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ABSTRACT. This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Ran-

domized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve

the Clustered Traveling Salesman Problem (CTSP). Hybrid Heuristic algorithm uses several variable neigh-

borhood structures combining the intensification (using local search operators) and diversification (con-

structive heuristic and perturbation routine). In the CTSP, the vertices are partitioned into clusters and

all vertices of each cluster have to be visited contiguously. The CTSP is NP-hard since it includes the

well-known Traveling Salesman Problem (TSP) as a special case. Our hybrid heuristic is compared with

three heuristics from the literature and an exact method. Computational experiments are reported for differ-

ent classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive

results within reasonable computational time.

Keywords: Combinatorial Problems, Clustered Traveling Salesman Problem, Hybrid Heuristic, GRASP,

Iterated Local Search, Variable Neighborhood Structures.

1 INTRODUCTION

The Clustered Traveling Salesman Problem (CTSP) can be defined as follows. Let G = (V , E)

be a symmetric complete graph with vertex set V ={v1, v2, . . . , vn} and edge set E={(vi , v j ) :
vi , v j ∈ V , i �= j }. The vertex set V is partitioned into disjoint clusters V1, V2, . . . , Vm and
each edge (vi , v j ) ∈ E is associated with a non-negative cost ci j . The objective of the CTSP

is to find a minimum cost Hamiltonian tour on G, where all vertices of each cluster must be
visited consecutively. Note that when there is only a subset Vi = V the CTSP becomes a Trav-
eling Salesman Problem (TSP). Therefore, the CTSP is NP-hard since it includes the TSP as
a special case.

CTSP applications arise in automated warehouse routing Chisman [6], emergency vehicle dis-
patching Weintraub, Aboud, Fernandez, Laporte & Ramirez [42], production planning Lokin
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Vitória, ES, Brasil. E-mails: mmestria@ifes.edu.br; mmestria@uol.com.br



�

�

“main” — 2016/4/29 — 10:48 — page 114 — #2
�

�

�

�

�

�

114 A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

[27], computer disks defragmentation, manufacturing, vehicle routing Laporte & Palekar [24],

commercial transactions with supermarkets and shops and grocery suppliers Ghaziri & Osman
[16]. Heuristic techniques are widely used to solve many TSP variants Dong, Guo & Tickle
[9], Escario, Jimenez & Giron-Sierra [10], and Nagata & Soler [35]. There are also heuristic

procedures based on different approaches Fioruci, Toledo & Nascimento [13], Subramanian &
Battarra [40], Létocart, Plateau & Plateau [26], Martı́nez, Alvarez-Valdes & Parreño [32], and
Vidal, Battarra, Subramanian & Erdogan [41] to solve different variants of combinatorial opti-

mization problems.

As pointed out in Caserta & Voß [5], a line of research in the metaheuristic field is concerned
with the design of hybrid algorithms, where the term hybrid can indicate either the combination
of different metaheuristics or the intertwined usage of metaheuristic features with mathematical

programming techniques.

In López-Ibáñez, Mascia, Marmion & Stützle [28], the authors discuss a template for single-
solution hybrid metaheuristics is based on Iterated Local Search (ILS). The flexibility is given
by generalizing the components of ILS (perturbation, local search and acceptance criterion) in

order to incorporate components from other metaheuristics.

In this context we propose a hybrid heuristic algorithm for the CTSP that is based on the meta-
heuristics Greedy Randomized Adaptive Search Procedure (GRASP) Feo & Resende [11], ILS
Lourenço, Martin & Stützle [29], and Variable Neighborhood Descent (VND) Hansen & Mlade-

nović [19]. To the best of our knowledge, this is the first time ILS has been applied to solve the
CTSP. State-of-the-art solutions were found for many problems using this metaheuristic Stützle
[39] and Lourenço, Martin & Stützle [30]. The developed hybrid heuristic approach extends the

basic GRASP structure by embedding ILS components, which in turn, makes use of a Vari-
able Neighborhood Descent (VND) Hansen & Mladenović [20] based procedure in the local
search phase.

