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ABSTRACT. The study proposes the development of a framework that can take advantage of the Design
and Analysis of Computer Experiments (DACE) more efficiently. The need for rapid product development
cycles creates a demand for tools that aid in decision making. One of these tools is Computer Aided En-
gineering which uses the Finite Element Method that requires a long time to be executed. The philosophy
of Design of Experiments and the construction of empirical models have been used together with physical
simulations. After a theoretical review, two cases were applied to product development and the results were
analyzed. A theoretical framework based on the experience gained from the empirical studies conducted was
proposed. Despite the existence of many studies on the subject where mathematical and statistical aspects
are explored, there is a lack of studies related to practical and operational issues regarding the application
of DACE.
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1 INTRODUCTION

This article discusses the theme “Design of Experiments (DoE)” when applied together with
physical simulation. In this scenario, the DoE is called DACE with stands for Design and Analy-
sis of Computer Experiments. In the literature, DoE is defined as a combination of treatments that
allows building relationships between the effects of a set of controlled factors, called indepen-
dent variables, over one or more measurement variables, called dependent variables (Box et al.,
1978; Montgomery, 2012). In product development, the relationships between product systems
and subsystems can be established using the mathematical expression.

Sometimes, the cost of this process (in terms of physical prototype build and test setup) is very
large. An alternative to minimizing costs is to use computational physics simulations, also known
as virtual prototyping or Computer Aided Engineering (CAE) (Stinstra & den Hertog, 2008;
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Stinstra, 2006; Sheng et al., 2015). Although providing clear advantages in terms of time and
cost, virtual prototyping can also require considerable time to generate a response (Bates et al.,
2006). A new approach to solving this problem is the use of meta-models. A meta-model is an
interpolator obtained from an experimental plan that simulates the physical behavior of product
using virtual prototyping. The advantage is the achievement of a much shorter time product
development time.

However, there are differences between the classic DoE and the DACE (Kleijnen, 2005), the main
one being the absence of random variation between two replicate runs of one treatment (two sim-
ulations performed with the factors at the same levels produce the same response values). With
regard to objectives, DACE seeks a basic understanding of the system and does not test hypothe-
ses about factors, differently of traditional DoE that espouse testing hypothesis about factors.
The goal in these cases is to seek robust configurations of the factors at the expense of optimal
settings. Computational experiments can easily have more than 10 input variables and a large
number of dependent variables, which may be prohibitive in traditional DoE. Another difference
is the complexity of the relationship between the response and output variables; while the DoE
technique only enables the construction of linear polynomials, the computational experiments,
DACE, can result in non-linear relationships.

With regard to the literature review, most of the studies are generally concerned about the math-
ematical properties of DACE and interpolating models that are fitted to the data after the exper-
iment (Beers & Kleijnen, 2004; Fang et al., 2000; Kamiński, 2015; Pronzato & Müller, 2012;
Sacks et al., 1989; Simpson et al., 1997; Stinstra & den Hertog, 2008; Stinstra et al., 2003). This
work aims to contribute to the development of the operational aspects of the implementation of
metamodeling strategies in the context of DACE.

This paper has five sections. The introduction is presented at Section 1. Section 2 shows the
theory fundamentals for this work. Section 3 presents two cases of DACE application in man-
ufacturing industry. From the presented cases, Section 4 proposes a framework for use in
experimentation in virtual environments. Finally, Section 5 presents the conclusion.

2 DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS: STRATEGY AND
METAMODEL BUILDING

2.1 One-shot and sequential strategy

According Shen et al. (2018), the significance of computer experiments in scientific and techno-
logical development has been recognized and well studied in recent years. Yang & El-haik (2008)
show the use of DoE as a technique for building empirical models represents significant progress
in the process of product development, ensuring the robustness of the product developed and
the efficiency of the process as a whole. Because computer simulations can be time-consuming,
computer experiments are conducted to produce surrogate models. Unfortunately, its application
is not widespread around companies in the world (Araujo et al., 1996; Arvidsson et al., 2003; Fu-
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jita & Matsuo, 2005). One reason for its limited usage is the obligation to build multiple physical
prototypes that have the features specifically selected for each treatment.

The approach to overcome this difficulty is to use computational physics simulations, known as
Virtual Prototyping, which is defined as a computer code that connects the input variables to the
output variables, thus producing approximate numerical solutions of the equations that govern
physical phenomena. In these cases, the meta-model nomenclature is usual (Huang et al., 2007).
The metamodel refers to the interpolated models fitted over experimental data from several runs
of computer experiments. The goal is to build empirical models emulating the behavior of the
original code, thereby allowing the study of a large number of scenarios within a shorter time.

