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ABSTRACT. This article presents improvements to the hybrid preconditioner previously developed for

the solution through the conjugate gradient method of the linear systems which arise from interior-point

methods. The hybrid preconditioner consists of combining two preconditioners: controlled Cholesky fac-

torization and the splitting preconditioner used in different phases of the optimization process. The first,

with controlled fill-in, is more efficient at the initial iterations of the interior-point methods and it may be

inefficient near a solution of the linear problem when the system is highly ill-conditioned; the second is

specialized for such situation and has the opposite behavior. This approach works better than direct meth-

ods for some classes of large-scale problems. This work has proposed new heuristics for the integration

of both preconditioners, identifying a new change of phases with computational results superior to the

ones previously published. Moreover, the performance of the splitting preconditioner has been improved

through new orderings of the constraint matrix columns allowing savings in the preconditioned conjugate

gradient method iterations number. Experiments are performed with a set of large-scale problems and both

approaches are compared with respect to the number of iterations and running time.

Keywords: Linear programming, Interior Point Methods, Preconditioning.

1 INTRODUCTION

Since the emergence of the interior-point method, sophisticated codes have been implemented
in order to decrease the computational effort and improve its efficiency (Adler et al., 1989;
Lustig et al., 1990; Mehrotra, 1992; Czyzyk et al., 1999). The most expensive step to each
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iteration consists of the resolution of one or two linear systems. The most used approach for the
solution of these systems is the Cholesky factorization (Golub & Van Loan, 1996), a procedure
that may be expensive in large-scale problems.

An alternative for the solution of these systems is the use of iterative methods. The conjugate
gradients method has shown to be the most efficient for the solution of the linear equations
systems with large positive definite matrix.

To obtain the convergence of the iterative methods, it is fundamental to construct a preconditioner
for the matrix of the linear system. These preconditioners should be easily built with relatively
low computational cost and simultaneously, it should provide the convergence of the iterative
method in a small number of iterations.

In this work, two specific preconditioners will be considered: controlled Cholesky factorization
(Campos & Birkett, 1998) and the splitting preconditioner (Oliveira & Sorensen, 2005), pre-
sented in Section 3.

Based on tests performed by Bocanegra et al. (2007) it has been proved that these two pre-
conditioners determine a different behavior for the conjugate gradients method in the solution of
the linear systems which arise from interior-point methods. At the initial iterations of the interior-
point method, the method of the conjugate gradients solves the linear systems involved more
efficiently using the preconditioner obtained by the controlled Cholesky factorization (Campos
& Birkett, 1998). At the final phase of the interior-point iterative process, where the linear sys-
tems matrices are highly ill-conditioned, it was verified that the splitting preconditioner (Oliveira
& Sorensen, 2005), specially developed for these systems, allows the conjugate gradients method
to solve the systems in a quite efficient way.

This opposite behavior was availed by Bocanegra et al. (2007) developing a hybrid approach
where both preconditioners are used for the solution of the linear systems in the same problem of
optimization by interior-point methods. In the first phase of the optimization, the preconditioner
obtained by the controlled Cholesky factorization is used, and in the second phase (final phase)
the splitting preconditioner is used.

This work presents new heuristics to identify the moment in which the preconditioners change.
Moreover, improvements to the efficiency of the splitting preconditioner are presented, con-
sequently decreasing the number of iterations of the conjugate gradients method. The results
are presented using large-scale problems and comparing the results with the ones obtained by
Bocanegra et al. (2007).

2 PRIMAL-DUAL INTERIOR POINTS METHODS

A linear optimization problem may be presented in the standard form, as following:

min cT x

subject to Ax = b (1)

x ≥ 0
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where A ∈ Rm×n is the matrix of restrictions with m rows and n columns and rank(A) = m,
c ∈ Rn is the vector of the cost of the problem, b ∈ Rn is the vector of the restrictions and
x ∈ Rn is the vector of variables of the problem, restricted to values which are non-negative
(x ≥ 0; xi ≥ 0, i = 1, 2, . . . , n). Associated with the primal problem (1), the dual problem is
represented by:

max bT y

subject to AT y + z = c (2)

z ≥ 0

where y ∈ Rm is the vector of dual variables, z ∈ Rn is the vector of the gap variable z restricted
to non-negative values.

