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ABSTRACT. The Least Cost Influence Problem is a combinatorial optimization problem that appears in
the context of social networks. The objective is to give incentives to individuals of a network, such that
some information spreads to a desired fraction of the network at minimum cost. We introduce a problem-
dependent algorithm in a branch-and-bound scheme to compute a dual bound for this problem. The idea is to
exploit the connectivity properties of sub-graphs of the input graph associated with each node of the branch-
and-bound tree and use it to increase each sub-problem’s lower bound. Our algorithm works well and finds a
lower bound tighter than the LP-relaxation in linear time in the size of the graph. Computational experiments
with synthetic graphs and real-world social networks show improvements in using our proposed bounds.
The improvements are gains in running time or gap reduction for exact solutions to the problem.

Keywords: combinatorial optimization, social networks, diffusion of information.

1 INTRODUCTION

In the context of diffusion of information in social networks, early studies on sociology (Rogers,
2010) observe that information spreads through a social system like a contagious process, starting
with a small group and spreading to other individuals in the system through the relationship
between them. One relevant problem that emerges from this background is identifying a good set
of individuals to target, the early adopters, and hoping that the chosen individuals can persuade
their friends to adopt a new behavior, which also influences friends of friends by generating a
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2 COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM

chain of adoption. For example, in applications like viral marketing, the early adopters can be
influenced by receiving products for free or by getting discounts for buying a new product.

Kempe et al. (Kempe et al., 2003) approached this problem from the discrete optimization per-
spective. They considered a maximization version where the goal is to find a fixed size set of
individuals such that the expected influence of these individuals is the largest possible. They
show that the INFLUENCE MAXIMIZATION PROBLEM is NP-hard in stochastic diffusion models
and propose a (1− 1

e )-approximate greedy algorithm. They also have shown that the influence
function is submodular and monotone in randomized settings. The approximation ratio was orig-
inally proved by Nemhauser et al. (Nemhauser et al., 1978) and is valid for every submodular
and monotone maximization function. Furthermore, computing the expected influence of a given
set of individuals is a #P-hard problem (Chen et al., 2010a,b).

Chen (Chen, 2009) studied the minimization version of the INFLUENCE MAXIMIZATION PROB-
LEM, which seeks a target set of minimum size, ensuring the activation of a given fraction of the
network. The literature refers to this problem as the TARGET SET SELECTION (TSS). Besides
being NP-hard to solve, this problem is also hard to approximate. Chen (Chen, 2009) proved that
TSS cannot be approximated within a poly-logarithmic ratio. Even with explicitly deterministic
thresholds, the problem is NP-hard to approximate within a ratio of n1−ε for every ε > 0 (Chen,
2009; Kempe et al., 2003). This problem becomes tractable in some restricted class of graphs.
For example, the problem can be solved in linear time if the underlying graph is a tree (Chen,
2009), a block-cactus graph (Chiang et al., 2013), or a bounded treewidth graph (Ben-Zwi et al.,
2011).

In this work, we investigate an extension of the TSS problem called LEAST COST INFLUENCE

PROBLEM (LCIP). Rather than searching a group of individuals to start a propagation, this prob-
lem offers incentives for individuals to adopt new behaviors and then trigger a cascade that
spreads to a given fraction of the network. Demaine et al. (Demaine et al., 2014) extend the
INFLUENCE MAXIMIZATION PROBLEM by proposing a fractional version that incorporates the
idea of offering discounts instead of making a binary choice of individuals. Günneç et al. (Günneç
et al., 2020a,b) focused on mathematical programming models for the LCIP and described algo-
rithms for the problem on trees. Besides that, they observe that the LCIP is a generalization of
the TSS problem, so the LCIP has at least the same complexity as the TSS problem from a the-
oretical point of view. Fischetti et al. (Fischetti et al., 2018) present a generalization of the LCIP
and introduce the concept of activation functions, which extends the commonly used threshold
functions. They also propose a mathematical heuristic and an exact algorithm based on column
generation.

1.1 Contributions

While previous works provided relevant exact solutions (Ackerman et al., 2010; Fischetti et al.,
2018; Günneç et al., 2020b) and heuristic algorithms that can be used as upper bounds for this
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problem (Chen et al., 2009; Cordasco et al., 2015; Demaine et al., 2014; Kempe et al., 2003),
nothing beyond the standard LP-relaxation was proposed to compute lower bounds on the LCIP.

Observing that the influence propagation network is a directed acyclic graph (DAG), we de-
rive a problem-dependent relaxation algorithm. The proposed algorithm exploits the connectiv-
ity properties of graphs to obtain a lower bound for the problem. Furthermore, we prove that the
algorithm is correct and show experimentally that our lower bounds are tighter than the linear
programming relaxation, providing smaller optimality gaps. To the best of our knowledge, there
are no works on combinatorial lower bounds for this problem. The main objective of our relax-
ation is for fathoming in a branch-and-bound algorithm and helping reduce the computational
effort to obtain exact solutions. We provide theoretical analysis on the complexity of our algo-
rithm when dealing with a particular case of the problem, where the diffusion needs to reach only
a fraction of the network instead of the whole network. In this case, our analysis leads to a related
problem whose optimal solution is a dual bound for the original problem. This related problem
is NP-hard, but it paves the way for improving the dual bound. To make our dual bound stronger,
we also propose a branching rule that prioritizes the exploration of some branches of the decision
tree. Such a prioritization leads to disconnected sub-graphs associated with the sub-problems of
the branch-and-bound tree, which in turn improves the quality of our lower bounds.

The rest of this paper is organized as follows. Section 2 contains a brief overview of the so-
cial network diffusion process and the problem definition. Section 3 describes the mathematical
programming formulation of the problem and the exact method to solve it. Section 4 proposes
an algorithm to find lower bounds on the problem and presents a theoretical analysis of our
findings. We introduce a branching rule to strengthen our dual bound algorithm in Section 5.
Computational experiments are presented in Section 6. We conclude the paper in Section 7.

2 PROBLEM DEFINITION

Let G be a directed graph that models a social network. The vertex set V (G) represents individ-
uals, and the arc set E(G) corresponds to the relationships between these individuals. We denote
the vertex set and arc set by V and E, respectively, when the context is explicit. Each arc (i, j)∈E
has an associated weight di j > 0 that models the influence of i over j.

