Pesquisa Operacional (2017) 37(3): 571-595

© 2017 Brazilian Operations Research Society
‘ SOBRAPO Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

chj doi: 10.1590/0101-7438.2017.037.03.0571

MULTICOMMODITY NETWORK FLOWS WITH NONCONVEX ARC COSTS

Philippe Mahey'! and Mauricio C. de Souza*”

Received May 30, 2017 / Accepted December 1, 2017

ABSTRACT. We present a survey on nonconvex models and algorithms for multicommodity network de-
sign problems. We put in perspective the alternative modelling of these problems, traditionally represented
by mixed-integer linear programs, by separable nonconvex arc cost functions. We show in particular that
some problems take profit of a continuous modelling and explore the case of capacity expansion of com-

munications networks.
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1 INTRODUCTION

Multicommodity flow network optimisation problems have been widely studied and surveyed,
mostly in the linear case (see [1] among others) and to some extent in the nonlinear convex case
(see [77]). Most applications are still very challenging in the Network Design domain for many
practitioners in different fields like transportation, communications or energy systems (see [7]).

We will focus here on the nonconvex nature of the cost function for general continuous mul-
ticommodity flows and this will include purely combinatorial problems like the pure concave
cost network loading problem known to be NP-hard. To be more precise, we will consider the
following model defined on a digraph G = (V, E) with a set K of commodities sending a fixed
quantity of flow by between pairs of origins and destinations (si, %), k € K:

Minimise )",z fe(xe)
(MCF) subjectto x,— ) xif =0,YVee T
x* e Fr,Vk e X

where Fy is the set of feasible k-flows:

Fe=x* | Ak =p5 %k >0
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572 MULTICOMMODITY NETWORK FLOWS WITH NONCONVEX ARC COSTS

the matrix A defining the arc-node incidence matrix of graph G. Observe that the objective func-
tion is a separable arc cost function of the total flow x, = 3", x¥ using arc ¢ € Z. In some cases,
additional arc costs depending separately on each commodity must be introduced, but we will
not give any special insight to them as they do not induce any notable additional difficulties in
the numerical treatment of these models.

We point out that this model includes the capacitated case as the capacity constraints can be
embedded in the arc cost functions f, which are supposed to be only piecewise smooth with
values in the extended real line R U {4-00}. Then it can also tackle the case of discrete decisions
at the condition that these are defined arcwise. In particular, we will study multicommodity
flow network problems with piecewise convex arc costs which appear in the modelling of the
Capacity and Flow Assignment (CFA) problems for Network Design of general data networks.
On the other hand, we will not survey (unless some algorithmic tool discussed later will need to
refer to it) topological constraints on the graph like path constraints or connectivity constraints.

As a basic case, the fixed cost loading problem will be modelled by the step function

0 ifx,=0

Jed =1 p iy 50

Fixed-cost as well as general concave-cost network flow problems have been largely studied since
the early results of Tuy [89]. Most of these contributions, well reported in Pardalos and Rosen’s
survey [79], focussed on Branch-and-Bound like approaches applied to single-commodity or
transshipment models. Further enhancements have improved these techniques (see [14]) and ad-
hoc software have been produced to solve large classes of Global Optimisation problems (see
[51, 57]). These algorithmic schemes can apply too to a large class of integer flow network de-
sign problems that we will not survey here (see [11]).

The concave-cost multicommodity flow problem is much less studied in the literature even if
constructive surveys have been published in the nineties (see [7, 72]). Most original approaches
have faced the necessity to decompose w.r.t. commodities which led to Lagrangian relaxation and
Branch-and-Price strategies. We will present in Section 3 the basic references that established the
most noticeable results and algorithmic recent contributions on the fixed-charge and concave-cost
Network Design problem. From uncapacitated to multiple facilities models, we will observe the
importance of both polyhedral study and Benders decomposition in the literature.

The situation which will be focussed in the last section is the network design problem where
routes and capacities have to be simultaneously assigned to meet a given multicommodity de-
mand of traffic. Routing corresponds in general to convex arc costs (average delay, congestion
measure, QoS...) and is usually modelled with continuous flow variables associated with each
commodity unless additional constraints are present like unsplittable routing for example. On the
other hand, capacity assignment has been modelled by integer decision variables as the choice is
in practice modular with a finite number of available capacities for each arc. So the joint Capacity
and Flow Assignment problem (CFA) is in general modelled by large-scale Mixed-Integer Non-
linear Programs which are very challenging to be solved exactly. Moreover, the combination of
both objectives means a trade-off between structural costs (capacity installation) and congestion
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costs (routing decisions) as the former tends to induce a low-cost sparse network and the latter, a
less congested dense and multi-path network (see [17]).

After recalling negative-cycle optimality conditions for single and multicommodity flow net-
works in Section 2, we present a survey of fixed cost network design problems which are cur-
rently modelled as mixed-integer multicommodity flow problems. We consider different levels
of complexity, from the pure fixed cost case to general nonconvex design cost functions, but do
limit the study to flow and capacity constraints without additional topological constraints. We
will consider in Section 4 a continuous but piecewise convex model for capacity expansion in
a network and propose some exact local and global schemes to solve it. Decomposition among
commodities is the main directive idea of many algorithms which will be compared on medium
and large-scale instances of the nonconvex multicommodity flow continuous models. Besides the
guarantees given by local optimality conditions on feasible cycles, these approaches take profit of
the existence of performant algorithms for convex cost multicommodity network flow problems,
able to produce sharp lower bounds and nice starting solutions for further local improvements.