The primal-dual methods (Wright, 1996) solve the primal and the dual problems simultaneously
from an initial point, not necessarily feasible, but strictly positive (interior point). The method is
obtained from the application of the Newton’s method to the non-linear system F(x, y, z) (Equa-
tion 3) formed by the conditions of optimality, but not considering the non-negativity restrictions:

F(x, y, z) =






Ax − b
AT y + z − c

X Ze




 = 0 . (3)

The Predictor-Corrector method (Monteiro et al., 1990; Mehrotra, 1992) is considered the most
efficient approach for the solution of generic problems of linear programming.

This method uses three components to calculate the direction. A predictor direction
(
1x̃ k , 1ỹk ,

1z̃k
)

or the affine-scaling directions calculated from the system (4). This system of equations
results from the Newton’s method applied to the system (3).






A 0 0
0 AT I

Zk 0 Xk











1x̃ k

1ỹk

1z̃k




 =






b − Axk

c − AT yk − zk

−Xk Zke




 =






rk
p

rk
d

rk
a




 = r . (4)

From the predictor direction, an auxiliary point is calculated
(
x̃ k, ỹk, z̃k

)
,

x̃ k = xk + α̃p1x̃

ỹk = yk + α̃d1ỹ (5)

z̃k = zk + α̃d1z̃

where α̃p and α̃d are the steps calculated for the predictor direction, which guarantee the interi-
ority of the auxiliary point. The steps are defined as follows (Wright, 1996).

α̃k
p = min

(

1, α ∙ min
∂xk

i <0

(

−
xk

i

∂xk
i

))

, α̃k
d = min

(

1, α ∙ min
∂zk

i <0

(

−
zk

i

∂zk
i

))

and σ ∈ [0, 1) .
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According to the predictor direction process, the disturbance μk is calculated (Wright, 1996)

μk =






(
x̃ k z̃k

)3

n
(
xk zk

)2
se xk zk > 1

(
xk zk

)2

n
√

n
otherwise

,

and soon after that a direction of correction is computed. For this, the analogue system to the
expression (4) (Mehrotra, 1992) known as Modified Newton’s method:






A 0 0
0 AT I

Zk 0 Xk











1xk

1yk

1zk




 =






rk
p

rk
d

rk
c




 =






b − Ax̃k

c − AT ỹk − z̃k

μke − Xk Zke − 1X̃ k1Z̃ ke




 .

From the new direction, we calculate the next point in an equivalent way to (5).

It may be observed that in the predictor-corrector method, two linear systems at each iteration
with the same matrix are solved.

The implementations of interior points work with matrices of lower dimensions obtained from
the elimination of some variables.

If we use the third equation to eliminate 1z we obtain the augmented system (Equation 6) defined
by D = X−1 Z :

[
−D AT

A 0

] [
1x

1y

]

=

[
rd − X−1

(
μe − Ze − 1X̃1Z̃e

)

rp

]

. (6)

This system may still be reduced to a normal equations system by eliminating the 1x variable:
(

AD−1 AT )
1y = AD−1(rd − X−1rμ

)
+ rp. (7)

In the calculation of Newton’s directions, two linear systems involving the matrix AD−1 AT are
solved. For the solution of this system, direct methods may be used through Cholesky factor-
ization or iterative methods. The most used iterative method is the preconditioned conjugate
gradient.

In the next section, the hybrid preconditioner used for the preconditioning of the matrix AD−1 AT

of the normal equation system (7) is presented.

3 PRECONDITIONERS

The preconditioning of a matrix is used to facilitate the convergence of iterative methods in the
solution of linear systems.

