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ABSTRACT. We consider the problem of finding the minimum uncovered area (trim loss) when tiling non-
overlapping distinct integer-sided squares in an N×N square container such that the squares are placed
with their edges parallel to those of the container. We find such trim losses and associated optimal packings
for all container sizes N from 1 to 101, through an independently developed adaptation of Ian Gambini’s
enumerative algorithm. The results were published as a new sequence to The On-Line Encyclopedia of
Integer Sequences®. These are the first known results for optimal packings in non-decomposable squares.
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1 INTRODUCTION

This article addresses a problem we call 2OKPN (2-dimensional Orthogonal Knapsack Problem
in an N×N square), defined by:

Given an N×N square container and the set of N−1 square items sized {1×1, 2×2, · · · , N−
1×N−1}, find a packing of a subset of the items with the minimum uncovered area (trim loss),
obeying:

1. All packed items must be placed entirely inside the container;

2. no two packed items may overlap;

3. all packed items must be placed with their edges parallel to those of the container.
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2OKPN can be considered the meeting point of two related problems: the OR (Opera-
tional Research) researcher’s 2-dimensional Orthogonal Knapsack Problem (2OKP) and the
mathematician’s Squaring the Square (STS).

2OKP (among other variations) searches for a packing of rectangular items into a rectangular
container to minimize the trim loss. Therefore it is a generalization of 2OKPN to rectangles
of arbitrary width and height. Although exact solution methods have been proposed — see Iori
et al. (2021) for a survey — the fact that the problem is NP-hard motivates research on heuristics,
which have less computational cost but usually find only “good” suboptimal solutions. See Wei
et al. (2009), Wei et al. (2011), Leung et al. (2012) and Shiangjen et al. (2018).

STS (among other variations) looks for perfect squared squares: squares that can be tiled by dis-
tinct smaller squares with no trim loss. The classical solution approach models the packing as an
electrical network, each square corresponding to a wire (Figure 1). The wire has unit resistance,
and the current that flows through is numerically equal to the side length of the square. To find
perfect squared squares, a graph algorithm enumerates these networks and converts them into the
perfect packings they represent (Brooks et al. (1940)). Whenever this enumeration finds a perfect
squared square, it corresponds to the optimal solution of some 2OKPN instance, for example
Figure 1 is the optimal 2OKPN solution for N = 110. But since Brooks’ method can only find
perfectly decomposable squares (zero trim loss), it cannot be used to solve 2OKPN in general.
Although Biró & Boros (1984) later generalized these networks to handle the non-perfect case,
we have not attempted to adapt these methods to solve 2OKPN.

Figure 1 – Example electrical network corresponding to a perfect squared square.
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2 ENUMERATIVE METHOD

Working on STS, Gambini (1999) proved that 110 is the minimum side length of a square that
admits perfect decomposition. Questions like the one he answered (“what is the smallest...”)
generate renewed interest in STS, even though much is already known about the problem. In fact,
YouTube channel Numberphile created a video featuring STS and some “what is the smallest”
questions. By now, the number of views almost reaches 1 million.

Gambini’s result was derived from a search algorithm henceforth called g. Given an N×N square
container, g searches for a perfect decomposition by considering all possible placements of dis-
tinct smaller squares on delimited plates of the container. A plate is a line segment formed by the
top edges of already placed squares (Figure 2). It is delimited if the plates to its left and right are
both higher than it (a container wall is always considered higher). For example, in Figure 2, the
leftmost and rightmost plates are the only delimited ones.

Figure 2 – Example of plates in a square container.

Gambini argues that a perfect packing (zero trim loss) can always be achieved by placing each
square at the leftmost end of the smallest-width delimited plate (henceforth SWD plate). This
inspires a backtracking algorithm for finding perfect packings, where each square is considered
for placement at the SWD plate. The backtracking step occurs when the width of the next SWD
plate is smaller than the side of any unplaced square. Figure 3 illustrates part of the execution of
g for a 5×5 square container.

The original purpose of g is to find perfect dissections with zero trim loss. Therefore, for non-
decomposable N-sided containers, the algorithm terminates without finding a solution. Further,
in the context of 2OKPN, there is no guarantee that g will find the packing with minimum trim
loss, since the backtracking step may cut away the path to such a packing.
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Figure 3 – Partial execution sequence of g for a 5×5 square container. The “X” means that no square fits
on the current SWD, therefore backtracking occurs.

Even so, we have independently devised an adaptation to the algorithm that allowed us to solve
2OKPN. It consists of modifying the set of available squares by including extra units of the 1×1
square. For example, suppose we know N = 100 (which is non-decomposable) admits a packing
with 1 unit trim loss. Then, by adding an extra 1×1 square to the set of available squares used by
g, the algorithm will find the solution (using both 1×1 units). Removing the excess square, we
are left with the packing shown in Figure 4. Hereafter we write g(N,e1) to denote the packing
obtained by g on an N×N container when g is supplied e1 extra units of the 1×1 square. Notice
that the actual packing found by g may contain less than e1 extra units.