2 NEGATIVE CYCLE OPTIMALITY CONDITIONS

We will analyse in the next section the optimality conditions for general cost multicommodity
flow problems, focussing on the difficulty to extend the classical results for single commodity
flows.

2.1 Convex costs in single and multicommodity flows

We consider first the so-called Negative-cycle optimality conditions, well-known for single-
commodity flow and examine to what extent they may be generalised to the multicommodity
case. In their simpler form, these first-order optimality conditions state that a feasible flow is
optimal if and only if there does not exist augmenting cycles with negative cost. Here, an aug-
menting cycle is a cycle of the graph such that any arc in the cycle possess a positive residual
capacity (i.e., the total flow is strictly lower than the capacity on any forward arc and strictly
positive on any backward arc of the cycle, see [1] for instance). Several authors have considered
early the extension to separable convex cost functions, see [15, 52, 55, 71, 82] and [91].

To be more precise, let us recall the optimality conditions for single commodity flow problems
with convex arc costs (a complete proof can be found in [15]).

Notation: for a given cycle ® of G and an arbitrary sense of circulation which defines a partition
of ® in two subsets of arcs, ®T for the direct arcs and ®~ for the reverse arcs, we will use the
incidence vector of the cycle & € R™ with components 6, equal to 1, —1 for the arcs in ©F, @~
respectively and O for the others. For a given feasible flow x, we consider augmenting cycles as
the ones which have a strictly positive residual capacity; i.e., a cycle ® of G is augmenting if and
only if there exists a strictly positive @ such that x 4+ «0 is feasible for any @ € [0, @]. Given a
feasible cycle ® we define its cost by:

M @) = Y ) = Y (@)

ecOt ec®~
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where fe/ T (xe) (resp. fe/ ~(x.)) is the right (resp. left) partial derivative of the arc cost function f,
with respect to x,.

GH theorem: Optimality conditions for the single-commodity case: A feasible solutionis optimal
if and only if there does not exist any augmenting cycle with negative cost.

The first interest in extending this result to MCF is the possibility to design easy-to-implement
cycle-cancelling algorithms working on each commodity separately like a decomposition
method. The second idea is to further study general continuous and piecewise smooth arc cost
functions, giving some insight towards the nonconvex case.

It is already well-known that GH theorem cannot be extended so straightforward to the mul-
ticommodity case, even in the apparently simplest situation like linear-cost capacitated MCF.
Indeed, the decomposition among the commodities in X is not possible. This of course does not
mean that we are not able to produce optimality conditions from the primal and dual pairs of LP
associated with MCF.

To illustrate the goals we aim at, we first illustrate the main difficulty on a simple example:

Let us consider the two-commodity flow network of Figure 1-a where both demands are equal to
1 and all arc capacities are equal to 1. The arc cost coefficients are simply O for the vertical arcs
and +1 for the horizontal arcs, so that the optimal solution uses the vertical arcs to send one unit
of flow from each origin to each destination. But, one can verify easily that the feasible solution
represented by the dotted paths shown on Figure 1-b does not present any augmenting cycle even
if it is not optimal.

— %

(a) (b)

Figure 1 — The linear case does not work.
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However, it is still possible to write equivalent negative cycle conditions in the uncapacitated
case with smooth convex arc cost functions. Obviously, we must add some hypotheses to ensure
that an optimal solution indeed exists, like using strongly convex cost functions or coercivity
assumptions. Ouorou & Mahey [76] have shown that it is possible to extend the negative cy-
cle optimality condition to capacitated multicommodity flow problems using arc cost functions
satisfying the following property:

A: Properties of congestion functions Let consider functions ® : C x R > R[){+o0} such that:

1. ®(c, -) is strictly convex, continuously derivable and monotone increasing on (0, ¢)

2. ®(c,0) =0and ®(c,x) - +o0ifx | ¢

Observe that the cost function acts as a barrier and, assuming that a strictly feasible solution
exists, we can skip the capacity constraints. A well known example of such congestion function
in data networks is Kleinrock’s function ®(c, x) = chx which expresses the average delay of a
traffic x on an arc with capacity ¢ assuming Poissonian hypotheses for M/M/1 queues (see [17]
for example).

Letx = Zk x* be a feasible solution of MCF such that flx) = Ze ®d(c., x.) has a finite value.
We will call a cycle ® k-augmenting if it presents a strictly positive residual for commodity k,
i.e., if we can augment the commodity flow value x¥ on the direct arcs and reduce these values on
the reverse arcs. In our model, a k-augmenting cycle is such that all reverse arcs carry a positive
value of commodity k.

Theorem 1. Assuming the congestion functions possess the Property (A), a feasible solution x*
is a global minimum of MCF if and only if, for all commodities in K, there does not exist any
k-augmenting cycle with negative cost.

Proof. See [76].

Ouorou and Mahey observed too that the result is no more valid if smoothness is not assumed.
We will analyse deeper the non smooth case in the next sections, and, in particular, we will
discuss the local optimality conditions for the model MCF when the arc cost functions f, are
piecewise convex.