To model the diffusion of influence between the individuals in a social network, we consider a
well-known model called the threshold model, presented by (Granovetter, 1978). In this model,
we say that a vertex i is active when persuaded to adopt new behavior and inactive, otherwise.
Every i ∈ V has a threshold ti > 0 which indicates the amount of influence needed to activate i,
coming from i’s neighbors. The activation process is progressive, i.e., each vertex can be active or
inactive, and a vertex can change from inactive to active, but not the other way around. Initially,
a subset A0 ⊆ V is chosen to be active. Then, the vertices in A0 send influence to their inactive
neighbors. These neighbors might become active in the next iteration and give rise to a new set
A1 ⊆V of active vertices. This process is repeated until no vertex can be activated. Let {Aτ}T

τ=0
be the sequence of vertices activated during the diffusion process, where AT is the first set in the
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4 COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM

sequence that cannot activate any other vertex in the graph. We say that any vertex i ∈ AT \A0

has been influenced by A0.

Also, we consider the offer of external influences. These influences, which we call incentives, aim
to break an individual’s resistance in being influenced in the activation process. The incentives are
represented by a vector y ∈ Z|V |, where each coordinate yi ∈ N0 denotes the amount of incentive
given to a vertex i∈V . Applying the incentive yi on a vertex i decreases its threshold ti and makes
it more susceptible to activation. This incentive is added with the influence coming from the other
vertices. Thus, the initial set of active vertices is given by A0 = {i ∈V : yi ≥ ti}. The vertices in
A0 begin the process as active and all the others as inactive. Time progresses in discrete steps
τ = 0,1, . . . ,T , and an inactive vertex i becomes active at time τ if the total influence of its active
in-neighbors plus its incentive exceeds the threshold ti, i.e., if

∑
j∈Ni∩Aτ−1

d ji ≥ ti− yi,

where Ni denotes the set of in-neighbors of i.

Figure 1 illustrates the activation process in the threshold model with incentives. Again, we have
a directed graph with thresholds on the vertices and weights of influence on the arcs. Suppose
that we want to activate 100% of the vertices. The process starts by setting the vertex a as active
and all the others as inactive. We are paying enough incentive to achieve a’s threshold without
the influence of the neighbors, so vertex a receives 1 unit of incentive. We will try to activate the
remaining vertices using incentives to decrease their threshold. Vertex b has threshold 1 and will
be activated only by a in the next step, so no incentive is necessary. Next, in Figure 1c, vertex c
has two active neighbors in which the weight of incoming arcs sums to 3 units. To achieve c’s
threshold, we must pay one incentive unit, so c is activated. The process continues as a cascade
until all vertices are activated. Hence, in this example, we paid a total of 3 units of incentive to
activate the whole network, that is, ya = yc = ye = 1 and yb = yd = 0.

The problem consists of offering incentives to the vertices to trigger a cascade of influence that
spreads to a given fraction α of the whole network. The goal is to minimize the sum of incentives
given to individuals on the social network. The definition is given below.

Problem 1 (Least Cost Influence Problem (LCIP)). We are given a real number α ∈ [0,1], a
directed graph G with weights di j on each arc (i, j) ∈ E, and a threshold ti, for each vertex i ∈V .
The goal is to find a vector y ∈ Z|V | of incentives that minimizes the sum ∑i∈V yi, ensuring that
at least ⌈α|V |⌉ vertices are activated by the end of the activation process.

In the remainder of this text, we will refer explicitly to the graph associated with a solution y.
Thus we introduce the following notation. For time steps τ = 0,1, . . . ,T −1, let Eτ = {(i, j)∈ E :
i ∈ Aτ , j ∈ Aτ+1 \Aτ}, be the set of arcs in which the influence was exerted at time τ . Consider

the set E∗ =
T−1⋃
τ=0

Eτ . We say that the propagation graph G∗ = (AT ,E∗) is the graph induced by

the solution y. The graph in Figure 1e is an example of a propagation graph. It follows from the
definition of the activation process that the propagation graph is acyclic.
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(b) A1 = {a,b}.
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(c) A2 = {a,b,c}.

1

1 3

1

1

2

2 1

1

4
1 5

1
2

(d) A3 = {a,b,c,e}.
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(e) A4 = {a,b,c,d,e}.

Figure 1 – Activation process in the threshold model considering incentives, starting from a target set
S = {a}. The number attached to each vertex represents its threshold. Sets Aτ contains the active vertices

at time τ , for τ = 0, ...,4. Labels in each arc (i, j) denote the weight of influence di j. Highlighted arcs
indicate who influences whom in the process. The vector y indexed by the vertices contains the incentive

offered to each vertex.

3 INTEGER LINEAR PROGRAMMING FORMULATION

Different integer linear programming (ILP) formulations express the propagation using variables
on the arcs (Ackerman et al., 2010; Günneç et al., 2020a,b; Raghavan & Zhang, 2019). The
following formulation is a particular case of the model proposed by Fischetti et al. (Fischetti
et al., 2018). For each vertex i ∈ V , let xi be a binary variable indicating whether i is active at
the end of the diffusion process. Similarly, for each arc (i, j) ∈ E, let zi j be a binary variable
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indicating whether i exerts influence over j. As mentioned previously, the integer variable yi is
the incentive to be paid to a vertex i ∈V .

min ∑
i∈V

yi

s.t. ∑
i∈N j

zi jdi j ≥ t jx j− y j ∀ j ∈V, (1)

∑
(i, j)∈C

zi j ≤ ∑
i∈V (C)\{k}

xi ∀k ∈V (C),cycle C ⊆ E, (2)

zi j ≤ xi ∀(i, j) ∈ E,( j, i) /∈ E, (3)

∑
i∈V

xi ≥ ⌈α|V |⌉, (4)

xi ∈ {0,1} ∀i ∈V, (5)

yi ∈ N0 ∀i ∈V, (6)

zi j ∈ {0,1} ∀(i, j) ∈ E. (7)

The objective function minimizes the total incentive offered to influence a given portion of the
network. Constraints (1) models the condition that a vertex i ∈ V gets active only when the
total influence received from its active neighbors plus its incentive is greater than or equal to its
threshold. The cycle elimination constraints in (2) generalize the classic cycle elimination from
(Grötschel et al., 1985) and impose that the propagation graph must be acyclic. Meaning that
the number of chosen arcs in a cycle C cannot be greater than the number of active vertices in
V (C)\{k}, where V (C) is the set of vertices in the cycle. Constraints (3) ensures that an arc (i, j)
can be chosen only if vertex i is activated. Note that if there is an arc ( j, i) in G, constraints (2)
imply that zi j + z ji ≤ xi, and therefore, zi j ≤ xi is redundant. Finally, constraints (4) impose that,
by the end of the diffusion process, the number of active vertices is at least ⌈α|V |⌉.

