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ABSTRACT. In this paper, we propose a novel MIP-based heuristic method to deal with a lot sizing and
scheduling problem with multiple heterogeneous production lines in a production setting with perishable
items. The problem is inspired by the production processes adopted by some Brazilian food industries and it
considers that several production lines share the same scarce production resources. Therefore, only a subset
of those lines can simultaneously operate in each production period. Moreover, the production environment
is characterized by the existence of sequence-dependent setup times and costs, and by the production of
perishable items which can be stocked for a short period only. Firstly, we propose a facility location refor-
mulation for a model previously proposed in the literature. Secondly, we propose a heuristic composed of
two phases. The first phase has an elaborated approach to building feasible solutions solving initially an
aggregated lot sizing problem to decide which production lines to assemble, followed by the resolution of
the various single line lot sizing and scheduling problems. The second phase applies improvement heuris-
tics exploring principles of fix-and-optimize and local branching procedures. Computational results carried
out using a data set proposed in the literature are presented in order to study the efficiency of the proposed
approach. The results demonstrate that our heuristics provide superior results when benchmarked with a
heuristic from the literature specifically developed to solve the problem under consideration, and with a

commercial MIP solver.
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2 DECOMPOSITION BASED HEURISTICS FOR A LOT SIZING AND SCHEDULING PROBLEM

1 INTRODUCTION

In periods of economic crisis, the development of good production plans can be crucial for the
survival of a company in the market. However, as highlighted in Almada-Lobo et al. (2015), var-
ious industries face problems to plan their operations at minimum cost. In fact, production plan-
ning, unless simplified to unrealistic settings, consists of .4”4?-hard optimization problems, and
many real-world problems are computationally challenging. Such a setting requires specialized
solution approaches to provide reasonable feasible solutions at acceptable computational time,
as widely observed in the literature (see, e.g., Claassen et al. (2016), Akartunaliet al. (2016),
Aouam et al. (2018), Soler et al. (2019), and Soler et al. (2019) for recent examples). For the spe-
cific domain of lot sizing and production planning, we refer the interested reader to Brahimi et al.
(2017) for an extensive recent survey of single-item problems, to Doostmohammadi & Akartu-
nal1 (2018) for a thorough overview of complex multi-item problems, and to Absi & van den
Heuvel (2019) for a review of effective relax-and-fix methods in this domain.

For some industries such as food and beverage, the production plan involves the simultaneous
determination of the production quantities (lot sizes) and the sequence of production in different
production lines with the aim of minimising costs and ensuring to fulfill the customer’s demands,
as noted by Baldo et al. (2014). In other words, it is necessary to solve the simultaneous lot sizing
and scheduling problem (LSP).

In this paper, we consider an LSP on multiple production lines apparent in some Brazilian food
industries. This problem was recently introduced by Soler et al. (2019) and it considers a pro-
duction environment where scarce production resources, like machines, tools and workers, need
to be used to assemble the production lines. Due to the scarcity of those resources and the im-
possibility of acquiring additional resources (as discussed in detail in Soler et al. (2019)), only
a subset of the lines can be assembled in each period. Therefore, besides the decisions about lot
sizing and scheduling, the managers need to decide which production lines to assemble in each
period. Moreover, the considered food industry produces various types of perishable items and it
is desirable to avoid that the products be discarded due to expiration of its shelf life. The prob-
lem is also characterized by allowing backlogging and by the existence of sequence-dependent
setup times and costs. In the literature, this problem is known as capacitated lot-sizing with
sequence dependent setup costs, perishable products, scarce resources and multiple production
lines (CLSDPRL).

Beyond the mentioned food industry, production planning problems involving the synchroniza-
tion of scarce resources across multiple production lines also appear in other production envi-
ronments, such as the semiconductor industry, production and bottling of soft drinks (Almeder
& Almada-Lobo (2011)), automotive industry (Giingor et al. (2018)) and block erection in a
shipyard (Afzalirad & Rezaeian (2016)).

An MIP model and a relax-and-fix heuristic that efficiently explore the structure of the problem
were proposed in Soler et al. (2019) to deal with the CLSDPRL. The computational study pre-
sented in the paper evidenced that the addressed problem is challenging from the computational
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perspective and that the consideration of scarce resource and perishability of the items makes
the problem significantly challenging to solve in comparison to the traditional LSP. Although the
proposed relax-and-fix heuristic delivered good feasible solutions and competitive dual bounds
(outperforming a commercial solver and an earlier established relax-and-fix procedure from the
literature), the results indicated the necessity of new solution approaches to deal with large-sized
test instances from real-world scenarios.

Therefore, in this paper we develop specific heuristic approaches to deal with the considered
problem that outperform the earlier algorithms proposed in Soler et al. (2019), mainly for large-
sized test instances, with respect to the quality of the feasible solutions and the necessary com-
putational time. More specifically, we develop a construction procedure that decomposes the
original problem into various small problems that can be easily solved by exact algorithms
like branch-and-cut, and then we combine principles of fix-and-optimize heuristic and local
branching to obtain improvement procedures applied to the feasible solutions obtained from the
construction phase.

The paper is organised as follows: In Section 2, we present a brief literature review, while in
Section 3 we present two MIP models for the addressed problem. In Section 4, we present the
construction heuristic based on the decomposition of the original problem, while in Section 5 we
present the improvement heuristics. The computational study carried out using a data set from the
literature is presented in Section 6. Finally, in Section 7 some conclusions and research directions
for future studies are presented.

2 RELATED RESEARCH AND PROBLEM DESCRIPTION

The lot sizing and scheduling problem (LSP) consists of determining the quantities to be pro-
duced of each product and the sequence in which these products are produced in each period,
with the aim to ensure the fulfillment of customer demand while minimizing the costs incurred
in the production process. This problem naturally appears in various production environments,
such as brewery industry (Baldo et al. (2014)), food and drink (Kopanos et al. (2011), Ferreira
et al. (2009)) and glass container industry (Almada-Lobo et al. (2008)).