2.2 Local optimality conditions for a piecewise convex MCF

We will analyse here the special case where the arc cost function is the minimum of convex
functions such that
Je(xe) = min{®(cer, Xe) + 71, 1 =0, ..., L} (D

where each function ®,; possess the Property (A) and ®'(c.r, x) < ®'(cey—1,x) for any 0 <
X < Cej—1 < Cel, I = 1,..., L (we can thus assume that each ®,; is a congestion function
as in Theorem 1). Because the motivating example of such functions is the Capacity Expansion
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problem, which will be described in Section 4, we assume w0 = 0 and 7, ;-1 < 7, Ve €
E,l=1,...,L. Wedenote in the sequel by CCE the problem of minimising the sum of arc cost
functions given by (1) subject to the MCF constraints. CCE is a piecewise convex MCEF.

Thanks to the simple separable structure of the cost function, it is possible to put down first-order
local optimality conditions for problem CCE even in the presence of breakpoints where the cost
function is not differentiable. Indeed, left and right partial derivatives do exist with respect to
all variables. This implies that directional derivatives exist in all directions, allowing to use the
first-order conditions for a local minimum: if x* is a local minimum of the function f, then the
directional derivative f’(x*; d) is non negative in all feasible directions d. We will show below
that the convexity of the ®.; functions that build the objective function f on each arc not only
allows us to characterise that condition using left and right derivatives but also turns the condition
necessary and sufficient.

For simplicity of the exposition, we assume L = 1, and thus there is one breakpoint for each arc
e expressed by a percentage Y, of coe, i.€., Pe(Coe, Xe) = Peo(Cle, Xe) + 7 fOr X, = Yecpe. For
any such local optimum, let define:

Ey = {eeZ] x: € [0, yecoe)}

Ey = f{ee f|x: € (YeCoe, Cle))

G = lee f|x: = YeC0e)
and let g = |G|. There are 28 different partitions of the set G in two disjoint subsets of arcs
G = Goi |G, i = 1,...,28, so that we can define 28 subregions of the feasible set, denoted

by C;:
Ci = {x feasible to MCF |x, € [0, yecoe] fore € Eo|_JGoi
Xe € [VeCoe, c1] fore € Er| ) Gii}

These subregions have disjoint interior points and cover the feasible set of solutions of CCE in
a neighbourhood of x*. They are defined such that x* € C;,Vi = 1,...,28. Moreover, the
objective function f is convex when restricted to any region C; and we can write optimality
conditions separately in each one of these regions. Indeed, we can associate with each arc in the
partition its "active’ congestion functions, i.e., ®(cge, x.) for e € Eg|J Go; and ®(ci,, x,) for
e € E1|J Gy, so that f(x) is simply the sum of the active functions for x € C;.

Kuhn-Tucker conditions on set C;

We define by Py the set of directed paths joining the corresponding origin and destination of a
commodity k € K. Let xi, be the amount of flow of commodity k routed on the path p € Py in
the local optimum x*. There exist multipliers u} and v,i satisfying:

ué = 8CI>(coe,x;")/8xg, 0< X;k < YeC0e, € € Ep
ule < 0®(coe. x))/0xe, x5 =0, ec Ey
ul, > 9P (coe, x})/0xe, X} = YeCe e € G
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= 0DP(Cle, X))/0Xe,  VeCOe < XJ < Cle. €€ Ej
< 0P(c1e, X7)/0Xe, X7 = VeCoes ee Gy

R o~ R~

and, for all commodity k:

Vp e P, xip >0, v,i =Zu;

eep

Vp e P, xip=0, v,i < Zu;

Recall that these conditions imply that the active paths have minimal lengths with respect to first
derivatives of the active functions associated with C;. The objective function being convex on that
region, the conditions are necessary and sufficient. Thus, at a local minimum, these conditions
must be satisfied for all subregions. A crucial question is then to identify situations where the
solution is blocked at some breakpoint which cannot be optimal. Indeed, it can be shown that,
when an arc flow is set to the breakpoint value at an optimal solution, that arc must belong to all
active paths (i.e., x¢, > 0) for all commodities using it.

Theorem 2. If x* is a local minimum of CCE, then every arc e such that x} = yeco. belongs to
every active path of every commodity routed through arc e.

Proof. Let us assume there is a commodity k with two active paths p and p’ in x* such that the
only arc € with x} = y,co; belongs to path p and not to path p’. Let us also assume that ¢ € Go;
for C; and ¢ € Gy for C,. On one hand, analysing active path p’, we have that v,l = v,%. On
the other hand, analysing active path p, we have that v} = 3", » ul >3, » u2 = v, since

ul = 9P(cop, x3)/0xs > 9P(cip, x3)/0x; > uZ, and the initial hypothesis is contradicted.  [J

Thus, a breakpoint corresponds to a kind of bottleneck arc where the total traffic is exactly equal
to the breakpoint value, i.e., xJ = > ke X, bi = YecCoe, Where K, C XK is the set of commodities
for which arc e belongs to every active path joining their corresponding origin and destination.
Note that a breakpoint is not necessarily a bottleneck in the topology of the network, but rather
in terms of attractiveness to route commodities since alternative paths may exist in the network
but are not used. Thus, any perturbation of one of the demands flowing through arc e will shift
the arc flow value by the same quantity and consequently get out of the breakpoint. That obser-
vation tends to induce the fact that the number g of breakpoints at a local minimum will remain
quite low.

Negative cycle optimality conditions

Theorem 3. A feasible solution x* is a local minimum of CCE if and only if, for all commodities
in XK, there does not exist any k-augmenting cycle with negative cost.