We initially thought the idea was novel (although simple), but later found Lesh et al. (2004) had
mentioned it as a suggestion (but not implemented it).

Since our objective was to solve every 2OKPN from N = 1 to N = 101, we created a method to
make use of information obtained from previous solutions. We call it SUB, for speculative upper
bound. To explain it, consider e(N)

1 the minimum trim loss possible on an N×N square container,
a quantity only dependent on N, and that is unknown a priori. When g solves an N-sided square,
we take note of e(N)

1 . Later, when solving for N + 1, we take e(N)
1 as a speculative upper bound

e1
(N+1) for e(N+1)

1 . Also, we define the lower bound e1
(N+1) = 0 (we know by Gambini’s proof

that 1 is a lower bound, but we chose not to rely on this result and instead rediscover it). What
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Figure 4 – Minimum trim loss packing for an N = 100 square container. In the detail, the trim loss is
indicated by a 1×1 grey square.

follows is a search for the exact value of e(N+1)
1 which resembles a binary search, and we describe

by the procedure:

1. (Initialization): Assign e1
(N+1)← 0 and e1

(N+1)← e(N)
1 .

2. (Validate speculative upper bound): Execute g
(

N +1,e1
(N+1)

)
. If no solution is found,

assign e1
(N+1)← e1

(N+1)+1 and e1
(N+1)←max

(
2e1

(N+1),1
)

, then repeat step 2. Other-

wise, if g found a solution that uses eg extra units of the 1×1 square, assign e1
(N+1)← eg

and go to step 3.

3. (Binary search): If e1
(N+1) ≥ e1

(N+1), go to step 4. Otherwise, execute

g
(

N +1,
⌊(

e1
(N+1)+ e1

(N+1)
)
/2
⌋)

If no solution is found, assign e1
(N+1)← e1

(N+1)+1. Otherwise, if g found a solution that
uses eg extra units of the 1×1 square, assign e1

(N+1)← eg. In any case, repeat step 3.

4. (Solution found): The minimum trim loss possible is e(N+1)
1 = e1

(N+1).
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Step 1 is necessary because the initial value of e1
(N+1) (which is e(N)

1 ) may not be a valid upper
bound for e(N+1)

1 . But when step 1 completes, this is no longer an issue, and the remaining steps
implement a binary search attempting to execute g as few times as possible. Note that the “max”
operator in step 2 is necessary because e1

(N+1) may have been 0 before the reassignment.

3 PROBLEM REDUCTION

Given an instance of 2OKPN, we call trivial the solution where the N − 1×N − 1 and 1× 1
squares are the only ones packed. The trivial solution has trim loss N2− ((N−1)2 +1) = 2(N−
1). As for other solutions, consider what happens when a square with side length J > N/2 is
packed: after it, no square larger than N− J can be packed. Therefore, a lower bound LJ on the
achievable trim loss is:

LJ = max

(
0,N2−

(
J2 +

N−J

∑
j=1

j2

))
(1)

Consequently, the J× J square can only be present in a non-trivial optimal solution if:

LJ < 2(N−1) (2)

=⇒ J2 +
N−J

∑
j=1

j2 > (N−1)2 +1 (3)

=⇒ −J3

3
+ J2N +

3J2

2
− JN2− JN− J

6
+

N3

3
− N2

2
+

13N
6
−2 > 0 (4)

If N is understood as a parameter, the left-hand side of the inequality in Equation 4 is a poly-
nomial pN(J) on the variable J. According to the Cardano formula, it has three roots j1, j2 and
j3:

j1 = N−
√

25+96N−11
4

(5)

j2 = N−1 (6)

j3 = N +

√
25+96N +11

4
(7)

Since N ∈ N∗, all three roots are real numbers. If we further restrict ourselves to N > 2, then
j1 < j2 < N < j3. Also, the derivative of pN(J) at J = j1 is always negative when N > 2 (we
omit this calculation), therefore pN(J) is positive for all J < j1 and negative for all j1 < J < j2.

With this, the solution to the inequality in Equation 2 where 0 < J < N−1 and N > 2 is

J < N−
√

25+96N−11
4

(8)

In other words, squares larger than the right-hand side of Equation 8 can be removed without
compromising optimality. We reduce the 2OKPN instances in this way before executing the
enumerative algorithm described in the previous section.
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4 RESULTS

At the time of writing, we have solved all 2OKPN instances with 1≤N ≤ 101 and thus proposed
a new sequence (A334905) to The On-Line Encyclopedia of Integer Sequences® (OEIS Founda-
tion Inc. (2022)). The Nth term of the sequence is the trim loss of the solution to 2OKPN. The link
https://oeis.org/A334905 is the entry for the sequence, and illustrations of the optimal packings
obtained (Figure 4 is an example) can be viewed at https://oeis.org/A334905/a334905 3.pdf.