However, according to Shen et al. (2018), variables in many computer experiments have physi-
cal meanings according to the background scenario and obey the dimensional constraints. Even
though the derived emulator fits the data well, it may generate predictions that do not satisfy the
physical constraints when interpolating and extrapolating.

Using the classical DoE in computational experiments as a sample plan is not the best option, as
it could result in the low efficiency in prediction of outputs, owing to the lack of fit in relation to
the DACE approach (Bates et al., 2006; Beers & Kleijnen, 2004; Jin et al., 2001; Kleijnen, 2005;
Lehman et al., 2004; Sacks et al., 1989; Simpson et al., 1997, 1998, 1997; Welch et al., 1992).
Even so, specific experimental designs have been developed for the computing environment. In
the existing literature (Rosenbaum & Schulz, 2012; Yang & Xue, 2015) two main strategies are
proposed to deal with the particularities of computational experiments. The first, known as one
shot, involves running a single experiment and adjusting a single metamodel that represents the
entire sample space. In this approach, it is important for the experimental design to explore all
points because no information is known about the functional form of the relationship between
the response and the x-factors.

One-shot strategy three entities are defined (Kleijnen & Sargent, 2000): 1) the problem, 2) the
simulation model, and 3) a metamodel (as seen in Figure 1).

With the three well defined elements, 10 steps must be performed serially in order to achieve
success in building a reliable metamodel. These 10 stages comprise the standard framework
for the use of the one-shot strategy (Kleijnen & Sargent, 2000). These steps are as follows: 1)
determine the purpose of the metamodel; 2) identify the inputs and their characteristics (factors
noises or signals); 3) define the project area, where X levels, N and M, are specified; 4) identify
the outputs and features; 5) specify the accuracy required for the metamodel; 6) specify the
metrics used to determine the validity of the metamodel; 7) specify the structure and shape of the
metamodel; 8) specify the experimental design that will be used to evaluate the metamodel; 9)
adjust the metamodel; and 10) determine the validity of the metamodel using the metric defined
in step 6.

The one-shot strategy results in a metamodel constructed with only one experiment that encloses
the entire sample space. In this strategy, it is important for the experimental design to explore all
points because no information is known about the functional form of the relationship between
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Figure 1 – Components of the “one-shot” strategy for metamodel building (Kleijnen & Sargent, 2000).

the response and the x factors. In this way, its application is simplified, since the only information
that must be decided before its application in relation to the experimental design is the number
of rounds and the criterion of spreading of points that will be used. However, there is a clear
disadvantage of this application when the simulation code (model) has a high cost to be used or
consumes a lot of computational resources to perform a single simulation (Keys & Rees, 2004).

The lack of information a priori causes the one-shot strategy to place equal importance on all
regions of the sample space, which sometimes results in a large sample plan. To overcome this
characteristic, a strategy for metamodels construction that has been previously studied is the
sequential approach (Box et al., 1978; Long et al., 2015; Yang & Xue, 2015). Unlike the one-
shot approach, this approach construct metamodels with several sequential experiments in which
new items are added to an initial design according to some specified criteria a priori. Figure 2
shows a simplified flow chart of the steps for using this strategy, as there seems to be no consensus
regarding the number and sequence of steps (Pan et al., 2014).

Unlike the one-shot strategy, in sequential strategy, the metamodels are constructed with several
sequential experiments in which new points are added to an initial design according to some
criterion specified a priori. In this way, it seeks to increase the efficiency of the whole process by
accessing the value of the simulation model only in regions of interest in the sample space, or by
using existing information at a given time t to plan the data collection at a time t +1.

Although some authors propose frameworks for the construction of metamodels using the se-
quential strategy (Pan et al., 2014; Tabatabaei et al., 2015), there does not seem to be a consensus
in the literature, as in the one-shot approach. For this, in this paper it has been proposing a new
sequential strategy, it is presented in Section 4. This proposed sequential strategy will depart
from the general framework proposed by Kleijnen & Sargent (2000).

Pesquisa Operacional, Vol. 39(2), 2019



SAMUEL BOZZI BACO, PEDRO CARLOS OPRIME, LUCIANO CAMPANINI and GILBERTO MILLER DEVÓS GANGA 299

Figure 2 – General steps for sequential strategy.