Proof. See [67].

Pesquisa Operacional, Vol. 37(3), 2017



578 MULTICOMMODITY NETWORK FLOWS WITH NONCONVEX ARC COSTS

Observe that the key fact which leads to the main result is that, at the breakpoints, fe/ Tx*) <
fe/ ~(x*) and the result could not have been extended to a convex non smooth congestion function
as already observed in [76]. As an illustration, let us come back to the two-commodity flow
example described in Section 2.1. We will compare two uncapacitated situations with different
piecewise linear functions on the vertical arcs (the first one convex and the second one concave
as shown on Figure 2) and the same linear cost f,(x.) = x, on the horizontal arcs so that the
optimal solution is still to route both commodities on the vertical arcs. In a first case, the arc cost

functions are given by

e f.(x.) = x, for the horizontal arcs

e fo(x.) = max{l, 2x, — 1} for the vertical arcs

Thus f is a convex function but non smooth at x, = 1. Again, let us take the feasible but non
optimal solution of Figure 1-[b]. However, there are no negative k-augmenting cycles for both
commodities!. We can check in particular that the cost of cycle ®; for commodity 1 is equal
to 0.

f,(x,) f,(x,)

I

1 X

U
>

(a) (b)

Figure 2 — Convex and concave arc costs.

In the second case, the arc cost function is

e f.(x.) = x, for the horizontal arcs

e f.(x.) = min{l, 2x, — 1} for the vertical arcs

Each arc-cost function is now concave piecewise linear and, considering the same solution as
before, we can now find a negative cost cycle, for instance, for the first commodity, the cycle
®1 has cost —4 (Fig. 2-[b]). The relation between left and right derivatives at the breakpoint is
crucial to determine whether we can use the negative-cycle optimality condition or not.

This counterexample for the convex case is due to E. Tardos [87]
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3 FROM FIXED-CHARGE TO MULTIPLE CHOICE NETWORK DESIGN

Our basic separable arc-cost model includes many well-studied situations like concave-cost or
fixed-cost network design that we will briefly survey here before extending to more complex
functions like piecewise nonlinear or step increasing discontinuous cost functions. As many in-
teresting surveys already exist on different subjects, we will not try to be exhaustive but mainly
focus on strategies which aim at decomposing among commodities. Most of the contributions,
well reported in Pardalos and Rosen’s survey [79], focus on Branch-and-Bound like approaches
applied to single-commodity or transshipment models, extending too to location problems and
Steiner trees.

General concave-cost network flow problems have been largely studied since the early results by
Tuy [89] and Zangwill [93]. Minimising a concave function on a polyhedron is known to be a
NP-hard problem in the general case (see [90] for some polynomial algorithms with series-
parallel networks, see too [80]) and early algorithms have relied on Branch-and-Bound associ-
ated with linearisation techniques (see [44, 92]) or greedy heuristics (see [6, 70]). Applications to
packet-switched communications networks have been early studied by Gerla and Kleinrock [42]
where they separated the design and routing costs and observed that a global minimum can be
reached when the concave cost function follows a power law f, (x.) = a.x$ + b,. See too [2] for
mixed-integer formulations of the piecewise linear and nonlinear concave functions and use of
Lagrangian Relaxation. Lagrangian heuristics have too been tested with relative success [74, 85].
A comprehensive survey can be found in [12].

We now discuss the Fixed-Charge Uncapacitated Network Loading problem (FCUNL) which
is too a basic brick in the modeling of challenging network design problems. By the way, the
piecewise linear concave cost network flow problem can be modeled as a FCUNL as shown
in [54], at the cost of increasing the number of arc decision variables. On the other hand, any
FCUNL model can be viewed as a step or piecewise affine cost network flow problem. The cost
function is generally represented by the following discontinuous function:

F,+ hex, forx, >0

fex) =1 for x, = 0

It is then generally approximated by a concave piecewise affine function for a small value
€, > 0 as shown in Figure 3.

An efficient procedure based on a dual-ascent method to solve FCUNL has been proposed by
Balakrishnan et al. [5]. The problem turns to be much more complex when capacities bound the
flow on each arc. The main reason is that the continuous relaxation of the capacitated model is
quite weak as discussed below while the uncapacitated polytope is very close to be integral (see
[48]).

Fixed-charge capacitated multicommodity network flow problems have been mostly studied in
the eighties and nineties decades. We send back the reader to the relatively recent survey by
Gendron et al. [41] and the references therein. Modelling the problem as a mixed-integer program
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Je(xe)

~—pe’ (xe)

0 €,

Figure 3 — Piecewise affine concave approximation.

substitutes the difficulty of handling piecewise linear approximations and concave cost functions
by the introduction of integer variables. The arc cost function is thus f(x, y) = Zk > B hekxif +
> ¢ Feye with y, € {0, 1} and we add the following coupling inequalities:

inf < CeYe,Ve € E
k

where c, is the capacity of arc e.

Lagrangian Relaxation has been applied by different authors to exploit the underlying structure of
the model, mainly in two directions: relaxing the coupling capacity constraints to decompose by
commodity and obtain shortest-path subproblems or relaxing the flow conservation constraints
for all commodities to decompose by arcs and obtain knapsack subproblems. It is well-known
(see [41] for a complete analysis) that the Lagrangian lower bound is equal to the continuous
relaxation bound which can be quite poor and a much better bound is obtained with reduced
additional costs by forcing the so-called strong inequalities

xif < ek Ye, Ve € E,Vk € K
where g, is the maximum flow allowed on arc e for commodity k (i.e., the demand by if no

individual capacities are imposed on arc e for commodity k).

