lie within
previously calculated control limits, is also the case of the traditional control chart.

This illustrative example demonstrates that applying fuzzy control charts that use more pro-
cess information can help improve productivity by detecting abnormal process changes on av-
erage slightly faster than Shewhart control charts, since sample 35 is not outside control in the
traditional control chart X and is outside control in the fuzzy control chart X .
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Table 9 – Statistical values Sα
mr−X j and comparison with the limits.

Sample S0.95
mr−X j

993.6406 ≤ S0.95
mr−X j Sample S0.95

mr−X j
993.6406 ≤ S0.95

mr−X j

Number ≤ 1005.7229 Number ≤ 1005.7229
1 1001.3266 In control 19 999.9717 In control
2 1001.7027 In control 20 1000.1558 In control
3 999.4668 In control 21 998.8004 In control
4 999.0571 In control 22 999.9837 In control
5 997.2798 In control 23 998.1759 In control
6 998.1956 In control 24 1002.8381 In control
7 1002.1977 In control 25 998.7996 In control
8 997.2102 In control 26 998.0160 In control
9 1000.5583 In control 27 1009.1113 Outside control

10 996.5203 In control 28 1000.0053 In control
11 998.6569 In control 29 1004.6633 In control
12 – – 30 1005.9379 Outside control
13 – – 31 1000.8069 In control
14 1001.4966 In control 32 1007.9536 Outside control
15 999.2980 In control 33 1004.0623 In control
16 999.8417 In control 34 1004.0654 In control
17 1001.9357 In control 35 1005.7336 Outside control
18 999.4578 In control – – –

Table 10 – Statistical values Sα
mr−R j and comparison with the limits.

Sample
S0.95

mr−R j 0≤ S0.95
mr−R j≤22.333

Sample
S0.95

mr−R j 0≤ S0.95
mr−R j≤22.333

Number Number
1 10.0970 In control 19 9.9858 In control
2 10.6834 In control 20 4.3240 In control
3 10.3117 In control 21 12.9080 In control
4 16.6022 In control 22 4.6100 In control
5 12.8866 In control 23 11.7878 In control
6 9.6985 In control 24 6.6029 In control
7 16.9243 In control 25 14.8065 In control
8 13.2202 In control 26 6.8668 In control
9 7.9203 In control 27 13.4734 In control
10 12.9265 In control 28 14.8514 In control
11 10.8977 In control 29 12.5822 In control
12 – – 30 13.3969 In control
13 13.2984 In control 31 5.1656 In control
14 7.5990 In control 32 21.1559 In control
15 9.6064 In control 33 5.0917 In control
16 6.7213 In control 34 16.9015 In control
17 6.8830 In control 35 9.4986 In control
18 9.9766 In control – – –

6 CONCLUDING REMARKS AND FUTURE RESEARCH

In this work, fuzzy logic was applied to control charts X-R, using the α-level fuzzy midrange
transformation. The observations of each sample were transformed into triangular fuzzy numbers
to add uncertainties. Using fuzzy arithmetic, the mean and range of each sample were calculated
after the transformation was applied, obtaining the representative values, thus constructing the
fuzzy X-R control charts.
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In order to compare the traditional and fuzzy control charts, their detection powers were verified
by the average run length (ARL) and extra quadratic loss (EQL). We observed that the fuzzy
control charts for all values of α had better performance than the traditional control chart, since
they presented lower values of ARL. Although the ARL values were close to the values of the
traditional control chart, there was some reduction, even if small, with the application of fuzzy
logic.

For future research, we can suggest a study of sampling schemes for fuzzy control charts by
variables, as well as a scenario analysis about which sampling scheme should be adopted and use
of special run rules to obtain greater detection power.
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