2.2 Metamodel building

In general, when used in the development of new products, the objectives of a meta-model using
one-shot strategy are the same as those using the sequential strategy, they are: a) predicting the
value of y (dependent variable) of a specific set of X independent variables; and, b) optimizing
responses y. However, the literature shows that the second objective (optimization) is much more
common than the first one (prediction) for sequencing strategy (Peng et al., 2014; Tabatabaei
et al., 2015). This is related to the fact that sequential strategy is preferred for simulation models
that have high costs (Crombecq et al., 2011; Song et al., 2012; Peng et al., 2014).

The use of composite models of several submodels (Barton, 1997), in large-scale structural opti-
mizations (Peng et al., 2014) and aerodynamic optimization and CFD (Computer Fuid Dynamics)
(Rosenbaum & Schulz, 2012) have been finding in the literature. However, the number of prac-
tical examples sequential strategy is much smaller than the one found for the one-shot strategy,
due to the fact that sequential strategy research is relatively new.

Mathematical forms for metamodels are widely discussed in the literature (Jin et al., 2001; Li
et al., 2010; Villa-Vialaneix et al., 2012). Kriging models have been considered by many authors

Pesquisa Operacional, Vol. 39(2), 2019



300 DESIGN OF EXPERIMENTS USED IN COMPUTER TRIALS

as the most widely used for computational experiments (Gaul et al., 1991; Ankenman et al., 2010;
Beers & Kleijnen, 2004; Couckuyt et al., 2012; Kleijnen & Van Beers, 2005; Xiao & Chen, 2007;
Shao et al., 2012; Simpson et al., 1998; Zakerifar et al., 2011; Sheng et al., 2015; Zhang et al.,
2015). The resulting equation for a set of ordinary Kriging models can be written as follows
(Johnson et al., 2008):

ŷ(x) = µ̂ + r′(x, θ̂)R−1(X , θ̂)(y− µ̂1n) (1)

The first term on the right in Equation (1) is the average response over the experimental space.
The θk parameters from vector θ̂ represent the correlation of the response Y between two values
(levels) of the k-th factor. The parameter R represents the correlation function used. The metrics
to evaluate metamodel quality arise from the comparative analysis of the simulated values (results
of physical simulation) y and the values predicted by the metamodel, ŷ. Bias errors (Li et al.,
2010) represent the systematic difference between the simulated data and metamodel, and they
are not dependent on the value of the predicted variable, i.e., they are constant for the entire
sample space. Precision errors (Hussain et al., 2002; Jin et al., 2001), unlike the bias errors,
are not constant for all values of input variables. To be able to use the value of errors in the
comparison and evaluation of the metamodel, the average error, RMSE or root mean square
error, is frequently estimated using Jackknife estimation (Duchesne & MacGregor, 2001; Beers
& Kleijnen, 2004).

2.3 Criterions for using designs for computer experiments

There is a difference between the one-shot and sequential strategies when of the specification
of the design of experiments. On one-shot strategy, first the practitioner makes the selection of
the number of points and he defines the criterion of spreading of points will be optimized. After
he makes this, the experimental design cannot be changed. For sequential strategy, an initial set
of points is determined (following some spatial filling criteria, such as the one-shot strategy) in
which the values of the simulation model will be evaluated and the criterion that will be used to
determine in which region of the sample space will be placed the next point (s). There are three
types of designs commonly used computational experiments: MaxMin, Uniform, and Minimum
Potential.

Although there are several interesting properties for the computational designs, the distribution
of the points within the sample space is done according to some criterion that usually requires
almost no initial information. MaxMin design, proposed by Johnson et al. (1990), seeks to max-
imize the distance between two experimental points of the same factor. With this, the points are
distributed as dispersed as possible within the space. The disadvantage of this type design of
experiments is that, since the smallest space between two points is maximized, the points tend to
stand in the boundary of the sample space (Morris & Mitchell, 1995).

Uniform Arrangements Design was proposed by Fang (1980) and Wang and Fang (1981). This
design seeks to minimize the error of the distribution of points in the sample space. For this, we
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calculate what was known as discrepancy. Details of this type of computational experiment can
be obtained in Fang et al. (2000).