Solving the Lagrangian dual problem can be a hard task when the number of dual multipli-
ers increases and this has motivated the use of sophisticated subgradient algorithms like bundle
methods [35] or the volume algorithm [8]. Crainic et al. [28] have reported extensive computa-
tional results with the bundle method on a large set of instances with up to 30 nodes, 700 arcs
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'

Figure 4 — Piecewise affine increasing function.

and 400 commodities. A rather surprising fact is that the knapsack relaxation’ performs better,
probably because the min-cost flow subproblems in the ’capacity relaxation’ are highly degener-
ate. As usual, the gap can be reduced by adding valid inequalities if their separation procedure is
not too costly. Further reduction of the gap to compute exact solutions of MCF needs branching
and the construction of Branch-and-Cut algorithms. The polyhedral structure of the multicom-
modity flow solution set has been studied by various authors (see [9, 61, 86]). Bienstock and
Giinliik [18] have analysed linear capacitated network design problems and they gave in [19] a
set of valid inequalities for the MCF-polytope, results which led to a Branch-and-Cut algorithm
(see too [20]).

Heuristic approaches have been too applied to network design problems, including capacitated
MCF, to obtain very reduced gaps on large instances (see [16, 27, 49, 53]). Lagrangian heuristics
are able to produce nice feasible solutions on these instances by branching from the fractional
nearly feasible solution given by the bundle or the volume algorithms (see [50, 56]).

Telecommunications network design problems, dealing with packet-switched traffic on large
multicommodity networks, have motivated the study of designing multiple facilities on the can-
didate arcs, turning the complexity of these models even harder. General capacitated network
loading with two type of capacities has been modelled by Magnanti et al. [62].

In the general case of linear transportation costs combined with discrete prices for each facility,
we obtain an equivalent piecewise affine increasing but discontinuous function (see Figure 4 for a
typical profile with economies of scale). Specific valid inequalities can be devised for these cases
like the residual capacity inequalities (see [3, 36]). That general model includes the well-studied
case of step increasing cost functions. Croxton et al. [29] have proved equivalence of different
model structures for the piecewise linear cost case and shown their direct link with the lower
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convex envelope of the discontinuous function (i.e., the function which epigraph is the convex
hull of the epigraph of the nonconvex original cost function). Different algorithmic approaches
have been used in practice, see in particular [30, 40] and [58], the latter authors exploring a DC
(difference of convex functions) model of the piecewise linear function (see too [39, 68]).

Another direction of active research to solve capacitated network design problems has been the
use of Benders decomposition to derive dual subproblems and new family of valid cuts (see
[25, 41] for a general presentation and [24] for a survey on the uncapacitated and capacitated
fixed-charge design problems) and various enhancements of that classical approach have been
motivated by the network design models (see [26, 32, 62, 63, 83]). Generalized Benders decom-
position can be too an interesting solution procedure to exactly solve difficult capacity and flow
assignment problems with convex flow costs [64], as the subproblems reduce to convex multi-
commodity network flow problems for which efficient algorithms have been proposed (see [77]
for a survey). In [45] non-convex, non-linear multicommodity flow problems issued as special
cases of the capacity and flow assignment problem are solved by a Separable Augmented La-
grangian Algorithm. We will get back to these nonlinear models studying the capacity expansion
problem in the next section.

Finally, we observe that MCF is a special case of general MINLP (Mixed-Integer Nonlinear Pro-
gramming) for which recent developments are promising (see [46] and [22] for a survey). Many
potential applications of these new algorithms have a potential multicommodity structure like
water networks [21], gas networks [4, 69], energy networks [31, 75] or transportation networks
[38], and naturally communications networks remain a very rich field for challenging network
design problems (see for example [23] and [73]).

We will now consider specific contributions to the special situation where we want to expand
(and buy) capacities on some arcs of a formerly dimensioned network to support additional
demand across the network.

4 A CONTINUOUS MODEL FOR CAPACITY EXPANSION

A few authors have considered the case where some existing topology with already installed
link capacities do exist and we want to expand these capacities to face an increasing traffic or to
reduce congestion at minimal cost (see [13, 43, 78]). Of course that situation includes the general
case but we focus here on the situation where the initial fixed cost is zero.

4.1 Continuous vs. discrete models in network design

Back to model MCF, we will use in parallel the implicit arc-path model which is designed in the
following classical way.

Recall (c.f., Section 2.2) that for a given a commodity k, we consider the set of directed paths
Py, joining the corresponding origin and destination, and xy;, the amount of flow of commodity k
through the path p € P;. This set may be the set of all simple directed paths or a restricted set
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of feasible paths, for instance with a limited number of hops. Let a, be the arc-path incidence
vector defined by

¢ 1 ifarceep

a;, = .
kp 0 otherwise

Each component x, of the vector x denotes the total flow on arc e. Then

W= Y Y

keX pePy

The set of multicommodity flow vectors, denoted by M(G, T'), can be described by the implicit

arc-path formulation, i.e., for each commodity k flowing between nodes s and #; the active paths
k

Xkp = b*.

must satisfy Y ¢ p,

We assume now that each arc in the topology is expandable to a capacity cje > coe at a given
fixed cost 7. Let 6, = c1e — o be the increment of capacity. The capacity expansion model will
minimise the total congestion cost plus the expansion fixed costs. Using the previously defined
arc congestion cost functions ®(c,, x.), we can define first a mixed-integer nonlinear model for
the capacity expansion problem:

Minimize ) ,[®(coe + e Ve, Xe) + e Vel
subjectto x € M(G, T)

Xe < Coe + GeYe, Ve € E

ve €{0,1},Ve e £

(DCE)

We will now study the relationship between DCE and a continuous model which gets rid of any
boolean decision variables y:

Minimize Ze Je(xe) = min{®(coe, xe), P(cle, Xe) + e}
(CCE) subjectto x € M(G,T)
Xe < Cle, Ve € E

Remarks.