The pioneer mathematical models for the LSP are the capacitated lot-szing and scheduling
problem - CLSP (Karmarkar & Schrage (1985)), the discrete lot-sizing and scheduling prob-
lem - DLSP (Fleischmann (1990)), the proportional lot-sizing and scheduling problem - PLSP
(Drexl & Haase (1995)), the capacitated lot-sizing with sequence dependent setup costs - CLSD
(Haase (1996)), and the general lot-sizing and shceduling problem - GLSP (Fleischmann & Meyr
(1997)). The first three models adopt restrictive assumptions limiting to one or two items pro-
duced in a period, while the last two models are generalizations of the first ones and can be viewed
as general framework models that can be easily extended to consider characteristics observed in
real-world problems. Therefore, most LSP models presented in the literature are adaptations of
the CLSD and GLSP models (Copil et al. (2017)).
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4 DECOMPOSITION BASED HEURISTICS FOR A LOT SIZING AND SCHEDULING PROBLEM

The computational performance of CLSD and GLSP based models was studied in Almeder &
Almada-Lobo (2011) and Guimaraes et al. (2014) using branch-and-bound algorithms of a com-
mercial MIP solver. In both works, the computational results showed that the CLSD based mod-
els perform much better than the GLSP models obtaining best feasible solutions and dual bounds
and shorter running times. Furthermore, Guimardes et al. (2014) studied some reformulations
of the CLSD model using different constraints to eliminate subtours instead of the MTZ con-
straints originally used by Haase (1996). More recently, Oliveira & Santos (2017) proposed a
simple reformulation for the CLSD model that consists of using explicit binary variables to indi-
cate whether each item is produced in each period. Moreover, the authors proposed a branching
rule to guide branch-and-bound algorithms that can significantly speed up the computational
performance of the CLSD model.

In this paper, we study an LSP on multiple production lines apparent in some Brazilian meat
companies. This problem was recently introduced by Soler et al. (2019) considering industries in
which various types of production resources (like machines, tools, and workers) need to be used
to assemble the production lines. Due to the scarcity of those resources, only a subset of the lines
can simultaneously operate. The assembly of lines requires various operational procedures that
consume significant production time. On the other hand, this type of industry usually operates
eight hours a day, and a general cleaning of the machines and tools need to be carried out at the
end of each production day in order to avoid contamination, requiring the disassembly of the
production lines. Therefore, in this problem, the production lines must be assembled only at the
start of each production period (a day) and remain working until the end of the period when they
must be disassembled for the cleaning process.

Moreover, in this type of industry the production lines are specialized and therefore, for each item
there is only one line able to produce it. Therefore, the choice of lines to be assembled impacts the
set of products that can be produced in each period. The considered industry produces perishable
products (meat), which is a very important feature requiring specific attention. More specifically,
this type of industry has an extensive product catalogue and each product has its own shelf-life.
The shelf-lives can significantly vary, for example, frozen products can be stocked for some
months, while seasoned meat products can be stocked only for a few days. Finally, Soler et al.
(2019) observed the existence of significant sequence-dependent setup costs and times incurred
by changeovers between items produced, and backlogging is allowed, albeit with high penalties.

In Soler et al. (2019) the CLSDPRL model - an extension of the CLSD model - is proposed
to deal with the problem considered in this paper. More specifically, the CLSDPRL model uses
knapsack constraints to model the production resources utilization and a network based approach
to control the age of each product in stock avoiding that the items be damaged by the shelf-
life. The reformulation and branching rule suggested in Oliveira & Santos (2017) were also
incorporated in the CLSDPRL model. Moreover, Soler et al. (2019) developed a specific relax-
and-fix heuristic decomposing the set of the binary variables of the CLSDPRL model into subsets
ordered with decreasing significance. Computational results carried out with a set of instances
inspired by real-world scenarios showed that the heuristic proposed in Soler et al. (2019) is able to
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produce good quality feasible solutions and competitive dual bounds, significantly outperforming
a commercial MIP solver and an earlier relax-and-fix heuristic from the literature.

We observe that to the best of our knowledge only Soler et al. (2019) studied the CLSDPRL,
but there are some relevant works in the literature addressing similar characteristics that we
summarize next, highlighting the differences from the CLSDPRL.:

* An LSP with sequence-dependent setup times and backlogging inspired by process in-
dustries was studied in Smith-Daniels & Ritzman (1988). This problem does not consider
scarce production resources and perishable products;

* The work of Ozdamar & Birbil (1998) addressed a simultaneous lot sizing and loading
problem on multiple facilities (that we can consider as production lines). The scheduling
part of the problem is not considered, and there are no scarce resources. Moreover, the
products are not perishable;

¢ An LSP on multiple production lines that share scarce secondary resources was studied in
Almeder & Almada-Lobo (2011). Those secondary resources are used to equip the pro-
duction lines in order to produce specific items. Therefore, all production lines can simul-
taneously operate, but only a subset of the products can be produced in each configuration
of the lines. They also consider backlogging, but perishability is not considered;

* The work of Afzalirad & Rezaeian (2016) considered a pure scheduling problem with
sequence dependent setup times and scarce secondary resources. They also used knapsack
constraints to manage the resource utilization. As in Almeder & Almada-Lobo (2011),
all production lines can simultaneously operate. The lot sizing aspect of the problem and
perishable products are not considered;

» Similarly to Afzalirad & Rezaeian (2016), the study presented in Villa et al. (2018) also
considered a scheduling problem with scarce resources without considering lot sizing
decisions and perishable products;

* The study presented in Giingor et al. (2018) addresses an LSP on parallel identical pro-
duction lines that need to be equipped with secondary resources to produce the items. The
problem assumes cumulative demands that should be met only at the end of the planning
horizon. Besides that, only one product can be produced in each period and the all-or-
nothing assumption holds. Assembly of production lines and perishable products are not
considered.

Besides the synchronisation of scarce production resource for assembling production lines, an-
other important characteristic of the CLSDPRL is the perishability assumption. In the literature,
there exist relevant researches addressing production planning problems involving perishable
products. For example, Amorim et al. (2013) studied a simultaneous production and distribution
planning problem considering perishable products, sequence dependent setup times and costs,
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6 DECOMPOSITION BASED HEURISTICS FOR A LOT SIZING AND SCHEDULING PROBLEM

and delivery time windows. More specifically, they propose two mathematical models in order to
compare the batching of orders with lot sizing decisions when perishability is considered. They
showed that lot sizing is more promising than batching for make-to-order systems.