3.1 Solving the LCIP using branch-and-cut

Due to the number of possible cycles in the graph G, the number of constraints in (2) grows
exponentially. The exact standard procedure for solving integer linear programs with exponen-
tial constraints is the branch-and-cut method, which combines LP-based branch-and-bound and
constraint generation techniques. For completeness, we will take a brief look at the branch-and-
bound approach. If the reader is already familiar with the concepts in this algorithm, you can go
straight to Section 4.

The branch-and-bound method solves the problem by dividing it into smaller sub-problems. The
principle is to split the feasible space into successively smaller subsets so that distinct subsets
can be evaluated directly by implicit enumeration until the best solution is found. The method
employs a tree structure consisting of nodes and branches to manage the subdivisions of the
feasible region. In this tree, each node represents a sub-problem. To generate the solutions and
efficiently explore the feasible region, two problem-specific routines are required, the branch and
the bound.
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• Branching is the procedure that splits a parent node into smaller sub-problems generating
child nodes. In our case, we chose a binary variable xi (or zi j) and solve two sub-cases,
namely the case xi = 0 and the case xi = 1.

• Bounding is the computation of lower and upper bounds used to avoid the complete explo-
ration of all sub-trees. Since we are looking for the optimality conditions that will provide
stopping criteria, an important task is to find a lower (dual) bound z ≤ z∗ and an upper
(primal) bound z̄ ≥ z∗, where z∗ is the optimum value for the objective function of the
original problem. If z≥ z̄, we do not need to consider the current sub-problem. Every fea-
sible solution provides an upper bound (we can use heuristics to find it). The dual bound
is an optimistic estimation of the objective function for the region represented by the node
at hand. The most common approach to get dual bounds is by relaxing the integrality
constraints of the original problem.

The set of all cycle elimination constraints in the model (1)-(7) is too large to write down. So,
at each node of the branch-and-bound tree, violated inequalities are dynamically generated by
solving the separation problem associated with inequalities in (2). In this approach, we implement
the separation procedure proposed by (Grötschel et al., 1985). In short, the procedure adapts a
shortest path algorithm to find a cycle that violates the cycle elimination constraints.

The branch-and-bound efficiency depends on how close to the optimal solution are the bounds
of the sub-problems. Thus, we propose a combinatorial relaxation algorithm that can be used at
each node of the branch-and-bound tree to obtain lower bounds.

4 LOWER BOUND ALGORITHM

Consider the following aspects of the LCIP. The associated propagation graph is a DAG for
every solution y, with at least one vertex with no incoming arcs (source). Thus, at least one
vertex needs to be paid the total threshold value for any solution. The vertices chosen to receive
the total incentive have the minimum threshold value in the best case.

We introduce a combinatorial algorithm to obtain a dual (lower) bound for this problem. The idea
is to use connectivity properties of a sub-graph of the input graph at each node of the branch-
and-bound tree. In the branch-and-bound, the recursive decomposition of a problem into sub-
problems generates a decision tree where its root corresponds to the original problem, and each
node corresponds to a smaller sub-problem. A natural branching rule in a branch-and-bound
algorithm is by variable fixing. In the case of the formulation (1)-(7), we can fix the values of
the binary variables x and z. Suppose a binary variable, say zi j, is selected to be the branching
variable. Then two sub-problems are generated by fixing zi j = 0 in one branch and zi j = 1 in the
other. We observe that fixing some arc variables zi j (or vertex variables xi) at zero means that
these arcs (or vertices) were not chosen, which can disconnect the sub-graph related to that node
of the decision tree. We are interested in using this information to increase the lower bound of
each sub-problem during the branch-and-bound algorithm.
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(a) strongly connected graph (b) not strongly connected graph

Figure 2 – The directed graph in Figure (b) is obtained by removing the arc (d,c) of the graph in Figure
(a). The vertex colors indicate the strongly connected components.

To illustrate the idea behind this strategy, consider the following example. Let the directed graph
in Figure 2a be the input graph of the LCIP. We start the branch-and-bound tree by fixing some
arc variables. Figure 3 shows the first levels of such structure, where the black node represents
the sub-problem obtained by fixing the arc variables in zae = 1 and zdc = 0. As the propagation
graph of this sub-problem cannot contain the arc (d,c), we can represent the sub-graph associated
with this node by removing the arc (d,c) from the original graph. In this way, we arrive at the
sub-graph in Figure 2b, which is not strongly connected and is made of three different strongly
connected components.

Figure 3 – Example of a decision tree with branching decisions on the binary variables. The black node
represents the sub-problem obtained by fixing variables zae = 1 and zdc = 0.

Our algorithm uses the concept of condensed component graph.

Definition 1 (Condensed Component Graph). A condensed component graph H of a directed
graph G is obtained by contracting the strongly connected components (s.c.c.) of G. Formally,
each v ∈ V (H) is associated with a s.c.c. Cv of G and there is an arc (u,v) ∈ E(H) if and only
if an arc exists from a vertex i ∈ V (Cu) to a vertex j ∈ V (Cv), where Cu and Cv are the s.c.c.’s
associated with u and v, respectively.

Pesquisa Operacional, Vol. 43, 2023: e275468
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A different sub-graph G′ of the input graph G is considered at each branch-and-bound tree node.
We obtain G′ from G by removing arcs and vertices in which the corresponding variables were
fixed at zero by the decision tree. That is, V (G′) = V (G) \ {i ∈ V (G) : xi is fixed in zero} and
E(G′) = E(G)\{(i, j)∈ E(G) : zi j is fixed in zero}, at the current node of the branch-and-bound
tree.

Let H be the condensed component graph of G′. From now on, we consider that H has the arc
weights and vertex thresholds defined as follows. Consider Cu and Cv the s.c.c.’s associated with
u,v ∈V (H) and Euv = {(i, j) ∈ E(G′) : i ∈V (Cu) and j ∈V (Cv)}. We set the weight of each arc
(u,v) ∈ E(H) to be the sum of all arc weights that go from Cu to Cv, that is, duv = ∑

(i, j)∈Euv

di j.