1. As shown on Figure 5 where the nonconvex resulting arc cost function of CCE is repre-
sented, we denote by y.co. With 0 < y, < 1, the breakpoint at which expansion occurs.
¥ can thus be interpreted as the relative congestion of an arc beyond which the network
manager is willing to pay for expansion. Thus 7w, = ®(coe, YeC0e) — P (Cle, YeCoe) 1S the
expansion price converted in congestion cost units.

2. The arc cost function in CCE is continuous but nonconvex and non smooth at the break-
point y,coe. It is shown in [60] how one can easily compute a lower bound on the optimal
value of CCE by convexifying each arc cost function and summing up the resulting gaps.

Trivially, if (x, y) is feasible for DCE, x is feasible for CCE. The following lemma is a direct
consequence of the cost structure of DCE.
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fx) ' !

X0 Y Cy X1 Cy X

Figure 5 — The integrated function of congestion and expansion costs.

Lemma 1. Let (x*, y*) be an optimal solution of DCE; then, we have the correspondences:
x: > YeCOe = Y;k =1

X5 < Yecoe = yi =0

Moreover, if there exists an arc e with X} = YecCoe, then y; can be either 0 or 1, so the optimal
solution is not unique.

Proof. The two cases where x} is not a breakpoint are straightforward. If x} = y.co., we have:

D (Coe, YeCve) = D (Cle, VeCoe) + Te

which shows that the value of the arc cost function does not change whenever y;isOor1. [
The correspondence between optimal solutions of DCE and CCE follows immediately:

Theorem 4.

i) If (x*, y*) is an optimal solution of DCE, then x* is optimal for CCE and the cost values
are equal.
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ii) If x* is an optimal solution of CCE, then (x*, y*) is optimal for DCE with:

=0 if 0<x) < YeCoe
vid =1 if YeCoe < XF < Cle
€ (0,1} if x7 = yeCoe

Observe that these results apply to optimal solutions. Feasible solutions for DCE where x, <
YeCoe and Y, = 1 01 Yoo, < X < cpe and y, = 0 have no counterpart on CCE, but the above
results show that these solutions can never be optimal. We have analysed before /ocal optimal
solutions of CCE (c.f., Section 2.2). The concept of a local optimal solution of DCE is not clearly
defined because of the discrete nature of variables y. But using the correspondence defined above
in Theorem 4 part ii), we can define such a local optimum for DCE.

Finally, we would like to point out that the tight relationship between the optimal solutions of
both models does not mean that they are equivalent. The continuous model is in general not
able to take in consideration additional constraints on the topology which, in the contrary, can
be generally done by the y-variables. Nevertheless, we will mention a few common situations
where it is possible to convert such constraints from DCE to CCE:

a. Many models of network design require symmetry of the link capacities. This is easily
modelled in DCE by the constraint y;; = y;; for some arc e = (i, j). To obtain the same
effect, we must add the following constraint in CCE:

(xij — vijcoij)(xji — yjicoji) = 0

b. Cutset constraints: Let A be a subset of nodes of V and C4 the corresponding cutset.
Forcing the subset A to be connected to the other nodes by at least one expanded arc can
be modelled in DCE by ), ye = 1, which is equivalent in CCE to:

max >1

e€Ca YeCle

Observe that both constraints derived in a. and b. define polyhedral nonconvex regions of RIZ!.

4.2 Local minimisation by cycle-cancelling algorithm
Based on the local optimality conditions described above, a cycle-cancelling algorithm has been
derived in [66] (see also [84]) with two main characteristics:

e Successive cycle cancelling steps are performed by moving the flow of one commodity at

a time, so that the algorithm is a decomposition method.

e Nonlinear and non smooth arc cost functions are allowed, as long as right derivatives are
not greater than left derivatives at the breakpoints.
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The algorithm makes use of the concept of k-feasible negative cycles where it is allowed to
increase strictly the k-th flow and thus strictly decrease the cost function. Referred to as CCA
in the following, it includes an adaptation of Barahona-Tardos [10] technique to select the most
negative family of node-disjoint cycles.

The algorithm is resumed below:

Algorithm CCA

e Find a feasible initial solution x°. Set r = 0.

o If there exists no k-feasible cycle with negative cost, then stop: x’ is a local minimum for
CCE.

o For some k, let O, be a k-feasible cycle such that A(x’, ®;) < 0 and, for each arc e € @,
compute the greatest step o, such that:

!

fo el ) < £ (D) = 1!, ©r)
if e € ©; and x! > yco,

!