In Costa et al. (2014) a vegetable crop supply problem was addressed. The main characteristics
of this problem are the perishability of products and the backlogging assumption. The authors
developed MIP models able to map the age of the products in stock and propose a column gen-
eration algorithm to solve the problem motivated by the very large number of variables used
in the proposed model. Moreover, they considered both deterministic and stochastic demands.
The lot sizing and scheduling problem considering the characteristics of the food industry was
studied in Pires et al. (2015). More specifically, they proposed a base model considering gen-
eral characteristics of the food companies and then they developed modeling techniques in order
to consider perishability of the products, behavior of the customers, discarding costs, value of
freshness and age dependent demand. Similarly to Costa et al. (2014), the models developed in
Pires et al. (2015) also control the age of the products in stock. Through a comparative analysis,
the authors showed that the perishable nature of the food products may be crucial to reduce costs
and improve the service level.

Finally, Wei et al. (2019) studied the multi-level lot sizing and scheduling problem consider-
ing that the raw materials, intermediates and end products may be perishable. They extend a
classical MIP model to consider these perishability assumptions and, through a computational
study, they showed the importance of considering the perishability aspect for industrial environ-
ments in which this phenomenon occurs. They also observed that the perishability assumption
significantly increases the complexity of the multi-level lot sizing and scheduling problem.

3 MATHEMATICAL MODELS

In this Section, we present two mathematical models for the addressed problem. Firstly, we just
exhibit the CLSDPRL model introduced in Soler et al. (2019). Secondly, motivated by the con-
sideration of perishable products, we develop the facility location reformulation (CLSDPRL/)
of the CLSDPRL model.

Table 1 summarizes the necessary parameters and variables (including their domains). The
CLSDPRL model consists of minimise the objective function (1) subject to constraints (2) to
(20).
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Table 1 — Parameters and variables of the CLSDPRL model.

Parameters
T,L Set of periods (indexed by ¢, p), and of production lines (indexed by /)
J,K Setof items (indexed by i, j), and of resources (indexed by k)
dj;,C;;  Demand of item j, and production capacity of line /, in period ¢
a;j,my;  Per unit production time, and the minimum lotsize of item j on line /
hj,b; Inventory and backlogging costs per unit of item j
sciij,stiij - Setup cost and time for changeover from item i to j on line /
ri Amount of resource k necessary to assemble the production line /
Ry, Capacity of resource k in period ¢
slj,ac;  Shelf life of item j, and cost to assemble the line /
Y: Maximum number of items that can be produced on line [ in period ¢
P, Set of items that can be produced on line /
Variables
vef;, >0 Stock of product j with age ¢ available in period ¢ before meeting the
customer demands, where { < min{z,sl;}
qtj; >0 Quantity of item j with age { effectively used in period ¢ to meet the
customer demands
Ij;,Bj; >0 Inventory and backlogging of item j at the end of period ¢
x1jy >0 Amount of item j produced on line / and period ¢
Vijr 2 0 Auxiliary variables to represent the order of production of item j on line /
and period ¢
yijp €{0,1} 1ifitem jis the first item produced on line / and period ¢, and 0 otherwise
wyi € {0,1}  1ifitem j is produced on line / and period ¢, and O otherwise
ziijr € {0,1} 1 if there is change of production from item i to j on line / and period ¢,
and O otherwise
O € {0,1} 1 if the line [ is assembled in period 7, and O otherwise
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CLSDPRL.:
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The objective function (1) represents the sum of the inventory holding, backlogging, and setup

costs, and costs to assemble the production lines. Constraints (2) are the inventory balance con-
straints, while the perishability aspect is modeled by constraints (3)-(5). More specifically, con-
straints (3) iteratively update the age of the products in stock, while constraints (4) compute the
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amount of freshly produced stock and constraints (5) ensure that amount used of a particular age
does not exceed the available stock of that age. Constraints (6) compute the total inventory of
each item for each period, and constraints (7) ensure all demands are satisfied at the end of the
planning horizon. Constraints (8) represent the capacity constraints for production lines, while
(9) are logical constraints to ensure that a setup occurs if the production of item j takes place
on line / and period ¢. Constraints (10) ensure that the items can only be produced on assembled
lines, and constraints (11) are the capacity constraints for production resources. Constraints (12)
state that the produced items should be sequenced and constraints (13) dictate that if a produc-
tion line is assembled, only one item can be the first item produced on that line. Constraints (14)
ensure the flow balance for sequencing of lots, and (15) are the subtour elimination constraints.
Finally, constraints (16), (17), (18), (19) and (20) define the domain of the decision variables.

We highlight that the approach used to model the perishability aspect consists of controlling
the age of the products in stock. This approach was firstly introduced by Costa et al. (2014)
and adapted by Soler et al. (2019) for the CLSDPRL. The variable ve’ l indicates the amount of
product j with age ¢ available before meeting the demand of period ¢. For example, veo denotes
the amount of fresh product of type j produced in period ¢. Therefore, we have constramts “).
Moreover, variable ¢, % denotes the amount of item j with age / effectively used in period ¢ to
meet the customer demands. Obviously, the used products can not exceed the amount of available
products, hence we have constraints (5). Note that, for each product j, the amount of items in
stock with age {+1in period t + 1 comes from the products with age ¢ that were stocked and
were not used to meet customer demands in period 7. Therefore, we have constraints (3).

The inventory balance are given by constraints (2). More specifically, these constraints ensure
that the number of items effectively used in each period must be equal to the customer demands
plus the overdue balance (Bj,—1 — Bj;). Constraints (6) just capture the amount of each item
in stock in each period. It is necessary to compute the inventory holding costs in the objective
function. These constraints state that the amount of item j in stock at the end of period ¢ is given
by the sum of amounts in stock with each age /< min{z,s/;} minus the amount effectively used
in period ¢ to meet customer demands. Finally, constraints (7) are introduced to ensure that all
demands are satisfied until the end of the planning horizon. This assumption is realistic for meat
companies, since backlogging may result in loss of customers.

We note that the perishability aspect suggests the reformulation of the CLSDPRL model using
the classical facility location approach. Therefore, in this paper, we also study the facility loca-
tion reformulation CLSDPRLFL. As will be discussed later in Section 6, this reformulation can
significantly benefit our construction heuristic.

To state the CLSDPRL!” model, we introduce the continuous variables x; jtp to indicate the
amount of item j produced on line / during period ¢ to meet the demand of period p. With these
variables we can easily avoid that product j be stocked for longer than its shelf-life (s;), as
X1jtp = 0 whent < p—sl; can be used for preprocessing to eliminate such variables. Therefore, it

I i
is not necessary using the variables ve’jt7 q;t,l > and B ;. Moreover, we define the parameter hb j; ,
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1 0 DECOMPOSITION BASED HEURISTICS FOR A LOT SIZING AND SCHEDULING PROBLEM

to represent the inventory holding (if # < p) or backlogging (if # > p) cost incurred by producing
one unit of item j in period ¢ to be used in period p. The parameter hb j; is computed according
to (21).