Furthermore, for each vertex v ∈V (H) we set tv = min
i∈V (Cv)

{ti}.

Figure 4 – Example of a condensed component graph. The original graph is on the left, and the condensed
component graph is on the right.

Figure 4 presents an example for the condensed component graph of a small graph. The labels in
each vertex of the figure denote the name and the threshold, respectively. For instance, the vertex
in upper left corner has name a and threshold ta = 1. In the leftmost graph, there are three strongly
connected components Cu,Cw and Cv. For simplicity, we only show the arc weights between
different components. In the second graph, we have the condensed component graph with the
new thresholds and weights on arcs. For instance, the arc (u,v) has weight duv = dad +dc f = 4,
and the vertex v has threshold tv = min{2,2,3}.

The algorithm to find a lower bound for the LCIP follows.

Pesquisa Operacional, Vol. 43, 2023: e275468
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Algorithm 1: Combinatorial Lower Bound
Input: G′, influence d on arcs, thresholds t on vertices, and α

Output: A lower bound l for the LCIP
begin

if G′ is strongly connected or α < 1 then
return min

i∈V (G′)
{ti}.

else
Let H be the condensed component graph of G′.
// Return the optimum value of the LCIP on H
return ∑

v∈V (H)
max{0, tv− ∑

u∈Nv

duv}

Let lLP be the lower bound obtained at the current node of the branch-and-bound tree by standard
LP-relaxation, and let l be the lower bound obtained by the procedure described in Algorithm 1.
When updating the lower bound l at the current node, we do l = max{lLP, l}.

Now, we show that Algorithm 1 indeed returns a valid lower bound. If the sub-graph G′ is
strongly connected, the lower bound l is trivial by the observations at the beginning of this sec-
tion. We return this trivial lower bound if α < 1, even if G′ is not strongly connected. Finding
a tighter lower bound in this case may be computationally costly. Consequently, the algorithm
would no longer be scalable. In Section 4.1, we explain this situation in detail.

When G′ is not strongly connected and α = 1, we can improve the trivial lower bound by ex-
amining the condensed component graph H structure. In this case, computing the total cost for
activating all the vertices in the graph H (step (6) of Algorithm 1) is a sub-problem. As H is a
condensed component graph of G′, H is directed and acyclic. Therefore, we apply the algorithm
proposed by (Günneç et al., 2020a) to get an optimal solution of the LCIP in DAGs in linear
time.

The proof of correctness of our combinatorial relaxation follows.

Lemma 1. Let G′ be a sub-graph of a not strongly connected graph G and H be the condensed
component graph of G′. If α = 1, the optimum of the LCIP on H is a lower bound of the optimum
of the LCIP on G′.

Proof. Let y and y∗ be the optimal solutions to the LCIP on H and G′, respectively. We will
prove that for each v ∈V (H) and its associated s.c.c. Cv of G′, we have that

yv ≤ ∑
i∈V (Cv)

y∗i .

Pesquisa Operacional, Vol. 43, 2023: e275468
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If v is a source in H, we are obligated to pay the threshold value of at least one vertex in Cv.
Hence, it follows that

∑
i∈V (Cv)

y∗i ≥ min
i∈V (Cv)

{ti}= tv = yv.

Now suppose that v is not a source in H. Let G∗ be the propagation graph associated with y∗ and
let G∗v be the sub-graph of G∗ induced by V (Cv). Since the propagation graph is acyclic, there
must exist a vertex j ∈V (Cv) that is a source in G∗v . Hence,

∑
i∈V (Cv)

y∗i ≥ y∗j ≥max

{
0, t j− ∑

u∈Nv

duv

}
≥max

{
0, tv− ∑

u∈Nv

duv

}
= yv,

where the second inequality follows from the fact that j receives influence only from vertices
outside of Cv, and the third inequality follows the definition of tv.

Altogether, we conclude that

∑
v∈V (H)

yv ≤ ∑
v∈V (H)

∑
i∈V (Cv)

y∗i = ∑
i∈V (G′)

y∗i .

□

Theorem 1. The solution obtained by the Algorithm 1 is a lower bound for the LEAST COST

INFLUENCE PROBLEM in the sub-graph G′.

Proof. For the first case, the result is direct by the observations at the beginning of this section.
The case in which G′ is not strongly connected and α = 1 (step 6 of the algorithm) holds by
Lemma 1. □

Below we check that our algorithm has polynomial time complexity.

Theorem 2. Given a directed graph G with n vertices and m arcs, Algorithm 1 takes O(n+m)

time.

Proof. To construct the condensed component graph, we can use Kosaraju-Sharir’s algo-
rithm (Sharir, 1981), which runs in time O(n+m). Line 3 can be executed in O(n) time, and
line 6 in O(n+m). □

4.1 The case of α < 1

Algorithm 1 is general and finds a dual bound for every case of the LCIP. However, there is room
for improvement in the case where α < 1 and the sub-graph G′ is not strongly connected. The
idea is to do something similar to the case of α = 1 and solve the problem on the condensed
component graph, which leads to a new combinatorial problem, as we explain next.

Pesquisa Operacional, Vol. 43, 2023: e275468



12 COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM

To improve the lower bound for the case in which we are not interested in achieving 100%
adoption, we propose assigning a weight to each vertex of the condensed component graph H
and using the total weight of the activated vertices to satisfy the portion of achieved vertices on
the original problem. In this way, we arrive at a new variant of the LCIP, defined in Problem 2.

To assign weights to the vertices, we proceed as follows. Let H be the condensed component
graph of G′. For each v∈V (H), define a weight w(v) = |V (Cv)|, where V (Cv) is the set of vertices
in the component Cv of G′ associated with the vertex v of H and fix a value κ = ⌈α|V (G)|⌉.

Problem 2 (Weighted Least Cost Influence Problem (WLCIP)). Given a directed graph H
with weight w(v) on each vertex v ∈V (H), weight of influence duv > 0 on the arcs (u,v) ∈ E(H),
and an integer κ . Find a vector y∈Z|V | of incentives which minimizes the sum ∑

v∈V (H)
yv, ensuring

that the total weight of active vertices is at least κ by the end of the activation process.