Minimal Potential arrangements design was proposed by Audze-Eglais in 1977, it is based on the
physical analogy of a system composed of points with electric charge of the same signal. When
the points are very close, the electric charges generate repulsive force, creating electrical potential
energy. When far away, the springs generate attraction force, creating elastic potential energy.
The system will be in equilibrium when the potential energy is minimal (Bates, Sienz, Langley,
2006). An important characteristic of the designs is the fact that they are almost orthogonal. Even
for small size samples, Pearson’s correlation between two factors is always small.

The quality of the model is verified by the difference between the value predicted by the model
and the observed value (Li et al., 2010). These errors represent the systematic difference between
the metamodel and the simulated data. These errors are usually calculated by RMSE – root mean
square error. Another alternative is to make the adjustment of the model several times disre-
garding one of the points of the original set, and then predict the value of the point disregarded
with the adjusted model. This technique is known as Jackknife prediction (Bischl et al., 2012;
Duchesne & MacGregor, 2001).

According to Bursztyn & Steinberg (2006), a design for DACE should facilitate metamodel fore-
casts with a small error, but the use of alphabetical optimality metrics based on the covariance of
the parameter estimates is not applicable because of the absence of experimental error. This state-
ment is supported by several other authors (Allen et al., 2003; Kleijnen, 2005). The orthogonality
of the experimental matrix, a criterion that has considerable importance for the classic DoE, also
has relative importance in designs for computer experiments. However, this is a statement that
does not seem to be consensus, because of the number of authors who still include this criterion
as important to be evaluated (Fang et al., 2000; He & Tang, 2013; Lin et al., 2010; Liu & Fang,
2006; Meng, 2006; Viana, 2013).

With regard to DACE, the literature indicates the use of the criterion of space filling. Given
that almost no information about the metamodel form is available a priori, responses must to be
evaluated throughout the complete sample space (Janouchová & Kučerová, 2013; Jin et al., 2001;
Liefvendahl & Stocki, 2006; Pronzato & Müller, 2012; Stinstra, 2006; Viana, 2013). Another
criterion when using DACE is to prevent two levels of a non-important factor to be united in one,
which is known as a small discrepancy design (Husslage et al., 2011). For readers interested in
exploring these criteria related to the use of DACE there a vast amount of literature is available
that (Bates; Sienz; Langley, 2003; Fang et al. (2000); Fuerle; Sienz, 2011; Johnson et al. (1990);
Morris & Mitchell (1995); Stinstra et al. (2003).

To improve understanding of the issues discussed on experimentation within the computing en-
vironment, Table 1 presents a comparative analysis of the main features of classic DoE and the
computational experiment, DACE. It is possible to infer the literature review that DACE is still
relatively little known by users of DoE. It is also observed that there are few empirical studies
on the subject and that there are limited practical contributions reported in specialized scien-
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Table 1 – Criteria for using DoE and DACE.

DoE DACE
Objective – Determine what factors are important

– Build empirical models
– Model a physical system with all
factors considered

Application – Real experiments, with noise and
restrains

– Computer experiments without noise

Methodology – Sequential (scientific method) – One-Shot and Sequential
Designs – Factorial

– Regular and Non-Regular Fractional
Factorial
– CCD
– Placket-Burman
– Box-Benhen
– Simplex

– MaxMin
– Uniform
– Minimum Potential

Factors
relationship

– Linear with interactions
– Quadratic

– Non-Linear

Physics
knowledge

– A priori theories (inductions)
– Posteriori deduction

– Implicit at simulation model

Number of runs – Grows exponentially with number of
factors

– Does not grow exponentially with
number of factors

Experimental
variation

– Present – Absent

Noise treatment – Block, replicates, repetition,
considered as factor, ANOVA,
randomizing

– Considered as a factor

Analysis
method

– ANOVA
– Linear Regression

– Kriging models

tific journals. In the next section, practical applications will be presented regarding the use of
computational experiments.

3 EMPIRICAL STUDIES WITH COMPUTER EXPERIMENTS

This section deals with the application of computational experiments, DACE, in product devel-
opment projects through two instances, which were executed between the years 2013 and 2015,
on a home appliances company. All applications were made following the one-shot strategy be-
cause the limitation of computational package already existing in the selected company (SAS
JMP). Moreover, the 10 steps presented by Kleijnen & Sargent (2000) was followed for each
problem.
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Figure 3 – Schematics of a wash machine (Jung et al., 2008).