(p—t)hj, ift<p
hb i, = S 2D
(t—p)b;, ift>p

The CLSDPRL’” is obtained adapting the CLSDPRL model according to the redefinition of the
variables x. More specifically, the CLSDPRLFL is stated as follows:

CLSDPRL" :
Min Z hbjththp+ Z Sclijzlijt+ZaC15]t (22)
Ljt.p Lt,i,j It
T
S.t. Z X[jpt = djt,Vl,j (S Pl;t (23)
p=max{lt—sl;}
Z apjXijp + Zst;ijzlij, <Cy,Vi,t (24)
JER,P ij
G .
mijwiie <Y Xijep < ZI'W[]'[,VI,] € Pt (25)
P J
Xjip 2> 0,V1, jt, p 26)

(10), (11), (12),(13), (14),(15), (17) and (19)

4 DECOMPOSITION BASED CONSTRUCTION HEURISTIC

Decomposition based heuristics usually take into account the specific structure of the addressed
problem in order to decompose it into easier-to-solve sub-problems. In Kim et al. (2010) a de-
composition based heuristic was proposed to deal with a lot sizing and scheduling problem con-
sidering setup carry-over and setup overlapping apparent in process industries that operate 24
hours a day and 7 days a week. Moreover, Cordeau et al. (2015) proposed a decomposition based
heuristic for an inventory routing problem that decomposes the original problem into an inven-
tory (planning) and a routing sub-problems. Besides that, the authors developed a reoptimisation
phase in which a feedback model is applied in order to improve the obtained solutions. Finally,
we note that a similar decomposition of the problem was explored in the relax-and-fix heuristic
proposed in Soler et al. (2019).

In this Section, we propose a decomposition based heuristic, simply referred to as D in the re-
mainder of the paper, with the aim of quickly building feasible solutions for the addressed prob-
lem. More specifically, D is a MIP based heuristic that decomposes the original problem into
L+ 1 small sub-problems and it is composed of two main steps. In the first step, we solve an
aggregated model (AG) that is easier to solve than the original problem in order to decide which
production lines to assemble in each period, while in the second step, we fix the values of §,VI,¢
from the value obtained in the first step and solve the resulting sub-problem (SP). We observe
that in the sub-problem SP there is no data dependency between the production lines and then

Pesquisa Operacional, Vol. 41 (spe), 2021: e240377



WILLY A. DE OLIVEIRA SOLER, MARISTELA O. SANTOS and KEREM AKARTUNALI 11

SP can be further decomposed into L (SPX,/ = 1,...L) single machine LSPs that can be quickly
solved by a MIP solver.

In the AG model the sequence decisions are not considered and we use the mean setup times
(87;;) and costs (SC;;) instead of the original sequence-dependent setups (st;;; and scy; ;) to ensure
an aggregated consideration of the costs and of the capacity consumption relating to the setup
procedures. Therefore, the AG model is a lot sizing problem considering the perishability and
scarce resources aspects.

Before presenting the AG model, we note that similarly to the CLSDPRL model, the D heuristic
also admits a facility location version DL For simplicity, in this section we just present sub-
problems related to the D% (the sub-problems of the D heuristic can be analogously obtained).
The AG model consists of minimising the objective function (27) subject to constraints (28),
(10), (11), (23), and (25) where the parameters S7;; and SC;; are defined by (29).

Min Y hbjipxijp+ Y, SCijwij+ Y aci 8y (27)
Ljit.p Lt Lt
s.t. Z apjxijep -‘rZSleW[j, < Cy,vVi,t (28)
J€PLp j

(10),(11),(23), and (25)

where
Z Styij Z SCij
'GPI . iGP[ .
STji=——Vl,j and SC;="—"1—" V] (29)
ARTTRRE 1=

Let § = (&,) be a feasible solution of the AG model. Fixing the value of each binary variable

Oy; from the value glt in the CLSDPRL (or CLSDPRL’) model we obtain a sub-problem SP(g).
Since & satisfy constraints (11), those constraints are not necessary in the SP(8) model. More-
over, for each product there is only one production line able to produce it, and P,/ = 1,...,L
is a family of disjoint sets. Therefore, in the SP(§) model there is no data dependency be-
tween different production lines, and then SP(8) can be further decomposed into L sub-problems
(SP! (3),1 =1,...,L), each with a single production line and only the periods where 8, =0 does
not hold. Moreover, each sub-problem SP' considers only |P;| products rather than J = ¥, |P|
products considered in the original problem. The SP’ (3) model is presented in the Appendix and
the D heuristic is summarized in Algorithm 1.

In line 3 of the Algorithm 1, the function AG(MIP_solver, AG_-MAX_time) consists of solving
the AG model using an algorithm from a software MIP_solver with the maximum running time
limited by AG_.MAX _time. In line 6, SP! (3, MIP _solver, SPlMAX,time) consists of solving

the model SP!(§) with the running time limited in SPI_.MAX _time. Therefore, we can control
the maximum computational time consumed by our D heuristic. Moreover, in this study we use
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Algorithm 1 D heuristic
1: Given parameters AG-MAX _time, SPI_.MAX _time;
2: Set FO < 0;
3: Solve AG(MIP_solver, AG_.MAX _time);
4: Capture the AG-feasible solution g;
5:
6

for/=1,...,Ldo
Solve SP/ (S,MIP,solver, SPIMAX,time);

7. if SP! (g, MIP _solver, SPlMAX,time) admits solution then

8: Capture the objective function value f;

9: FO « FO + f;
10:  else
11: Stop. D heuristic can not to find a feasible solution;
12:  endif

13:  Capture the solutions X;jp,Vj € P11, p, Wiji,Vj € P,t, ¥,j;,Vj € Piyt, and 2y, Vi, j € P15
14: end for

the IBM Cplex as the MIP_solver. In Section 6 we present computational results using different
values for parameters AG.IMAX_tme and SPI_.MAX _time.

We highlight that the proposed D heuristic was able to find feasible solutions for all test instances
used in this study as reported in Section 6. However, since the aggregated model AG uses the
mean setup times, we cannot theoretically guarantee that D heuristic can provide a solution for
all feasible test instances. Therefore, in lines 7 to 11 of the Algorithm 1, we include a condition
for the cases in which D heuristic fails to provide feasible solutions. In these cases, the user can
set alternative values for parameters S7;; and SCj;.