As we are assuming solving the WLCIP on DAGs, a natural integer linear programming
formulation for this problem on DAGs follows.

min ∑
v∈V (H)

yv

s.t. ∑
v∈V (H)

w(v)xv ≥ κ, ∀v ∈V (H), (8)

∑
u∈Nv

duvxu + yv ≥ tvxv, ∀v ∈V (H), (9)

xv ∈ {0,1}, ∀v ∈V (H), (10)

yv ∈ N0, ∀v ∈V (H), (11)

where the binary decision variables xv indicate that v is active, and the integer variable yv ≥ 0
represents the incentive assigned to v.

In this model, the objective function minimizes the incentives paid to the vertices of graph H.
The cover constraints in (8) ensure that the total weight of the active vertices is at least the
parameter κ . Note that the value of κ relates to the original graph G because we still want to
achieve the portion α of the original network. If we use κ = ⌈α|V (G′)|⌉ instead, we have a valid
lower bound, but with ⌈α|V (G)|⌉, the lower bound can be higher (which is better). If we have
κ > ∑

v∈V (H)
w(v) for some reason during the branch-and-bound search, the problem (WLCIP) is

infeasible, and we must cut off the current node. Constraints in (9) respect the thresholds, the
total of influence coming from active neighbors of v together with an incentive need to be at least
the threshold of v if it is active. Constraints (10) and (11) ensure the integrality of the variables.

When α = 1, we have a restricted case of the WLCIP in which we want to activate all the vertices.
Therefore, we can ignore the weights of vertices of graph H, and the problem becomes the LCIP
again.

Theorem 3 states that an optimal solution of the WLCIP on H provides a valid lower bound for
the LCIP on G′.
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Theorem 3. Let G′ be a sub-graph of G and H a condensed component graph of G′. The optimum
of the WLCIP on H is a lower bound of the optimum of LCIP on G′.

Proof. Let yv and y∗i be the optimal incentive given for each v ∈ V (H) and i ∈ V (G′) for the
WLCIP and the LCIP, respectively. We will show that it is always possible to construct a feasible
solution y for the WLCIP on H from an optimal solution of the LCIP on G′, such that ∑

v∈V (H)
yv ≤

∑
i∈V (G′)

y∗i . We will see that this is sufficient to prove what we want.

Let AG′ ⊆V (G′) be the set of active vertices related to y∗. Define a set of active vertices in H as
AH = {v ∈V (H) : Cv∩AG′ ̸= /0}, where Cv is the strongly connected component associated with
a condensed vertex v. It means that we activate a vertex v of H if Cv has at least one active vertex.
This way, we can compute the incentives to be paid as

yv = max

{
0, tv− ∑

u∈Nv∩AH

duv

}

for every v ∈V (H).

It remains to compare the new solution y with y∗ (see Figure 5 for a concrete example of the
notation used in the rest of the proof). So, let G∗ be the propagation graph of G′ associated with
y∗ and denote as G∗v the sub-graph of G∗ induced by the vertices of Cv ∩AG′ . As G∗v is acyclic,
consider a source vertex j′ of G∗v . We have that

yv ≤max

{
0, t j′ − ∑

u∈Nv∩AH

duv

}
(12)

≤max

0, t j′ − ∑
i∈{N j′\Cv}∩AG′

di j′

 (13)

= y∗j′

≤ ∑
j∈V (Cv)

y∗j .

Inequality 12 holds because tv ≤ t j′ by the definition of the thresholds of H. Inequality 13 holds
because

∑
u∈Nv∩AH

duv ≥ ∑
i∈{N j′\Cv}∩AG′

di j′ . (14)
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(a) Propagation graph of the LCIP in a directed graph G′ for α = 0.75.
The thresholds are ti = 2, for every i ∈V (G′) and di j = 1, for every arc

(i, j) ∈ E(G′), except for (g,d) which is dgd = 2.

(b) Propagation graph of the WLCIP in a
condensed component graph H of G′ for

κ = 6. The thresholds are tv = 2, for
every v ∈V (H), the vertex and arc

weights are on the figure.

Figure 5 – The solution of the LCIP in Figure 5a has value 5, the incentives are: ya = 2,yb = yg = yh = 1
and yc = yd = ye = y f = 0. The solution of the WLCIP in Figure 5b has value 3, the incentives are:

yu = 2,yw = 1 and yv = 0. In Figure 5a,AG′ =V (G′)\{c},G∗v = {{d,e},{e, f}}, where d is the source of
G∗v . In Figure 5b, from the solution of the LCIP on G′, we have AH =V (H). Considering j′ = d, in this
example, {N j′ \Cv}∩AG′ = {g}. Lastly, ∑

u∈Nv∩AH

duv = duv +dwv = 4 and ∑
i∈{N j′\Cv}∩AG′

di j′ = dgd = 2.

To prove Inequality 14, let Euv = {(i, j) ∈ E(G′) : i ∈ V (Cu) and j ∈ V (Cv)} be the set of arcs
going from Cu to Cv. So, by the definition of the weight of the arcs of H, we have that

∑
u∈Nv∩AH

duv = ∑
u∈Nv∩AH

∑
(i, j)∈Euv

di j (15)

≥ ∑
u∈Nv∩AH

∑
i∈{N j′∩Cu}∩AG′

di j′ (16)

= ∑
i∈{N j′\Cv}∩AG′

di j′ (17)

for a source j′ of G∗v .

Therefore,

∑
v∈V (H)

yv ≤ ∑
v∈V (H)

yv ≤ ∑
v∈V (H)

∑
i∈V (Cv)

y∗i = ∑
i∈V (G′)

y∗i ,

where the first inequality comes from the optimality of y. The second inequality holds by
Inequalities 12 and 13. □

We are interested in solving the WLCIP in condensed component graphs in this work. Despite
this, the problem is general and is defined for any directed graph. It is a generalization of the
LCIP where, for each vertex i of a given input graph, a weight w(i) is attached to it. We can see
the LCIP as a particular case where all vertices have the same weight. So, as the LCIP is NP-hard,
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WLCIP is NP-hard as well. Besides being difficult to solve in general cases, unfortunately, this
problem is difficult to solve in DAGs, as stated in the following theorem.

Theorem 4. WLCIP is NP-hard on directed acyclic graphs.

Proof. Suppose that there is a polynomial-time algorithm for the WLCIP on DAGs. We
show that we would be able to solve the minimization version of the knapsack problem (min-
knapsack) in polynomial time in such a case. However, min-knapsack is a notorious NP-hard
problem (Carnes & Shmoys, 2008; Csirik, 1991).