Most of the known preconditioners are obtained from an incomplete Cholesky factorization
without promising results due to the ill condition of the matrix in the second phase of the process
of optimization.
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Mehrotra (1992b) and (Lustig et al., 1990) define a preconditioner for the solution of linear
systems by the conjugate gradient through the incomplete Cholesky factorization. The amount
of zeros in the preconditioners is controlled and it highly influences the performance. The tests
were carried out in the problems of Netlib.

Wang & O’Leary (2000) developed a preconditioner for the solution of the linear system by an
“adaptive” method. The method identifies when we should use the direct method and when we
should use the iterative method by the preconditioned conjugate gradient. The initial precon-
ditioner would be Cholesky factorization of the matrix generated in one of the iterations of the
interior-point method. When the gap varies in the course of the iterations of the method, the
preconditioner is calculated through up to n updates of 1-rank according to the variation of the
matrix D.

Bergamaschi et al. (2004) describe a preconditioner for the solution by iterative methods of the
augmented system in the solution of problems of linear, non-linear and quadratic optimization.
The preconditioner is calculated from Cholesky factorization of a new matrix AE−1 AT where the
matrix E is obtained from modifications made about the problem of optimization to have a more
sparse factorization. When we use the complete factorization of the matrix as a preconditioner,
the computational cost when the problem is linear is the same as when the direct method is used.

3.1 Hybrid preconditioner

The hybrid preconditioner (Bocanegra et al., 2007) is formed by the junction of two precon-
ditioners: controlled Cholesky factorization and the splitting. The preconditioners are used in
different phases of the process of optimization: controlled Cholesky factorization in the first
phase and the splitting in the final phase where the system is very ill-conditioned.

3.2 Controlled Cholesky Factorization

The Controlled Cholesky Factorization (CCF) proposed by Campos and Birkett (1998) is a vari-
ation of the incomplete Cholesky factorization proposed by Jones and Plassmann (1995).

Being Q = AD−1 AT and Qx = r the system of linear equations. Consider the complete
Cholesky factorization of Q = L LT and the incomplete factorization of Q = L̃ L̃T + R where
L̃ is an inferior triangular matrix obtained in the factorization and R, the remainder matrix. The
matrix L̃ is used as preconditioner matrix. It is constructed from the selection of a fixed number
of elements per columns with the largest absolute values.

Defining E = L − L̃ , the controlled Cholesky factorization is based on the minimization of the
Frobenius norm of E given that when ‖E‖ → 0 ⇒ ‖R‖ → 0. Consider the following problem:

min ‖E‖2
F =

n∑

j=1

n∑

i=1

|li j − l̃i j |
2 =

n∑

j=1




m j +η∑

i=1

|li j − l̃i j |
2 +

n∑

i=m j +η+1

|li j |
2



 .

Pesquisa Operacional, Vol. 31(3), 2011



“main” — 2011/10/13 — 15:06 — page 584 — #6

584 HEURISTICS FOR IMPLEMENTATION OF A HYBRID PRECONDITIONER FOR INTERIOR-POINT METHODS

as:

n = order of the matrix;
m j = number of nonzero elements below the diagonal in the j-th column of the matrix Q;
η = extra number of nonzero elements allowed per column.

The calculation of the norm is divided into two summations. In the first, we get the difference
among the elements of the matrix L and the elements chosen which will form the matrix L̃ .
The selected elements are the elements of the largest absolute values per column. The quantity
selected is equal to the number of nonzero elements below the diagonal (m j ) plus the extra
number of nonzero elements allowed per columns (η). In the second summation the difference
is not realized, because in these positions the matrix L̃ will have elements equal to zeros. Note
that the higher the filling of the matrix L̃ the lower will be its difference with L obtained by the
complete Cholesky factorization.

The value of η may vary from −n to n. When η has a positive value we will have a column j
with filling higher than the column j of the matrix Q. When the value is negative we will have a
lower filling.

From tests carried out (Bocanegra et al., 2007), it has been proved that this factorization presents
good results in the first iterations of the interior-point method, however it may deteriorates
itself in the last ones, as the matrix Q gets very ill-conditioned.