Finally, we note that a similar decomposition of the problem was explored in the relax-and-fix
heuristic (RFH) proposed in Soler et al. (2019). However, the computational results presented
in Section 6 show that our D heuristic significantly outperforms the RFH with respect to the
observed running times and objective function value. This fact occurs because the aggregated
model AG proposed in this paper is able to provide better assemble patterns of the production
lines than the RFH, primarily for large-sized test instances.

5 IMPROVEMENT HEURISTICS

In this Section, we present two MIP-based heuristics in order to improve the feasible solutions
built by our D heuristic. More specifically, we propose a stochastic fix-and-optimise heuristic
that decomposes the problem by periods and a local search algorithm induced by local branching
constraints.
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5.1 Stochastic fix-and-optimise

Fix-and-optimise (FO) heuristics have been used to solve a range of production planning prob-
lems. Some successful examples are described in James & Almada-Lobo (2011) for single and
parallel machine LSP, in Toledo et al. (2015) for multi-level lot sizing problems, and in Soler et al.
(2019) for an LSP with demand choice flexibility. The FO heuristic was proposed by Pochet &
Wolsey (2006) and it starts with a feasible solution on hand and iteratively looks for a new so-
lution by solving a small subproblem (SSP) in which just a few binary variables of the original
problem (and all possible continuous variables) are optimised, while the other binary variables
have their values fixed in the incumbent value.

In this paper, we propose a stochastic FO heuristic that can be viewed as a particular case of the
heuristics proposed in James & Almada-Lobo (2011) and Soler et al. (2019) in which only one
neighborhood structure is considered. More specifically, the proposed heuristic decomposes the
problem by periods and, in each iteration, we randomly select a set S composed of the binary
variables associated to k'C adjacent periods to be optimised, while the binary variables in the
set BV \ S have their value fixed, where BV is the set of all binary variables of the addressed
problem. Initially, each set S has the same probability of being selected. However, according to
the frequency fs in which set S have been selected, its selection probability is updated according

. _fs . L .
to the function P(S) = e~ %, where A > 1 is a parameter empirically determined. Moreover, the
algorithm also avoids the case of the same set being selected in two consecutive iterations.

We note that the SSP subproblems obtained in each FO iteration are simply solved by a com-
mercial solver within a specified maximum time SSP_MAX _time. We have established two stop
criteria for the FO heuristic: 1) three consecutive iterations without improvement in the objective
function value; and ii) reaching of the maximum running time.

Finally, Algorithm 2 details the proposed FO heuristic. In line 16 of the Algorithm 2, the function
SSP(S,X, MIP_solver, SSP_.MAX _time) consists of solving the subproblem SSP using a MIP
solver with the maximum running time fixed by SSP_.MAX_time. The SSP is obtained from the
CLSDPRL model by fixing the value of the binary variables in the set BV \ S in incumbent value
X.

In Algorithm 2, the repetition structure defined by lines (7) to (14) is introduced with the aim of
selecting a subset S of the binary variables of problem to be optimized in the current iteration.

f
This structure ensures that a randomly selected set S is accepted with probability P(S) = e
and the loop is interrupted only when a set S is accepted.

5.2 Local branching based heuristic

In this paper, we also study a simple neighborhood search algorithm induced by local branching
constraints. This local branching heuristic (LB) is a deterministic improvement approach that
can be used alternatively to the proposed (stochastic) FO heuristic. More specifically, the LB
heuristic starts with a feasible solution on hand and in each iteration it explores a neighborhood
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Algorithm 2 FO heuristic

1: Let X = (8,w,5,Z) be a feasible solution;

2: Let fo be the incumbent objective function value;

3: Let BV the set composed of all binary variables of the problem;

4: fs< 0,V SCBV;

5: while Stop criteria are not reached do

6 accept < 0;

7 while accept =0 do

8 Randomly choose a set S composed of all binary variables associated with k¢
contiguous periods;

9: Randomly choose o € [0,1];
. _Js

10: if « <e 7 then

11: accept < 1;

12: fs < fs+1;

13: end if

14:  end while

15:  Solve SSP(S,X, MIP_solver, SSP_MAX _time) obtaining the objective function value f
and the solution X557;

16: if f < fo then

17: fo<+ f;
18: Y(—XSSP;
19:  end if

20:  Update stop criteria;
21: end while
22: return fo;

of the incumbent solution looking for new feasible solutions. The explored neighborhoods are
defined according to the local branching constraints that were introduced in Fischetti & Lodi
(2003).

Since the choice of the lines to be assembled impacts the set of products that can be produced,
the binary variables & = (J;,) play an important role in the solution process deciding the value of
some other binary variables. Besides that, as observed in our D heuristic, when we fix the value
of the & variables we obtain a subproblem that can be effectively solved by a commercial MIP
solver. Therefore, in our LB heuristic we emphasize these variables to define the neighborhoods.
‘We observe that a similar distinction between binary variables in a local branching based heuristic
was explored in Fischetti et al. (2004) for a telecommunication network design problem.

Let § = (8;,) be a feasible solution for the binary variables 8. Adapting the definition presented
in Fischetti et al. (2004), the k“-OPT neighborhood of the solution § (indicated by A(8,k%5))
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kLB

is composed of the matrices &' that differ from & in the value of at maximum entries. More

specifically, 8 € A(8,k8) when & satisfies constraints (30).

Z (1—51,)+ Z 5lz§kLB. (30)

11:8,=1 1,1:8,,=0

Therefore, in each iteration of our LB heuristic, we just include constraints (30) (defined accord-
ing to the incumbent solution 3) in the original CLSDPRL (or CLSDPRLf%) model and solve
the resulting subproblem SLB(§, k8 ). Fischetti et al. (2004) observed that adopting small values
for parameter k (e.g., k*% € {2,4,6}), the subproblem SLB(§,k#) can be much easier to solve
than the original problem using a MIP solver. We also observe that according to constraints (13),

(10) and (30) we can show that (31) and (32) are valid constraints for subproblem SLB (3, k).