Let (I,c,b,B) be an instance of min-knapsack, where for each item i ∈ I,c(i)> 0 is its cost and
b(i)> 0 its size. We aim to find a subset J ⊆ I such that ∑

i∈J
c(i) is minimum and ∑

i∈J
b(i)≥ B. We

can assume 0 < B≤ ∑
i∈I

b(i).

Create the following instance for the WLCIP. We set V = {vi : i ∈ I},E = /0,w(vi) = b(i) and

tvi = c(i) for all i ∈ I. Moreover, set α =
B

∑
i∈I

b(i)
. Note that α ∑

vi∈V
w(vi) = B. Let A⊆V be the set

of activated vertices in an optimal solution. Observe J = {i : vi ∈ A} is an optimal solution for
min-knapsack. □

Even though the WLCIP is NP-hard on DAGs, demanding a somewhat elaborate mathematical
approach, it deserves further consideration. If we solve the WLCIP to optimality to obtain a
lower bound for α < 1, Algorithm 1 loses scalability. Furthermore, we observed in preliminary
experiments that the LP-relaxation of the formulation (8)-(11) does not provide a better lower
bound than min

i∈V (G′)
{ti} (line 3 of Algorithm 1). Because of this, we do not solve the WLCIP in the

experiments of Section 6. Attempts should be made to find lower bounds for the WLCIP tighter
than the LP-relaxation of the formulation (8)-(11). For example, such attempts could be made by
a combinatorial relaxation or by the LP-relaxation of a stronger formulation.

5 BRANCHING RULE

Observe that the greater the number of s.c.c. in G′, the greater the lower bound can be. To take
advantage of this, we formulate a branching rule that increases the number of strongly connected
components in the sub-graphs associated with the child nodes sub-problems in the branch-and-
bound tree.

The idea is to give higher priority to branch on the fractional variables associated with strong
bridges (Definition 2) or strong articulation points (Definition 3) of G′. In this way, when we fix
in zero a variable associated with a strong articulation point (or strong bridge) and remove the
corresponding vertex (or arc) of G′, the number of components in G′ increases. Consequently,
the number of vertices of the condensed graph increases too, and, in turn, the lower bound can
also increase.
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Definition 2 (Strong Bridge). A strong bridge of a directed graph G is an arc whose removal
increases the number of strongly connected components of G.

Definition 3 (Strong Articulation Point). A strong articulation point of a directed graph G is a
vertex whose removal increases the number of strongly connected components of G.

All the strong bridges and strong articulation points can be computed in O(|V |+ |E|) time for a
directed graph G = (V,E) (Italiano et al., 2012).

Algorithm 2 describes a branching rule based on these concepts. To describe it, we define the
following notation. Denote by S the set of all connectivity cuts of G, that is, S contains all strong
bridges and strong articulation points. Also, let sc(G,s) represent the number of strongly con-
nected components generated by removing s from G′, where s ∈ S can be an arc or a vertex of G.
For a solution (x̂, ŷ, ẑ) of the continuous relaxation of a sub-problem (or feasible region) P, the
set F = {i∈V (G) : x̂i /∈Z}∪{(i, j)∈ E(G) : ẑi j /∈Z} contains the elements of G associated with
the fractional variables of an LP-relaxation of the ILP model in Section 3. The list L represents
the list of active nodes of the branch-and-bound tree. Each node represents a problem, and P
denotes the current sub-problem.

Algorithm 2: Branching Rule
Input: G′

begin
S← CONNECTIVITYCUTS(G′)
S′← S∩F ; /* fractional articulation cuts */

if S′ ̸= /0 then
s∗ = argmax

s∈S′
{sc(G′,s)}

/* Branch on variable associated with s∗ */

if s∗ ∈V (G) then /* branch on a vertex variable */
P′← P∩{x̂s∗ ≤ 0}
P′′← P∩{x̂s∗ ≥ 1}

else /* branch on an arc variable */
P′← P∩{ẑs∗ ≤ 0}
P′′← P∩{ẑs∗ ≥ 1}

/* Put P′ and P′′ in the list of active nodes */

L ←L ∪{P′i ,P′′i }
else

Use another branching rule.

In Algorithm 2, the first step is to compute all the strong bridges and strong articulation points.
Subroutine CONNECTIVITYCUTS(G′) represents this procedure which can be done using the
algorithm presented in (Italiano et al., 2012). If there are fractional variables associated with the
connectivity cuts, we choose the one that generates more strongly connected components (line
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5). So we branch on the chosen variable by fixing it in zero for one child node and in one for the
other.

6 COMPUTATIONAL EXPERIMENTS

We conducted computational experiments with the branch-cut-and-price framework SCIP 6.0
running in an Intel Core i5-3210M 2.50GHz with 4GB of RAM. We used Gurobi Optimizer 8.1
as the underlying LP-solver and implemented the algorithms in C++. The test set is composed of
synthetic random directed graphs and real networks.

6.1 Synthetic graphs

As in (Fischetti et al., 2018; Günneç et al., 2020a), we use the generative model proposed by
(Watts & Strogatz, 1998) for small-world random graphs. The rewiring probability parameter
for the small world graph is limited to assume values β ∈ {0.1,0.3}. The influence weights
on the arcs are chosen uniformly at random from {1, ...,10}. Let N(µ,σ) be a normally-
distributed random variable, with mean µ and standard deviation σ . For every i ∈ V , we set

ti = max{1,min{N(µ,σ),di}}, where di = ∑
( j,i)∈E

d ji, µ = 0.7di and σ =
di

|Ni|
. We restrict the

experiments with synthetic graphs for α = {1,0.5,0.1}.

Table 1 summarizes the difference in performance when we apply the lower bound in the branch-
and-cut. Each value on the table is the average of 5 executions. Every execution generates a new
graph of a given size and average degree. The first column contains the name of instances in
format n-deg where n is the number of vertices, and deg is the average degree. The second
column is the value of β , the rewiring probability of the generative random graph model. The
third column is the value of α , the portion of the network to be activated in the LCIP. In the
other columns, BC means the branch-and-cut algorithm using only the LP-relaxation, and BC+
means using our combinatorial relaxation to get the lower bound, including the branching rule
(Algorithm 2). Next, we present the time in seconds for those that finished before the time limit.
The time limit for these instances is set to 1800 seconds. Dashed cells in the column “time”
indicate that the running time reached the time limit. We marked in boldface the best results.
E.g., in the instance “50-4” with α = 1, our method (BC+) required less running time to find
the optimum. In column “dual bound”, the higher, the better, while the contrary is in the “primal
bound”. Observe that our algorithm finds a better value for the dual bound in most instances.
We have the corresponding average optimality gap between the dual and primal bounds in the
last column. The symbol ∞ in the column “gap” denotes the gap is infinity or very large. The
optimality gap is computed as defined in both solvers SCIP and Gurobi. Let l be the dual bound,
and u be the primal bound. We set the gap to ∞ if l = 0. Otherwise, the gap is (u− l)/l. Recall
that the values in Table 1 are averages, so the gaps on the table are the average gaps. The number
in parentheses next to the infinity symbol is the number of instances where the lower bound is
greater than zero.
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Table 1 – Experiments with synthetic small-world graphs.