3.3 Splitting preconditioner

The splitting preconditioner was proposed in (Oliveira & Sorensen, 2005) for the solution of the
linear systems that arise from interior-point methods by iterative approaches, specifically by the
conjugate gradient method.

The splitting preconditioner was originally developed for the augmented matrix of form:
(

−D AT

A 0

)

.

The final matrix preconditioned takes the form:

M−1

(
−D AT

A 0

)

M−T =

(
−I + D−1/2 AT GT + G AD−1/2 0

0 −DB

)

where M is the preconditioned matrix and

M−1 =

(
D−1/2 G

H 0

)

, G = H T D−1/2
B B−1, H PT = [I 0] and APT = [B N ].

The permutation matrix P is such that the block B has m columns of A linearly independent
and in block N as n − m remaining columns.
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The preconditioner M may also be defined for the normal equations system. The matrix G may
be rewritten as:

G = AD−1 AT = B D−1
B BT + N D−1

N N T . (8)

Multiplying by D−1/2
B B−1 and post-multiplying by its transpose in the Equation (8) we obtain

the new preconditioned matrix:

D−1/2
B B−1(AD−1 AT )

B−T D−1/2
B = I + D−1/2

B B−1 N D−1
N N T B−T D−1/2

B .

This preconditioner is more efficient near an optimal solution of the problem (4) when the linear
system is highly ill-conditioned. In (Oliveira & Sorensen, 2005), the use of a diagonal matrix in
the first iterations is proposed and the splitting preconditioner in the final phase of the optimiza-
tion. This approach does not converge to many problems, because the diagonal preconditioner
fails in many of them.

The highest computational cost in the calculation of this preconditioner consists of the construc-
tion of the block B of the matrix A, where m columns linearly independent are chosen. The
way in which these columns are chosen is fundamental for the good performance of the pre-
conditioner. The authors (Oliveira & Sorensen, 2005) suggest the choice of the first m columns
linearly independent of AD−1 with lower 1-norm. An advantageous property of this precon-
ditioner is that the block B may be reused by several iterations making these iterations much
cheaper.

3.4 Efficiency of the preconditioner

The splitting preconditioner builds a partition B of linearly independent columns and the way
these columns are chosen influences its performance.

The authors (Oliveira & Sorensen, 2005) initially used the matrix D. New tests were carried
out by the authors with the matrix AD−1, selecting the first m linearly independent rows with
lower 1-norm of the columns of this matrix. This new approach improved the performance of
the preconditioner.

In this work, some problems have been tested using the ordering based on AD−1/2, the results did
not show better performance. Using the matrix AD−3/2 the performance of the preconditioner
was improved with some problems.

We also propose a new ordering of the columns of AD−1 from the 2-norm. The first m columns
linearly independent of AD−1 will be chosen with lower 2-norm

(
‖AD−1‖2

)
. This choice has

shown better results in the performance of the splitting preconditioner. The number of iterations
of the conjugate gradient method in the solution of the linear system was reduced.

3.5 Change of preconditioner

In the hybrid approach (Bocanegra et al., 2007), several conditions were verified for the change
of preconditioners as well as for the increase of the number of nonzero elements in the controlled
Cholesky factorization.
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The change of preconditioners is the fundamental point in the hybrid approach, because the
efficiency of the preconditioners is very well defined in each phase of the optimization. However,
each problem has a different behavior and consequently the phases are not easily identified.
Bocanegra et al. (2007) realizes the change in the following conditions:

1. The initial GAP is reduced in 10−6 and the number of iterations of the conjugate gradient
is higher than m/4 (m is the number of rows of the matrix A). It indicates that the process
of optimization is very advanced and it may be the moment to change the preconditioner.

2. The number of iterations of the conjugate gradient in the solution of the linear system is
near m/2 (m is the number of rows of the matrix A). This may indicate that the controlled
Cholesky factorization is not having a good performance.