Y (1 ZW) + ) (Zyljt> < KB, 31)

Li:8=1 Jjeh 11:8,=0 \J€h
B
Z (1 - Z let) + Z (Z let> < K- Yiz- (32)
Le:8;=1 Jjep 14:5,=0 \JEP

Note that, the incumbent solution 8 belongs to its neighborhood A(g, Kk B) Yk, i.e., 8 is a feasible

solution for subproblem SLB(§,k"8). Therefore, in order to avoid an algorithmic stagnation, we

also add the tabu constraints (33) to each subproblem SLB(§,k5).

Y (1-&)+ Y &>1 (33)

1,1:8,=1 1,:8,,=0

Finally, we specify two stopping criteria for the LB heuristic: i) the observation of a cycle of
solutions, i.e., when the heuristic obtains a feasible solution that was earlier obtained; and ii)
reaching the maximum running time. Algorithm 3 presents a pseudo-code for the proposed LB
heuristic.

6 COMPUTATIONAL RESULTS

In this section, we present computational results in order to study the efficiency of the proposed
approaches. We observe that the used test instances that are described in Section 6.1 and the com-
putational implementation of the proposed heuristics (in C programming language) are available
at the home page https://inma.ufms.br/docentes/willy-alves-de-oliveira/willy/.

6.1 Test data

We present a computational study in order to evaluate the effectiveness of the proposed model
and heuristics. The computational study is carried out using a data set proposed by Soler et al.
(2019) and composed of 100 test instances. According to Soler et al. (2019), the data set covers
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Algorithm 3 LB heuristic

Let X = (8,w,7,Z) be a feasible solution;
Let fo be the incumbent objective function value;
Let k'8 be a integer parameter specified by the user;
Best_fo < fo;
while Stop criteria are not reached do
Update constraints (30), (31), (32), and (33) according to the incumbent solution S
Solve SLB(§, k") obtaining a solution X with objective function value fo;
X« X;
if fo < Best_fo then
Best_fo < fo;
end if
12:  Update stop criteria;
13: end while
14: return Best_fo;

D U R

—_
- O

a broad range of scenarios and was generated in line with real-world data observed in some meat
industry companies.

Next, we present a brief description of the considered test instances and we note that a detailed
discussion about the adopted parameter settings is presented in Soler et al. (2019). We use the
notation p € U|a,b] to indicate that we generated integer parameters using uniform distributions.

* Number of production periods: |T'| € {10,12,14}; number of production lines: |L| €
{7,10}; number of products: |J| € {45,80,90,110}; and number of scarce resources types:
K| €{5,6,7}.

* Production capacity: Cj; = 480; unitary processing time: ¢;; = 1; and minimum lot sizes:
mp; = 2.

* Inventory holding costs: i; € U[1,10]; and backlogging costs: b; = 10h;.

* Setup times: st;;; € U[15,45]; and setup costs: sc;;; = 2st;;.

Cy— Hl,li],n{stzij}?’— ¢*

i , with @7 as specified in

* Demand of the products: dj; € U |0,

Table 2.

* Amount of resources necessary to assemble the lines: ry; € U[0,2],k > 0 and ro; € U|[5,10]
(resource k = O represents the workers).

* Capacity of the scarce production resources: R, = max {l rrllaxL{rkl}, o Z rkl}, with
=L 1€]L)
¢, as specified in Table 2.
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* Shelf life of the products: sl; € U[4,T].

» Costs to assemble the production lines: ac; = Y rexriy, where rey € U[9?, ¢¢] with ¢ and
@¢ as specified in Table 2.

e Maximum number of different products that can be produced in each line and period:
Y: = 7, with 7 as specified in Table 2.

* Set of products that can be produce on each line: P, built by randomly allocating each item

to a line.

Finally, we remark that the test instances are grouped into five classes, each with 20 test instances
representing a specific industry size. The parameter settings adopted in each class are presented
in Table 2.

Table 2 — Characteristics of the five classes of test instances.

Class |T| L] | |KI o' o of ¢" ¢ v
1 10 7 45 5 100 08 06 0 0 6
2 100 10 8 6 100 08 06 0 0 8
3 14 10 9 6 9 06 05 0 0 8
4 12 10 110 7 9 06 055 100 150 8
5 14 10 110 7 9 06 055 50 150 8

6.2 Computational resources and efficiency measures

The proposed model, heuristics and the benchmark approaches from the literature were imple-
mented in C++ language using Concert Technology of the MIP solver Cplex 12.6. The computa-
tional experiments were run on a computer with two processors Intel Xeon E5-2680v2, 2.8GHz,
10 cores, 2 threads/core, 25 MB SmartCache, and 128 GB RAM memory. The models and sub-
problems related to the heuristic approaches were solved by the Cplex software using default
settings suitably limiting the maximum running time.

In general, for each instance, we have used two efficiency measures to evaluate the computational
performance of the studied methods:

* the percentage deviation (gap) of the best obtained feasible solution (z7) from the known

dual bound (2),i.e., gap = 100 ( 2% ). Obviously, dual bounds can be obtained from Cplex
when solving the models CLSDPRL and CLSDPRL/’. However, we highlight that the
RFH heuristic can also provide dual bounds as proved in Soler et al. (2019). Moreover,
the dual bounds obtained from the RFH heuristic significantly outperform the dual bounds
obtained from Cplex for some large sized test instances. In this paper, we have used the

best of these three obtained dual bounds to compute the gaps; and
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¢ the observed running time (in seconds).

For each class of instances and solution method, we have reported the average (AG), the best
(BG), and the worst (WG) gaps, the standard deviation of the gaps (SDG), the average running
time (RT), and the number of instances in which, at least, a feasible solution was obtained (FS).

6.3 Numerical tests

In computational tests, we first analyze the performance of the constructive heuristics and the
proposed models considering different time limits. Then, we analyze the solutions considering
the improvement heuristics.

6.3.1 Analysis of mathematical models and constructive heuristics

In Table 3 we analyse the computational performance of the models CLSDPRL and CLSDPRL/”
(simply referred to as M and ML, respectively) of the D heuristic and its facility location version
DL, both proposed in this paper, and of the RFH algorithm proposed by Soler et al. (2019). We
have performed tests adopting different maximum running times in order to perform a sensitivity
analysis. In Table 3, the adopted maximum running times in seconds are noted as a subscript in
the name of each method.