Lol ) < £ () — A(x', ©,) and @, < ycge — X
if e € ® and x! < ycqe

, , (2)
LTl —oe) > £, (1) 4+ A(x", ©;) and o, < min{xX’, x! — ycoe},
if e € ©; and x! > ycoe
fEal =) = £, () + A", ©) and e, < XX,
if e € ©; and x! < yco,
e Let o = minyepfo,} and set:
xk,t+1 — xkt + atet (3)

e Sett =1t + 1 and iterate.

where 6; in the update formula (3) denotes the incidence vector of the cycle ®;.

The complexity of that computation is only apparent, as we can observe that, in many cases, a
larger step can be performed when one reaches the breakpoint value. Indeed, suppose that x/, <
¥ coe and that the flow augments until x! + o, = yco. with fe/_(xé +o,) < fe/+(xé) —c(x!, ;).
Then, as fe/_(xé + ) > fe/+ (xé + a.), we can still augment the flow in the interval [y coe, c1¢)
corresponding to the adjacent subregion. That remark justifies the fact that the one-dimensional
search on the negative cycle can be directly performed on the whole interval [0, ci,), even if the
function is nonconvex and non smooth. The situation where one arc is set to its kink value is
however possible. Convergence to a local minimum is guaranteed by the following results:

Lemma 2. After each cycle cancelling step of algorithm CCA the objective function strictly
decreases.
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Proof. All cycles being disjoint implies that the multidimensional function ¢ (o1, ..., o) =
fx+> IL=1 «;0;) is separable with respect to cycles and can be minimised separately for each
disjoint cycle. The partial derivative of ¢ with respect to o at oy = 0 is simply d¢ /9 (0) =
A(x, ®y), the negative cost of cycle ;.

At any cancelling step, the directional derivative is strictly negative. As the cycle is k-feasible,
the residual capacity of the cycle is positive. But the function ¢y is strictly convex which implies
that the objective function f strictly decreases at each step. U

The complete convergence study of the algorithm relies on the properties of descent algorithms
(see [66, 84] for details), so that we end with the following convergence result:

Theorem 5. Suppose there exists a strictly feasible multicommodity solution to the problem with
capacities c1, for all e € E, then the sequence generated by algorithm CCA with feasible step
sizes converges to a point which satisfies the local optimality conditions of CCE.

Proof. The objective function is currently continuously differentiable on the whole intervals.
Then, as the direction is sufficiently decreasing by Lemma 2 and the Armijo’s condition is always
satisfied when the step is not limited to the interval bounds, it is a well-known result (see for
instance [34]) that the method will converge and each limit point is such that the gradient of f is
zero or, equivalently, there are no negative cost k- feasible cycles for all commodities. U

Observe that, in the original paper by Weintraub [91], many assignment subproblems are solved
at each step to approximate the most helpful cycle, in the sense of minimising the decrease of
the objective function after the flow update. This choice was exploited later by Barahona &
Tardos [10] to obtain a polynomial algorithm in the linear case. Our choice is different as it relies
on the idea of an approximation of the steepest-descent direction.

At this point it is interesting to note that the classical Capacity Assignment — Flow Assignment
(CA-FA) approach for the capacity expansion problem may return a solution that is not a local
optimum of CCE. The CA-FA algorithm (see [37, 42]) alternates between a capacity assignment
phase with fixed routing and a flow assignment phase with fixed arc capacities until no further
improvements are possible. In order to apply the CA-FA algorithm to the capacity expansion
problem, we must decide which one of the two capacities ¢, and c1, (consequently which one
of the two ’active’ congestion functions @ (cq., x.) and ®(cie, x¢)) to assign whenever an arc
e is at the breakpoint, i.e., x, = ycoe. Suppose, without loss of generality, that CA-FA assigns
cpe to such an arc. Let us assume that the routing does not change in the flow assignment phase
and the algorithm stops at a solution x with an arc e at its breakpoint that is not a bottleneck arc.
Since the capacities are fixed for each arc, the problem in the flow assignment phase is a convex
MCEF, and x satisfies the optimality conditions in Theorem 1 (c.f., Section 2.1). This means that
Y veor L) =Y ,co- PL(X.) = 0 in either sense of circulation for cycle ©, where ®, is the
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active congestion function of arc e given by the previous capacity assignment phase. But in the
sense of circulation in which the arc at its breakpoint is a forward arc we have that

Yo fTE) < Y BLE) as f T (veoe) < B(yeoe).

ecOt ecOt
and the solution x returned by CA-FA is not a local optimum of CCE, which would return a better
solution. This happens because assigning a capacity for each arc the CA-FA restricts the search to
only one of the 2161 regions induced by the set G = {e € E | X, = yeco.} (c.f., Section 2.2). On
the other hand, in the CCA the 2/¢! regions are taken into account by the right and left derivates
in the negative cycle optimality conditions.

We present some numerical results obtained with CA-FA and CCA. Our main interest in pre-
senting these results is twofold: (i) to show that we can significantly improve feasible solutions
obtained by convex approximation applying a local optimisation procedure; and (ii) to show that
the solution obtained with CA-FA may actually not be an local optimum, which case CCA can
assure local optimality.

The convex approximation proposed by Luna & Mahey [60] is used to generate lower bounds
of the global minima and initial solutions. The procedure explores the separability of the ob-
jective function by convexifying each arc cost function. It allows the use of efficient algorithms
for convex multicommodity flow problems. In particular, the Proximal Decomposition method
described in Mahey et al. [65] can be used to solve the convex multicommodity flow problems
found in the initial convex approximation and in the routing phases of the CA-FA algorithm.
Large networks with different topologies were used by Resende & Ribeiro [81] in the context
of private virtual circuit routing. In these problems, a frame relay service offers virtual private
networks to customers by provisioning a set of permanent (long-term) private virtual circuits
between endpoints on a large backbone network. Table 1 summarises the characteristics of the
networks considered.