3. If more than 10 corrections are made in the diagonal (which means that the matrix L̃
was recalculated more than 10 times). In the construction of CCF, there may be non-
positive pivots and to avoid this problem, a value is added to the diagonal (correction in
the diagonal) and the matrix L̃ is recalculated.

If none of these three conditions is satisfied, then the η is increased by 10 and the method
continues with the controlled Cholesky factorization.

In the study of this approach, it has been observed that these conditions are not always satisfac-
tory. In all the tested problems, when a change of phase is realized very far from solution, the
method does not reach the convergence.

In this way we verify that more coherent results are obtained when we use the controlled
Cholesky factorization for the most number of iterations as possible. This new heuristic implies
that the only condition that should be verified is the value of parameter η.

The new change of phase is realized when:

• If the iterations of the conjugate gradient are greater than m/6 then it is verified if η

reached a maximum value. If so, the change of the phases is realized, otherwise, η is
increased by 10 the process continues with the preconditioner obtained by the controlled
Cholesky factorization. Note that η is only used in the first phase.

For reasonable values of η the preconditioner obtained by the controlled Cholesky factorization
is cheaper in its construction and requires less memory than the splitting preconditioner and
therefore the highest number of iterations possible should be maintained. For some problems
this approach fails, because very close to a solution the controlled Cholesky factorization can not
work well. In the numerical tests presented in the following section these results will be verified.

4 NUMERICAL EXPERIMENTS

The hybrid preconditioner was integrated to the PCx code (Czyzyk et al., 1999). This code im-
plements a variant of the predictor-corrector algorithm with multiple corrections. The procedures
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to solve the linear systems are written in the language C, with the exception of the code of the
controlled Cholesky factorization which was implemented in FORTRAN. The same parameters
of PCx were used with the exception of the multiple corrections that are not allowed.

4.1 Test problems

All the tested problems are of public domain. The QAP problems are from the QAPLIB library
(Burkard et al., 1991) with the modifications described by Padberg and Rijal (1996). Some of the
NUG problems were modified and the letter M, at the end of the name, was added as indicative.
The Table 1 summarizes the problems tested showing the number of rows and columns after the
preprocessing.

Table 1 – Test problems data.

Problems Rows Columns

CHR25A 8149 15325

STE36A 27683 131076

STE36B 27683 131076

QAP12 2794 8856

QAP15 5698 22275

NUG08M 742 1632

NUG12M 2794 8856

NUG15M 5698 22275

NUG05 210 225

NUG05-3RD 1410 1425

NUG06 372 486

NUG06-3RD 3972 4686

NUG07 602 931

NUG07-3RD 9742 12691

NUG08 912 1632

NUG08-3RD 19728 29856

NUG12 3192 8856

NUG15 6330 22275

4.2 Computational results

The performance of the hybrid approach proposed by Bocanegra et al. (2007) was compared
with the performance of the new approach with the new condition of change of phases and the
new ordering by the 2-norm. The results are summarized in Table 2.

In the column “Iterations”, the number of iterations of both approaches to reach the optimal is
shown. In the column TIME, we have the computational times measured in an Intel Pentium IV
3.4GHz machine with 2Gb of memory using the Linux operating system.
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Table 2 – Comparison between the hybrid approach and the new approach.

Problems
Iterations Time

Hybrid New Hybrid New

CHR25A 28 28 83.90 66.58

STE36A 37 38 31086.77 48532.79

STE36B 37 37 83347.97 58825.81

QAP12 20 20 475.59 293.0

QAP15 23 23 4866.9 3672.32

NUG08M 10 9 2.85 2.21

NUG12M 20 20 521.12 255.14

NUG15M * 23 * 4597.23

NUG05 * 8 * 0.11

NUG05-3RD * 6 * 2.32

NUG06 * 6 * 2.32

NUG06-3RD * 7 * 27.2

NUG07 11 10 1.92 1.13

NUG07-3RD * 8 * 219.29

NUG08 10 9 2.8 2.24

NUG08-3RD * 9 * 1260.54

NUG12 20 20 473.0 245.91

NUG15 * 23 * 3526.91

*: The method has not converged.