Considering the performance of the CLSDPRL and the CLSDPRL!” (columns M and MfZ,
respectively), we can see that both models presented similar results for classes 1 and 2, while
CLSDPRL model presented significantly better results than CLSDPRL” for classes 3 and 4.
Although CLSDPRL!” presented better gaps for class 5, we note that CLSDPRL was able to find
feasible solutions for more test instances justifying the observed gap difference. Therefore, we
conclude that the facility location reformulation of the original model was not a viable strategy
for solving large-sized test instances, likely due to the higher number of variables required to
define CLSDPRL”.

We also note that both models faced difficulties to find feasible solutions for some large-sized
test instances from classes 4 and 5. More specifically, CLSDPRL provided feasible solutions for
16 and 14 test instances from classes 4 and 5, while CLSDPRL ' for 13 and 12 test instances,
respectively. Finally, we observe that the obtained mean of the average gaps (AG) ranging around
30% for both models clearly justify the development of specialized heuristic approaches. Note
that, in Table 4, we present the average objective function values (OF) and the average dual
bounds (DB) obtained for each model, which demonstrates that CLSDPRL” presented slightly
better dual bounds than CLSDPRL for all classes.

Table 3 also presents the results for the D heuristics and its facility location version D%, succes-
sively fixing the maximum running time (7y;;,,) to 900, 1800, and 3600 seconds. For all adopted
values for parameter Tj;,,, DL presented superior results than D with respect to the solution
quality. Therefore, different than the behavior observed for the MIP models, the facility location
reformulation significantly benefited our D heuristic.
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Table 3 — Computational results for the MIP models and for the constructive procedures.

Models Literature D heuristics
Msso MLk, | RFHogy  RFHsg0 Doono Dij,  Diswo  Dffy  Dison  Diy
AG 0.02 0.01 0.09 0.08 0.35 0.35 0.35 0.35 0.35 0.35
BG 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cl WG 0.06 0.06 1.35 1.35 2.38 2.38 2.38 2.38 2.38 2.38
RT 935 851 48 48 23 19 23 19 23 19
FS 20 20 20 20 20 20 20 20 20 20
AG 0.09 0.09 0.15 0.12 0.82 0.82 0.82 0.82 0.82 0.82
BG 0.00 0.00 0.03 0.00 0.04 0.04 0.04 0.04 0.04 0.04
C2 WG 0.27 0.23 0.51 0.50 3.63 3.63 3.63 3.63 3.63 3.63
RT 3600 3399 426 426 137 88 137 88 137 88
FS 20 20 20 20 20 20 20 20 20 20
AG 35.26 59.70 29.71 10.79 20.58 13.42 13.55 9.78 10.64 9.53
BG 11.14 19.19 4.44 1.93 2.24 1.93 2.24 2.61 2.61 2.61
C3 WG 72.59 83.90 80.77 36.26 43.35 43.52 37.28 27.16 27.16 27.16
RT 3600 3600 844 3538 702 708 1605 1615 3424 3416
FS 20 20 20 20 20 20 20 20 20 20
AG 48.80 56.90 31.31 9.01 13.10 10.43 10.96 9.06 9.80 8.69
BG 15.40 27.58 6.61 3.05 3.95 4.65 3.95 4.71 5.21 3.74
C4 WG 74.62 70.93 55.24 16.68 26.11 20.66 19.13 17.51 14.23 17.51
RT 3600 3600 900 3600 762 766 1668 1671 3473 3481
FS 16 13 19 20 20 20 20 20 20 20
AG 65.40 57.64 49.60 15.26 15.73 12.59 12.92 9.89 10.16 10.21
BG 51.50 28.77 30.85 5.64 10.73 5.54 7.85 5.44 545 4.72
C5 WG 86.14 78.86 70.27 26.49 26.72 19.55 19.97 15.37 14.03 16.68
RT 3600 3600 900 3600 827 835 1716 1741 3527 3544
FS 14 12 15 20 20 20 20 20 20 20
AG 2991 30.91 22.17 7.05 10.11 7.52 7.72 5.98 6.36 5.92
BG 15.61 15.11 0.00 2.13 3.39 243 2.81 2.56 2.66 2.22
Mean WG 46.74 46.80 80.77 16.26 20.44 17.95 16.48 13.21 12.29 13.47
RT 3067 3010 624 2242 490 483 1029 1027 2116 2110
FS 18 17 19 20 20 20 20 20 20 20

In general, for D heuristic, when we increased 7};,,, we obtained better solutions. However, for
DL, we have not observed significant differences in the solutions’ quality when we increased
parameter Tj;,, from 1800 to 3600 seconds. This fact encourage the possibility of using Df sLoo to
build an initial feasible solution and then apply an improvement heuristic.

The computational performance of the RFH heuristic is reported as benchmark for the algorithms
proposed in this paper. We can see that, RFH failed to provide feasible solutions for 6 test in-
stances when we adopted 7;;, = 900 seconds, while good feasible solutions were obtained for all
test instances when 77;, = 3600, significantly overcoming the MIP models as already observed
in Soler et al. (2019).

Although RFH provided slight smaller gaps than our D heuristic for instances from classes 1
and 2, we observe that D heuristic consumed significantly less running times for theses classes.
We also highlight that for both maximum running times adopted for RFH (7j;, = 900 and
Tyim = 3600) our D (and also D) provided significantly better feasible solutions and consumed
slightly less running times than RFH for large-sized test instances from classes 3, 4, and 5 (and in
general). Moreover, Df, sLoo significantly overcame RFH3¢00 providing an average gap of 5.98%,
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while RFH340 presented an average gap of 7.05%, and significantly less computational time
(1027 seconds) in comparison to RFH3g00 (2242 seconds).

Table 4 — Primal and dual bounds obtained by the MIP models.

Cl Cc2 C3 C4 C5
OF DB OF DB OF DB OF DB OF DB
Mszgoo | 50935 50927 | 63603 63545 | 194597 114293 | 384519 174662 | 696031 211573
MEE | 50935 50928 | 63605 63551 | 357799 115126 | 442264 174973 | 600448 212750

6.3.2 Analysis of improvement heuristics

Next, we analyse the computational performance of the improvement procedures, as presented
in Table 5. Here, we fixed the maximum running time to an hour for all considered methods.
This adopted maximum running time was suggested in Soler et al. (2019) in line with real-world
conditions observed in meat industry companies.

We note that the proposed improvement heuristics (FO and LB) start from a feasible solution
requiring the previous application of a construction procedure. Since RFHgg is not able to pro-
vide feasible solutions for all test instances and RFH3409 consumes the available computational
time (3600 seconds) for most test instances from classes 3, 4, and 5, RFH is not suitable for this
purpose. Therefore, we have used the more promising D heuristics (D) and D)) to build the
necessary initial feasible solutions.