Table 1 — Network characteristics.

Instance  Topology V| |E| K
att AT&T Worldnet backbone 90 274 272
fr250 Frame-relay 60 688 250
fr500 Frame-relay 60 906 500
hier50 2-level hierarchical 50 148 245

We solved to local optimality the CCE model on the topologies shown in Table 1 fixing the
ratio c1./co. = 4 and the parameter y = 50% (as these had been the most difficult scenarios in
our preliminary experiments). Table 2 displays the results obtained when first performing CA-
FA and then CCA. The first three columns presents the instance identification, the demand of
each commodity, and the initial capacities. We report, for the initialisation phase, the relative
deviation between the cost of the optimal solution of the convexified problem in the objective
function of CCE and the lower bound given by the convex approximation, and the iterations
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to solve the convex approximation with the Proximal Decomposition algorithm proposed by
Mahey et al. [65]. Then, we report, the relative deviation with respect to the lower bound given
by the convex approximation and the number of arcs indicated for expansion at the local optima
obtained. In the two last columns, we report the total number of iterations needed by the Proximal
Decomposition algorithm and, in parenthesis, the number of convex routing problems solved by
the CA-FA, as well as the iterations needed by the CCA to assure local optimality (O means that
CA-FA obtained a local optimum).

Table 2 — Results for larger networks with c¢{./cg, = 4 and y = 50%.

Initial Solution Local Optimum

b coe d(%) it d(%) exp it(CA-FA) it(CCA)

att 1 10 275 2302 210 122 426 (2) 0
fr250 1 4 69.0 191 423 55 718 (4) 0
fr250 2 4 618 177 337 189 1933 (5) 120
fr500 1 4 658 255 398 162 902 (3) 0
fr500 2 4 418 234 272 387 6796 (11) 0
hier50 1 10 36.6 1270 294 86 3715 (4) 53
hier50 2 10 9.3 2827 72 119 3175(3) 0

For these larger networks, the average and the maximum deviation reductions are 16% and 28.1%
respectively. It is worth to note that in 2 out of 7 cases the solution obtained by CA-FA was not
a local minimum since CCA was executed for some iterations.

4.3 Towards global optimisation of CCE

Encouraged by the quality of local optimal solutions, further enhancements have been proposed
in [84] and [33] towards global optimisation of the capacity expansion model.

In the first reference [84], the CCA was embedded in a tabu search algorithm to explore the
solution space beyond the first local optimum. The authors reported significant improvements
in a majority of instances, mainly when the initial local optimum presented more arcs at the
breakpoints values. Basically, the tabu search works in two distinct phases. In the first phase, the
algorithm accepts a cost increasing solution by driving the search from a local optimum x* to
the boundary of one of the subregions composing the neighbourhood of x*. This is achieved by
pushing flow around positive-cost cycles to bring the flow on an arc e to its breakpoint y,co.. In
the second phase, CCA is applied. The use of a short-term memory structure ensures that CCA
does not get back to x™*, and leads the descent to a different local optimum.

In [33], the authors proposed an implicit enumeration scheme which was tested on a large
set of nonconvex instances of CCE. These tests include comparisons with global solvers like
BARON [88] and LINDO Global [59]. The implicit enumeration algorithm combines informa-
tion from both DCE and CCE. A partial solution defines the capacities of a subset of arcs assign-
ing values to the corresponding binary variables of DCE. A key feature of implicit enumeration
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is the ability to generate information that can be used to exclude all the completions of a partial
solution from further consideration. This is done with CCE, which is used either to provide lower
and upper bounds on the value of the best feasible completion or to show that there is no feasible
completion.

Giirel [47] addressed CCE by branch-and-bound where the congestion cost function is a convex
increasing power function. The problem is then reformulated as a conic mixed integer program-
ming problem and solved by using branch-and-bound softwares equipped with efficient second-
order conic programming algorithms. To reformulate the problem as a second-order conic pro-
gramming problem the convex terms in the objective function are first moved to constraints by
adding a set of auxiliary variables bounding their values. The resulting problem has a linear ob-
jective function but a set of non-linear constraints, which are then replaced by conic quadratic in-
equalities. Numerical results reported indicate that some practical size problems could be solved
to the optimum.

5 CONCLUDING REMARKS

We have proposed a survey on nonconvex multicommodity flow problems focussing on sepa-
rable continuous models which are currently solved or approximated by MINLP schemes. The
main fact is that local optimality conditions can decompose by commodities in some specific
situations like the piecewise convex case which is a current model in telecommunications net-
work design with QoS driven cost functions. The copious literature on fixed-cost MCF shows
that mixed-integer formulations are still the most natural modelling to treat these basic Network
Design problems and their numerous variants. Nevertheless, we have shown that piecewise affine
or even piecewise convex arc cost functions appear in frequent situations like the capacity ex-
pansion problem with nonlinear congestion costs and they take profit of the possibility to exploit
directly the optimality conditions of the continuous non convex models. The latter lead natu-
rally to decomposition among commodities where one can benefit from the existence of efficient
computational tools for convex MCF.
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