The initial value of η in most of the problems was obtained from the average of the nonzero
elements of the matrix A(Mel). In problems of higher scale as in the NUG15 the initial η is
obtained adding 100 to the value of Mel. In general, the best time in the construction of CCF
is obtained when we use the initial value of η = −Mel, but this approach did not have good
performance for the bigger problems.

In most of the tested problems it was possible to decrease the computational time and for all
of them the optimal was reached. The hybrid approach of Bocanegra et al. (2007) realizes the
change of preconditioners in a stage in the process of optimization where the splitting precon-
ditioner still does not obtain a good computational performance. The tests have shown that the
best results are obtained when the CCF is used until the end of the optimization process.

Table 3 shows the average of iterations realized using the new ordering by the 2-norm of the
columns of AD−1. The column “Change” shows the iteration where the change of precondition-
ers was realized and the “Average” column shows the average of iterations carried out after the
change.

In the comparison between the two approaches considering the iteration of change of phase we
can verify that with the new approach the change is realized in a more advanced stage of the
process of optimization. Even when the splitting preconditioner manages to decrease the number
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of iterations of the conjugate gradient compared with the CCF, the use of the CCF for some more
iterations continues to be more advantageous, due to the computational effort to calculate B.

Table 3 – Comparison between the hybrid approach

and the new approach in the change of preconditioners.

Problems
Change Average

Hybrid New Hybrid New

CHR25A 12 11 534 415

STE36A 26 28 3028 2553

STE36B 25 27 7343 4794

QAP12 2 5 777 405

QAP15 6 12 1676 1117

NUG08M 4 5 88 61

NUG12M 3 7 781 440

NUG15M 10 11 * 1473

NUG05 * – * –

NUG05-3RD 2 – * –

NUG06 – 4 – 50

NUG06-3RD 2 – * –

NUG07 7 4 52 52

NUG07-3RD 2 – * –

NUG08 4 5 88 65

NUG08-3RD 5 – * –

NUG12 3 7 2406 440

NUG15 10 17 * 1818

*: The method has not converged; –: There was no change of preconditioner.

5 CONCLUSIONS

The problems presented in this work were tested by Bocanegra et al. (2007) using the PCx with
the classic approach using direct methods for the solution of the linear systems. In most of the
problems tested, it was possible to overcome the time of execution, the number of iterations and
in some cases it was even possible to run new problems.

In this work, a new study of the hybrid approach applied to large-scale problems has been carried
out. The study presents a new change of phase and a new reordering for the calculation of the
matrix B of the splitting preconditioner.

The new proposal for the change of preconditioners is more robust. The preconditioner obtained
with CCF is much cheaper and uses less memory than the splitting preconditioner. This suggests
that it may be more advantageous to maintain it for the most number of iterations possible and
with this new condition of change this is guaranteed. An initial proposal we are testing for the
limit of η is the average of the nonzero values of the matrix (bearing in mind that the initial value
of η is calculated from this average, but with negative sign).

Pesquisa Operacional, Vol. 31(3), 2011



“main” — 2011/10/13 — 15:06 — page 590 — #12

590 HEURISTICS FOR IMPLEMENTATION OF A HYBRID PRECONDITIONER FOR INTERIOR-POINT METHODS

The splitting preconditioner is very efficient in the last iterations of the interior-point method
when the matrix D obtained from the values of x and z has a well defined separation. The main
point which defines the good operation is the choice of the columns which form the partition
B. The ideas developed in this work propose a new approach of ordering for the choice of this
matrix that, as it has been shown, works better for all the problems tested. However, this ordering
is not always respected, because from it the first m columns linearly independent are chosen and
it may occur that the last columns are part of the matrix B. This makes the construction of B
very expensive and still does not produce the expected results. Future works aim to improve this
performance and eliminate these problems.
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