3.1 Design robustness evaluated with metamodels

The first application of the methodology of computational experiments, presents a structural ro-
bustness study a washing machine. Figure 3 illustrates the problem application of DACE. This
figure shows a schematic section of the washing machine highlighting the main components of
the system that allow water extraction. In the washing process, there is a heterogynous distribu-
tion of the moment of mass inertia around the rotating shaft. The accumulated clothes in specific
basket regions, also called unbalanced load, generate a force orthogonal to the spin axis, out of
the product. To resist the static effect, the washer components must be constructed with materials
stiff enough so that the displacement on components does not cause contact between the basket
and the tub during the spin cycle, a phenomenon known as gap closure. A gap “g” between the
tub and basket is designed, such that the product can absorb eventual displacements from the
parts.

To simulate the dynamics of this system MSC Adams software, which deals with multibody
physics, was used. Ioriatti (2007) shows how this computational package can be applied to ver-
tical axis wash machines. In this application, inertial axes from MSC Adams are introduced into
the structural computational package Ansys, which calculates the deflections of all the compo-
nents using finite element method. Thus, the final value of the gap “g” between the basket and
the tank is obtained.

Considering the long duration of each physical simulation, which lasts about 20 hours for each
load condition, a computational experiment was proposed to enable the construction of a meta-
model that allows the evaluation of the value “g” in a shorter time. The experiment has an output
variable that is the total combined deflection of the basket and tub with three input variables: the
amount of unbalanced load in kilograms, the height of the unbalanced load in millimeters, and
the amount of balanced load in kilograms.

To summarize the results, Table 2 shows the estimated values of θs (Equation 1) considering
several combinations of experimental designs MaxMin, uniform type, and function correlations

Pesquisa Operacional, Vol. 39(2), 2019



304 DESIGN OF EXPERIMENTS USED IN COMPUTER TRIALS

Table 2 – Theta estimates for two different space-filling designs and two correlation functions.

MaxMin Uniform
Factor Gaussian Cubic Gaussian Cubic
Balanced Load [kg] 0.0001108 0.0009239 0.0063786 0.0000000
Unbalanced Load [kg] 0.1309431 0.1486163 0.1811547 0.8953924
Unb. Load Height [mm] 0.0001097 0.0034610 0.0000014 0.0000000

Table 3 – Comparison for Jackknife Root Mean Square errors
for different designs and correlation functions.

Design Correlation Root mean square
criteria function error [mm]

MaxMin Gaussian 1.77078
MaxMin Cubic 1.32777
Uniform Gaussian 0.75348
Uniform Cubic 1.46738

Gaussian and Cubic. Using the values of the Jackknife errors, it was possible to estimate the
mean square root error of each combination. Table 3 shows these values, which indicate a great
advantage in using a combination of uniform criteria with the Gaussian correlation function. The
error for this alternative is, on average, 50% lower than the other options.

3.2 Structural optimization of a planetary carrier using metamodels

The second case of DACE application refers to a cost reduction for parts that form the planetary
gearbox of a washing machine. A gearbox consists of four distinct parts, as shown in Figure 4. It
is the ratio between the pitch diameter of the sun and planetary gears that generate the torque am-
plification, which is applied to clothing to provide mechanical action to remove the dirt. Finally,
there is the planetary carrier, which interfaces with the planetary gears, as well as an output shaft
part that delivers the amplified torque. The planetary carrier transforms the translatory movement
of sun gears to rotate the output shaft (Liu et al., 2016).

Figure 5 shows a three-dimensional representation of a planetary carrier using a CAD system.
In this study, the carrier is made from sintered steel by powder metallurgy. While it is desirable
that it does not have a large mass that would increase part cost, it is necessary to ensure certain
stiffness so that the resistive torque of the load does not cause deflection in the interface region
with the gears. Another important constraint on the part of the project is the mechanical stress on
the base interface pin.

To avoid high prototyping costs that might result from the development activity, it was decided
to construct metamodels that enable the prediction the of the deflection of the edge of interface
pins, alternated mechanical tension (fatigue) at the pin base and the mass of the piece, given
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Figure 4 – Parts of a planetary gearbox (Liu et al., 2016).

Figure 5 – Tridimensional representation (CAD) of a planetary carrier.
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the geometrical configuration of the parts and the noise factors that may affect the system. An
optimization algorithm that allow the identification of the the best project at the lowest possible
cost was then applied to these metamodels.