We recall that we need to specify parameters k’C (number of adjacent periods to be optimized
in each iteration) and K (maximum number of §-variables that can have their value changed
from the incumbent solution) in order to define our FO and LB heuristics, respectively. Accord-
ing to preliminary computational experiments we have empirically decided to adopt k¢ = 3,
k'8 = 6 when using DgoLo and k2 = 4 when using Df 8L00 to build initial feasible solutions. In Ta-
ble 5, these adopted parameters are noted as subscripts in the name of the improvement heuristic,
which is preceded by the name of the construction heuristic, e.g., D¥%,-FO5 indicates that the
solutions built by Dff, were improved by FO heuristic adopting k O — 3. Moreover, in Table 5,

the reported running times (RT) include the time spent in the construction phase.

Note that, for classes 1 and 2, both heuristics reduced the initial gaps by approx. 50%, providing
good quality solutions. For these classes, we highlight that FO heuristic presented significantly
smaller computational times than LB heuristic. For classes 3, 4, and 5, the FO and LB heuristics
presented only limited improvements to the initial solutions, and for both heuristics the more
effective strategy is to spend 1800 seconds to build the initial solutions.

Finally, we observe that for classes 3, 4, and 5, FO heuristic outperformed LB heuristic with
respect to the obtained gaps. The better combination of constructive and improvement methods
was Df é‘oo -FO3 presenting an average gap of 5.76%. We believe that we have high quality feasible
solutions on hand and a significant gap reduction may be obtained improving the quality of the
incumbent dual bounds.
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Table 5 — Computational results for the improvement heuristics.

FO heuristic LB heuristic

D{%-FO3  Dil-FO3 | D{G-LBs  Dify-LBy

AG 0.17 0.17 0.17 0.20
BG 0.00 0.00 0.00 0.00

Cl WG 1.05 1.05 1.49 1.49
DPG 0.34 0.33 0.35 0.36
RT 616 616 1807 1611
AG 0.40 0.40 0.55 0.60
BG 0.00 0.00 0.02 0.03

C2 WG 1.43 1.43 2.12 2.12
DPG 0.42 0.43 0.50 0.53
RT 3600 3600 3600 3455
AG 11.40 9.46 12.61 9.69
BG 1.93 2.60 1.93 261

C3 WG 43.52 26.80 39.95 27.16
DPG 8.97 6.10 9.35 6.16
RT 3600 3600 3600 3600
AG 9.93 8.88 10.08 9.04
BG 447 4.44 4.52 471

c4 WG 19.79 17.51 19.32 17.51
DPG 4.24 3.49 4.04 3.68
RT 3600 3600 3600 3600
AG 11.22 9.83 12.52 9.88

BG 5.53 5.44 5.54 5.44

C5 WG 17.24 15.13 19.55 15.16
DPG 331 2.49 3.64 251
RT 3600 3600 3600 3428
AG 6.62 5.76 7.19 5.88
BG 2.39 2.50 2.40 2.56
Mean WG 16.61 12.39 16.48 12.69
DPG 345 2.57 3.58 2.65
RT 3003 3003 3241 3139

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper we studied a lot sizing and scheduling problem apparent in some food industries.
In the addressed problem, a large catalog of perishable products need to be produced in various
production lines. Moreover, the production lines share the same production resources and due
to the scarcity of these resources, only a subset of the lines can operate in each period. We
have proposed a MIP model using the facility location strategy to model the perishability aspect,
a decomposition based heuristic to build feasible solutions, and two MIP based improvement
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heuristics. A computational study carried out using a data set from the literature demonstrated
that:

* the facility location reformulation of the standard model is not an effective strategy from
the computational perspective due to its size;

* the proposed constructive heuristic can significantly benefit using the facility location
strategy to model the perishability aspect;

* the proposed constructive heuristic can obtain superior results in comparison to a recent
heuristic from the literature and a commercial MIP solver for large-sized test instances;

* for small-sized test instances, the improvement heuristics can significantly improve the
solutions built by the constructive heuristic. However, only limited improvements can be
obtained for large-sized test instances within the adopted maximum running times.

Through the study presented in this paper, we have identified some directions for future research.
Firstly, we observe the necessity to obtain strong dual bounds in order to effectively evaluate the
quality of the solutions on hand. This aspect can be addressed by developing approaches based
on Lagrangian relaxation or Dantzig-Wolfe/Benders decomposition. The application of such ap-
proaches is also encouraged by the specific structure of the problem with three well-known com-
ponents: lot sizing, scheduling, and knapsack. Moreover, we believe that improvement heuristic
approaches can be further investigated, e.g., variable neighbourhood search, tabu search, and
simulated annealing.
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APPENDIX

In the second iteration of D heuristic proposed in Section 4, we need to solve the sub-problems

SP!(8),1 = 1,--- L obtained by fixing the values of the binary variables 8 from the values

obtained in the first iteration (8). Using the same parameters described in Table 1, for each
[=1,--- L, the sub-problem SP!(§) is defined as follows.

SP!(5):

Min Y (hjlji+b;Bj)+ Y

s.t. Z ¢y =djt+Bj,1—Bji,Vt,j € P

1.jEP, ijeP.t

sl J f

/=0

! ! i
1 . /
ve', [l =vely — ¢, Vje Pt <slj—1

Jit+1

0 .
vey, =xji,Vj € Pt

! ! . ’
gy <vely,Vje Pitt <sl;

sl sl

/ J !

Li= Y, vej— Y. diVi€ Pt

’ ’
t =0 t =0

Bjr =0,Vjehr

Z ajjxj+ Z stiijzije < Cyy, Vt
JjeR, i,jePR,

Ciy .
mpiwj < xjp < ijt’vj € Rt
J
Z Wit < YOy, Vi
jep

Wi =Yji + ZZijz,W EP,t
ich,

Z Vit < 17VI
JEP

Y+ Yz > Y, zjisVj € Pt
ich ich

Vj[ Z‘/ll+1_nt(1 _Zijl)v\v/tai7j€])l

8ClijZijt + Zacz5lt
t

(34)

35)

(36)
37)
(38)

39)

(40)
(41)
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(45)

(46)

(47)

As mentioned earlier, the sub-problem SP'(§) also admits a facility location version SPL, (3)

that can be easily adapted from the presented sub-problem SP!(§).
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