Graph b α
Time(s) Dual bound Primal bound Gap

BC BC+ BC BC+ BC BC+ BC BC+

50-4

0.1
1 553.5 400.6 32.3 35.7 37.4 35.7 0.7 0
0.5 608.9 1,036.1 22.4 21.7 52.8 66.9 3.2 4.2
0.1 1,288.6 1,445.1 12.9 11.3 24.7 31.6 1.2 2.2

0.3
1 356.7 525.6 51.7 48.4 51.7 51.7 0 0.1
0.5 - - 15.2 10.4 74.8 124.1 5.9 11.7
0.1 1,081.6 722.1 9.5 11.2 21.2 17.8 ∞ (4) 0.8

50-8

0.1
1 - - 7.6 18.4 402.0 389.7 ∞ (3) 21.8
0.5 - - 0 18.4 284.2 301.1 ∞ (0) 16.8
0.1 - - 0.4 18.4 87.8 87.8 ∞ (1) 4

0.3
1 - - 1.0 16.2 339.5 393.8 ∞ (1) 23.7
0.5 - - 0 15.9 347.7 325.1 ∞ (0) 19.6
0.1 - - 0 15.9 75.4 78.1 ∞ (0) 4

75-4

0.1
1 1,468.3 1,125.3 29.1 32.0 45.5 48.5 1.1 1.7
0.5 1,149.9 1,306.4 22.9 20.9 36.1 47.0 0.9 2.2
0.1 - 1,442.9 2.4 10.4 40.8 34.3 ∞ (3) 2.6

0.3
1 982.1 839.7 64.1 65.8 95.6 86.4 1.2 0.6
0.5 - - 16.6 22.7 131.5 94.2 12.2 4.8
0.1 1,084.4 1,092.4 11.7 12.0 28.5 28.2 1.8 1.8

75-8

0.1
1 - - 6.2 14.6 538.3 560.4 ∞ (2) 37.2
0.5 - - 0 14.6 416.5 449.7 ∞ (0) 29.8
0.1 - - 0 14.6 124.9 119.8 ∞ (0) 7.2

0.3
1 - - 11.4 17.4 678.0 685.8 ∞ (3) 41.8
0.5 - - 0 14.6 441.1 444.8 ∞ (0) 29.4
0.1 - - 0 14.6 105.4 108 ∞ (0) 6.4

75-12

0.1
1 - - 0 35.7 781.9 779.2 ∞ (0) 20.9
0.5 - - 0 35.7 683.6 663.5 ∞ (0) 17.5
0.1 - - 0 35.7 238.4 235.1 ∞ (0) 5.6

0.3
1 - - 0 32.7 818.9 882.3 ∞ (0) 29
0.5 - - 0 32.7 839.3 813.1 ∞ (0) 26.1
0.1 - - 0 32.7 235.9 235.9 ∞ (0) 6.8

100-4

0.1
1 - - 18.4 18.6 197.3 230.4 11.4 13.4
0.5 - - 12.4 12.6 121.8 180.0 ∞ (4) 16.7
0.1 678.4 1,445.7 12.1 8.85 23.6 35.7 ∞ (4) 3

0.3
1 - 1,793.6 47.6 50.7 188.3 112.0 2.84 1.5
0.5 - - 17.6 16.27 211.5 254.5 13.8 17.6
0.1 1,442.3 1,442.6 8.5 11.6 39.1 41.2 ∞ (4) 3

100-8

0.1
1 - - 13.3 18.7 859.4 835.8 ∞ (3) 48.0
0.5 - - 0 15 422.3 466.6 ∞ (0) 30.6
0.1 - - 0 15 149.7 149.7 ∞ (0) 9

0.3
1 - - 3.8 16.5 986.2 1,010.6 ∞ (2) 60.2
0.5 - - 0 16.5 687.2 671.0 ∞ (0) 39.6
0.1 - - 0 16.5 147.6 147.6 ∞ (0) 8

100-12

0.1
1 - - 0 37.7 1136.3 1099 ∞ (0) 28.2
0.5 - - 0 37.7 771.5 771.5 ∞ (0) 19.4
0.1 - - 0 37.7 275.4 275.4 ∞ (0) 6.3

0.3
1 - - 0 25.2 1,166.6 1,178.1 ∞ (0) 48.8
0.5 - - 0 25.2 1,075.4 1,075.6 ∞ (0) 44.5
0.1 - - 0 25.2 279.8 279.8 ∞ (0) 10.8

100-16

0.1
1 - - 0 47.1 1,513.5 1518 ∞ (0) 31.4
0.5 - - 0 47.1 1281 1281 ∞ (0) 26.2
0.1 - - 0 47.1 436.6 436.55 ∞ (0) 8.3

0.3
1 - - 0 50.1 1,725.6 1,698.3 ∞ (0) 32.9
0.5 - - 0 50.1 1,461.3 1,461.3 ∞ (0) 28.3
0.1 - - 0 50.1 459.9 459.9 ∞ (0) 8.2
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The results exhibited in Table 1 illustrate our algorithm behavior for graphs of different sizes
and densities. Our algorithm is not effective when the graphs are small (50-4, for example). In
some cases, the running time is worse than the branch-and-cut using only the LP-relaxation (BC).
However, as the density and the number of vertices increases, our algorithm (BC+) achieves bet-
ter gaps. While the BC has lower bounds equal to zero in many instances, BC+ always provides a
lower bound greater than zero, contributing to smaller gaps. In the vast majority of the instances,
our algorithm provides smaller gaps.