The chosen configuration must be robust to the variation of resistive torque caused by the clothing
drive in the basket. Although some authors (Akcabay et al., 2014; Mac Namara et al., 2012)
have proposed mathematical models to simulate the load of laundry movement during washing
and, thus, the resistive torque, the real value of the resistive torque was considered after been
measured using a torque wrench coupled to the input shaft, where the value of the measure could
vary between 7.5 and 25 Nm (Newtons per meter).

In this experiment, resistive torque is the only noise variable considered. All other variables (X1
to X5, see Table 3) are part of the planetary drive geometry design. For each experimental run
the mechanical stress at the base of the pin was estimated using the finite element method. The
quality of fit from metamodels was assessed using the mean square error determined by Jackknife
technique (Duchesne & MacGregor, 2001; Beers & Kleijnen, 2004). The fit was done using the
Gaussian correlation function. The experimental design consisted of a uniform type, with 20
rounds. Table 4 shows a greyscale map of the generated design. The value of the variable for
each round, standardized between −1 and 1, is presented within each cell. The level of darkness
represents how near each variable is to the border of inferential space, ∗ representing the positive
border (+1) and ∗∗ representing the negative border (−1). The analysis of Table 4 shows that the
points were well distributed within the sample space.

Table 5 shows the errors between the simulated values and the predicted ones for the mechanical
tension. At the end of the table, the root of mean square error is presented.

It is possible to see that run 13 has a considerably larger error for the variable cyclic stress than
the others. The simulated value for this round was 268.68 [Mpa] and the predicted value was
209.79 [Mpa] (21.9% lower). To assess whether the above point has a statistically different error
from the others, a graph in which the y-axis represents the simulated values and the x-axis values
represent the estimated Jackknife values through metamodels is shown in Figure 6.

The red line was built based on least squares. The region in dark red has a confidence interval
of 95%, and the region in light red is the forecast range that is 95% of the linear regression. The
point outside the confidence and prediction interval represents run 13. In addition to this analysis,
a statistic known as Cook’s Distance was calculated for every point. According to Montgomery
and Runger (2013), this is a method used to assess how a specific point is influential throughout
the model, and it is given by Equation (2)

Di =

(
β̂(i)− β̂

)′
X ′X

(
β̂(i)− β̂

)
pσ̂2 (2)

The square distance Di is the measurement from the usual estimate of β s with all n observations
and estimates with the i-th point removed. A value greater than 1 indicates that the point is
influential for the model.
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Table 4 – Distribution of points inside inferential space.

Run Torque [Nm] X1 X2 X3 X4 X5
1 0.64 -0.63 -0.35 0.00 -0.84 0.04
2 -0.63 0.46 -0.16 -0.74 0.35 0.53
3 -0.85* 0.02 0.13 -0.24 -0.65 0.63
4 0.56 0.35 -0.45 0.84** -0.46 0.46
5 0.14 -0.83* -0.07 -0.93* -0.15 -0.16
6 0.44 0.66 0.43 0.70 0.64 0.15
7 -0.22 0.91** 0.62 -0.36 -0.06 0.82
8 0.34 -0.47 -0.65 -0.66 0.04 0.35
9 -0.52 0.27 0.74 -0.82 -0.74 -0.36

10 0.71 -0.74 0.80 0.16 0.42 0.89**
11 -0.15 -0.92* 0.23 0.63 -0.55 -0.25
12 0.02 0.74 -0.53 -0.07 0.12 -0.93
13 0.80 0.12 -0.83 -0.46 0.72 -0.71
14 0.91** -0.14 0.91** -0.17 -0.26 -0.54
15 -0.33 -0.07 -0.26 0.34 0.24 -0.45
16 0.25 0.83 0.03 0.42 -0.91* -0.64
17 -0.44 -0.27 -0.91* 0.53 -0.33 0.75
18 -0.04 -0.35 0.32 -0.55 0.85 0.25
19 -0.73 -0.54 0.54 0.88** 0.52 -0.82
20 -0.90* 0.55 -0.70 0.21 0.90** -0.06

Table 5 – Jackknife error between simulated and
predicted values of mechanical cyclic stress.

Run Error Run Error
1 6,029 11 18,615
2 -9,299 12 -1,521
3 -12,063 13 58,888
4 -0,989 14 4,454
5 9,210 15 -8,325
6 -6,117 16 -1,159
7 -6,133 17 5,723
8 2,757 18 -12,592
9 9,076 19 -10,220
10 -4,971 20 -11,182
RMSE 15,607
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Figure 6 – Relationship between simulated values (y-axis) and jackknife predicted (x-axis).