All results were obtained by a single-threaded program running on a computer with Inter(R)
Core(TM) i5-2410M CPU @ 2.30GHz and 4GB physical memory. In what follows, we omit
instances with N < 15 because they have trivial optimal solution. Figure 5 illustrates the total
time taken (in hours) to solve each 2OKPN instance for 15 ≤ N ≤ 101 and their optimal trim
losses. For the full numerical data, see Table 1. Trim loss and execution time are correlated, in
the sense that, in 99% of the cases where e(N+1)

1 ̸= e(N)
1 , solving for N +1 takes more (resp. less)

time than solving for N when e(N+1)
1 is greater (resp. less) than e(N)

1 .
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Figure 5 – Total solution time for 2OKPN instances.

Figures 6, 7 and 8 break down the duration of individual executions of g for each N (there are
three separate figures for ease of presentation). Note that Figure 6 measures time in minutes,
whilst Figures 7 and 8 measure time in hours. Before inspecting the empirical data, one may
predict that the duplication of e1

(N+1) in step 2 of SUB would likely lead to long search times
because the search tree of g(N +1,e1

(N+1)) gets bigger as e1
(N+1) increases. But this hypothesis

is proved false by the aforementioned Figures, since the darkest-colored cells are almost always
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Table 1 – Solution time of 2OKPN instances, in seconds.

N Time (s) N Time (s) N Time (s)
15 1 44 2186 73 2096
16 15 45 802 74 34244
17 19 46 6915 75 1389
18 4 47 19951 76 10824
19 19 48 5618 77 64632
20 108 49 4199 78 15070
21 2 50 5511 79 89434
22 7 51 22867 80 89147
23 107 52 13451 81 2170
24 12 53 2376 82 1908
25 3 54 2128 83 10304
26 4 55 6032 84 5904
27 54 56 16590 85 3438
28 11 57 77 86 31590
29 171 58 6349 87 7340
30 33 59 945 88 5700
31 57 60 3007 89 46312
32 76 61 1196 90 39359
33 109 62 23248 91 313399
34 988 63 2517 92 29939
35 176 64 9702 93 17103
36 1874 65 4869 94 123594
37 522 66 6738 95 227112
38 4158 67 8572 96 74983
39 727 68 1556 97 91843
40 1171 69 17335 98 103538
41 1382 70 1741 99 4968
42 15744 71 6114 100 4507
43 20552 72 1588 101 123763

to the left of the bold cell in each row of these Figures. In other words, for the majority of
the values of N, SUB spends more time executing g(N,X) where X < e(N)

1 than it does where
X ≥ e(N)

1 . This means that proving that a solution is optimal takes more time than finding this
solution.

Another way to look at this is to notice that g(N,X) for X < e(N)
1 amounts to an exhaustive search,

as opposed to X ≥ e(N)
1 , where the search is terminated as soon as a solution is found. So even

though the search tree is bigger in the latter case, its exploration stops early when a solution is
found, whereas in the first case the whole tree must be traversed, taking more time.
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Figure 6 – Breakdown of times (in minutes) for g(N,X) as executed during the solution procedure, for
N < 42. Bold cells indicate e(N)

1 = X . Values are rounded to one decimal place.

Lastly, notice SUB will have to execute g(N,e(N)
1 −1) at some point to prove that X = e(N)

1 is the
optimal solution for N. Therefore, if SUB had executed g(N,X ′) for any X ′ < e(N)

1 − 1 prior to
this, it turns out (a posteriori) to have been a waste of time, since the search tree of g(N,X ′) is
contained in the tree of g(N,e(N)

1 −1).
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Figure 7 – Breakdown of times (in hours) for g(N,X) as executed during the solution procedure, for
42≤ N < 74. Bold cells indicate e(N)

1 = X . Values are rounded to one decimal place.
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Figure 8 – Breakdown of times (in hours) for g(N,X) as executed during the solution procedure, for
N ≥ 74. Bold cells indicate e(N)

1 = X . Values are rounded to one decimal place.
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5 CONCLUSION

We considered the problem of finding the minimum uncovered area (trim loss) when tiling non-
overlapping distinct integer-sided squares in an N ×N square container. We solved it for all
container sizes N from 1 to 101 using a binary search procedure called SUB, an independently
developed adaptation of Ian Gambini’s enumerative algorithm (here called g). The results were
published as a new sequence to The On-Line Encyclopedia of Integer Sequences®. Though this
text was only concerned with this particular problem, notice that the solution procedures devel-
oped here can be readily applied to the more general case of packing rectangles in a rectangular
container.

We showed that it is effective to use the optimal trim loss of the previous container to initialize
the N×N search. But SUB still cannot avoid calling g(N,X) with X smaller than the optimal
number e(N)

1 of extra 1×1 squares, because this is necessary to refute that there exists a packing
with X < e(N)

1 . The empirical data proved that these calls represent most of the search time,
whilst g(N,X ′) for X ≥ e(N)

1 takes actually less time than intuition would predict a priori. As
future work, we suggest to use these observations as starting point to develop different solution
procedures aiming to reduce the overall search time.
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