6.2 Real world networks

We also performed experiments with real-world social networks to demonstrate the effects of
applying the lower bound algorithm on real data. We used the datasets of the Koblenz Network
Collection (Kunegis, 2013), human social network category.

Table 2 shows a short description of each social network used here. For each network, n is the
number of vertices, and m is the number of arcs. The weights on the arcs are the original weights
of the networks. On graphs with no arcs weights, we set the weights to 1. Lastly, the threshold ti,
for each vertex i, is defined in the same way as in the synthetic graphs (see Section 6.1).

Table 2 – Real world social networks.

Network n m Description
High School 70 366 Contains friendships between boys in a small high school in

Illinois. Arc weights show how often a boy chose another boy
as a friend.

Residence 217 2,672 Contains friendship ratings between residents living at a
residence hall. Arcs are weighted from strongest to weakest tie
from 5 to 1.

Physicians 241 1,098 Captures innovation spread among physicians. Arcs are
weightless.

Wiki-vote 889 2,914 Wikipedia who-votes-on-whom network. Vertices represent
users, and an arc (i, j) represents that user i voted on user j.

Adolescent 2,539 12,969 Each student lists their ten best friends. Higher edge weights
indicate more interactions between two students.

Advogato 6,539 47,135 The trust network of the online platform Advogato. The weight
on arcs models the level of trust between the individuals.

DBLP 12,591 49,728 Citation network of DBLP. A database of scientific
publications. Each arc represents a citation of a publication by
another publication.

Cora Citation 23,166 91,500 Cora citation network. Vertices represent scientific papers. An
arc between two vertices indicates that a vertex cites another.

Table 3 summarizes the results for real-world social networks. Dashed cells indicate that the run-
ning time reached the time limit (1800 seconds). Also, we enabled all the presolving methods
of the SCIP framework for both algorithms BC and BC+. These presolving methods provide
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gains in running time or gap reduction for our algorithm, except in the Residence hall and Ad-
vogato networks. In the column entitled “dual bound”, the higher the number, the better. This
column shows that our algorithm provides higher lower bounds in the majority of the networks
for different values of α . It implies gains in the running time or gap reduction.

Table 3 – Experiments on real world based social networks for α = {1,0.5,0.1}.

Network α
Time(s) Dual bound Primal bound Gap

BC BC+ BC BC+ BC BC+ BC BC+

High School
1.0 1.2 0.1 18 18 18 18 0 0
0.5 - 173.3 0 6 21 6 106.6 0
0.1 29.2 - 3 3 3 9 0 2

Residence hall
1.0 - - 18 18 42 114 1.3 5.3
0.5 - - 0 6 408 408 ∞ 67
0.1 - - 0 6 60 60 ∞ 9

Physicians
1.0 - - 139.5 138.4 162 157.5 0.16 0.14
0.5 - - 8.4 15.5 229.5 81 26.3 4.2
0.1 - 300.2 4.9 13.5 18 13.5 2.7 0

Wiki-vote
1.0 0.3 0.1 3,692 3,692 3,692 3,692.0 0 0
0.5 - - 221.3 213.3 273 286 0.23 0.34
0.1 336.3 472.3 52 52 52 52 0 0

Adolescent
1.0 - 38.9 656.3 661.5 1,800.8 661.5 1.7 0
0.5 - - 0 5.3 94.5 94.5 ∞ 17
0.1 - - 0 5.3 210 210 ∞ 39

Advogato
1.0 - - 394,380 395,640 997,794 1,069,488 1.5 1.7
0.5 - - 0 126 801,864 801,864 ∞ 6,363
0.1 - - 0 126 82,404 82,404 ∞ 653

DBLP
1.0 17.4 8.7 40,645.5 40,645.5 40,645.5 40,645.5 0 0
0.5 - - 1,268.5 1,268.5 25,122 25,122 18.8 18.8
0.1 - - 51.1 51.1 15,128.5 15,128.5 294.8 294.8

Cora Citation
1.0 - - 624,899 624,954 625,416 625,086 0 0
0.5 - - 80,096 80,096 1,643,268 1,643,268 19.5 19.5
0.1 - - 3,365.5 3,365.5 135,696 135,696 39.3 39.3

Regarding the primal bounds, the reader can see that the gains of BC+ are not so expressive
compared to BC. Despite that, the gains with the lower bounds outweigh the losses with the
primal bound. Moreover, lower bounds are commonly used to approximate the optimality gap
of heuristic methods. Note that for three networks (Wiki-vote, DBLP, Cora Citation), there is a
small benefit in applying the dual bound algorithm, i.e., the performance of the branch-and-cut is
almost the same whether using the lower bound or not. These networks have in common that the
problem was entirely solved in the root node of the branch-and-bound tree for both algorithms
BC and BC+. We believe this happens because such networks are more sparse than the others.
Thus no branching is performed on the variables, and the lower bound algorithm has no chance
to exploit the connectivity of the sub-graphs. In this way, when there are few changes in the
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structures of the sub-graphs obtained from the branches, it is expected that our algorithm cannot
increase the dual bounds significantly.

7 CONCLUSION

We proposed and analyzed an algorithm to compute a lower bound for the Least Cost Influ-
ence Problem based on particular properties of the problem. In addition to the algorithm itself,
some auxiliary strategies proved to be helpful to increase the lower bounds. We designed custom
branching strategies to strengthen the lower bounds by using strong bridges and strong artic-
ulation points. We also provide computational experiments on large social networks to check
for practical applicability, showing that our algorithm can out-perform the linear programming
relaxation.

Our results show that the subject should be approached carefully, and we envision some space
for improvements. For example, it is possible to improve the experimental results by finding
a relaxed solution such that its value corresponds to the lower bound found by our algorithm.
Also, in dense graphs, we observed that the bounds behave better when α = 1 than when α < 1.
However, when we are not interested in influencing all the network individuals and the sub-
graphs are not strongly connected, the task becomes significantly more complex. In this case,
getting higher lower bounds implies solving a new NP-hard problem named Weighted Least
Cost Influence Problem. Because of this, it may be preferable to keep the algorithm efficient
and straightforward. Despite the theoretical conclusions about the WLCIP, we do not rule out
the possibility of finding other methods for obtaining better dual bounds efficiently in the case
of α < 1. Therefore, seeking new ways to approach this case is an open question in this study.
To conclude, we believe that our theoretical findings on the WLCIP can open up the path for
research on deriving a strong formulation for the WLCIP and finding combinatorial algorithms
to solve it.
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