Figure 7 – Values of Cook’s Distance for all design points.

Figure 7 shows the Cook distance values for all runs, considering the cyclic stress. It is clear that
run 13 produced a Jackknife error different from all the other points and is thus very influential
in the model (it has a Cook distance with value of 3.81). Thus, the point was discarded and all
models were again adjusted. Upon analysis of the procedure base on Cook’s distance in the new
setting, it was found that point 4 has become very influential with a distance value of 2.3086.
Therefore, this point was also removed from the data and the fit was again ensured for the third
time, A root of mean squared error of 3,124 was obtained, which was about 80% less than that
of the metamodel with all points.

4 PROPOSED FRAMEWORK TO METAMODEL BUILDING

Figure 8 shows the proposed framework for constructing metamodels that complement the frame-
work proposed by Kleijnen & Sargent (2000) shown in Section 2.1. At the bottom right of some
boxes, there are some numbers that relate that step with the 10 original steps discussed in Sec-
tion 2.1. The boxes that do not have any number were added after the case study, and are used to
evaluate the quality of the metamodel and to decide to drop one or more points from the original
data set.
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Figure 8 – Proposed framework for constructing metamodels.
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5 CONCLUSION

This article presented some theoretical characteristics of computational experiments, called
DACE, which were compared with the classic DoE. The computational experiments aim to build
meta-models (models from models) to reduce the time used by the computing resources of en-
gineering software. It is methodologically based on designs of classic experiments, DoE, but
adapted to the virtual environment.

The importance of the development of this methodology is attributed to the fact that product
development today is configured as a strategic activity for companies operating in the global
market. Understanding of consumer needs and translating them into language engineering are
crucial tasks in the development process and should direct the determination of product specifi-
cations. In this context, the DoE tool can be used to build mathematical relationships between
the response variables of a system (which are related to consumer needs) and its input vari-
ables, thereby allowing the optimization of these responses and determining settings that bring
strength to the various conditions of use. However, the use of DoE is not as widespread in compa-
nies, mainly because the costs involved in its application. The costs arise from the need to build
physical prototypes and conduct actual tests.

The use of computer software as an alternative for determining the relationship between inde-
pendent and dependent variables instead of physical simulation gained strength from the 1990s,
but this may require a considerable amount of time to run, depending on the complexity of the
physical model employed. The DACE methodology can be employed to build metamodels in the
computing environment. This allows the evaluation of an input variable setting faster than the
sole use of engineering software. The application of DACE is different from that used in classic
experiments, because of the computing environment that lacks random variation (condition for
which the classical DoE was developed). Therefore, it is necessary to use specific metamodeling
for experimental designs and techniques.

The literature on the subject has devoted considerable effort to the study of mathematical as-
pects, but failed to discuss the operational aspects that may be crucial to successful implemen-
tation. Therefore, this work aimed to address the lack of empirical studies on the application of
computational experiments in product development.

Two cases of DACE used in the construction of metamodels were applied in the product devel-
opment of a white line company. The challenge was to obtain metamodels that minimize the
difference between the results obtained by computer programs and those obtained by the mathe-
matical model by means of the computational experiment design. We sought to compare results
derived from different experimental design to show readers that the use of such methodologies
demand, technical and statistical knowledge. Thus, making clear the difficulties that may be en-
countered in the use of computational designs, DACEs. For example, in the first case, in which a
comparison between two types of experimental designs and two correlation functions was made,
it was concluded that the combination of Uniform type design with the Gaussian correlation
function produced the best results for the application. In the second case, in which the study
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was focused on cost reduction of a part that makes up the planetary gear unit of a type of wash-
ing machine, the metamodel was found to have the possibility to be improved based on the use
of a given metric. In the analyzed case, the metric was Cook’s distance, which improving the
metamodel foresight.

A DACE application framework was proposed to complement the standard framework put for-
ward by researchers on the subject. It is important to note that the use of computational exper-
iments is different from the classic DoE and requires prior knowledge of basic statistics and
the studied system. Various management aspects, such as the criticality of the system studied,
project phase and time available to perform the studies, should be assessed in the use of DACE.
The conclusion reached by observing the application of computational experiments, based on ju-
dicious human judgment along with the techniques presented in this work, facilitates the savings
on large amounts of material resources, reduction of development time of enterprise products
and improvement of the quality of the product development process.
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