The remainder of the paper is organized as follows. Section 2 provides a brief review of some

works related to the CTSP. Section 3 presents a mathematical formulation of CTSP. Section 4
describes the proposed hybrid heuristic for the CTSP. Computational results are given in Section
5 and conclusions are presented in Section 6.

2 RELATED WORK

The CTSP arose for the first time motivated by a study carried out in a warehouse system
Chisman [6]. In this system, orders for goods arrive, each of these containing several subor-
ders. A suborder calls for different stock numbers and it must be completely satisfied before the

next suborder is started. A motorized truck is dispatched through the warehouse to pick up the
stock numbers for each suborder. The order of picking the stock numbers within each suborder
and the ordering of the suborder must be simultaneously optimized. In this model, the suborders

are the clusters, the position of the stock numbers are the vertices and the distances to be trav-
eled by the motorized truck are the cost of the edges. The CTSP was transformed into a TSP by

Pesquisa Operacional, Vol. 36(1), 2016
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adding a large constant M to the cost of each inter-cluster edge. A branch-and-bound algorithm

was used to solve the problem.

Several α-approximation algorithms were developed for the CTSP Anily, Bramel & Hertz [1],
Arkin, Hassin & Klein [3], Gendreau, Laporte & Potvin [14], Gendreau, Laporte & Hertz [15],
and Guttmann-Beck, Hassin, Khuller & Raghavachari [18]. These algorithms extend those de-

veloped for the TSP Christofides [7] and Hoogeveen [21] and provide solutions for the CTSP
within a given approximation factor. Different values for such factors were found in the litera-
ture, namely: 5/3 Anily, Bramel & Hertz [1], 3.5 Arkin, Hassin & Klein [3], 2 Gendreau, Laporte

& Potvin [14], and 3/2 Gendreau, Laporte & Hertz [15].

It is worth mentioning that the α-approximation algorithms require as input either the starting
si and ending ti vertices in each cluster Vi or a prespecified order of visiting the clusters in
the tour, i.e., V1, V2, . . . , Vm , with Vi < V j , j = i + 1, for i = 1, 2, . . . , m − 1. Note that

these algorithms solve the inter-cluster and intra-cluster problems independently. One drawback
of these α-approximation algorithms is the fact that it does not allow the construction of cycles
when the order of visiting the clusters is not given a priori.

In Guttmann-Beck, Hassin, Khuller & Raghavachari [18] some α-approximation algorithms with

bounded performance ratios were presented for four CTSP variants. In the first one, a (21/11)-
approximation algorithm was proposed for the case in which the starting and ending vertices of
each cluster are specified. In the second one, a (9/5)-approximation algorithm was suggested

for the variant where for each cluster the two end vertices are given, but with freedom of choos-
ing the starting and ending vertices. The third approximation scheme consists of a (37/14)-
approximation algorithm for the case where the starting vertex of each cluster is given. In the

last one, a (11/4)-approximation algorithm was devised for the case where no specific starting
and ending vertices are provided. More recently, in Bao & Liu [4], a new approximation algo-
rithm with a factor of 13/6 was proposed for the CTSP, also for the case where no starting and

ending vertices are specified.

A heuristic algorithm that combines the concepts of Tabu Search and Evolutionary Algorithms
was proposed in Laporte, Potvin & Quilleret [25] to solve a particular case of the CTSP in which
the visiting order within the clusters is prespecified. It was verified that the developed heuristic

outperformed the Genetic Algorithm (GA) described in Potvin & Guertin [36], which exploits
order-based crossover operators and local search heuristics. The CTSP with a prespecified vis-
iting order within the clusters was also considered in Gendreau, Laporte & Potvin [14]. An
approximation algorithm with guaranteed performance ratio and two methods with satisfactory

empirical performance were developed. Three algorithms were compared with a lower bound.

An algorithm which provides lower bounds on the optimal tour lengths for the CTSP using a
1-tree based Lagrangian Relaxation was developed in Jongens & Volgenant [23]. The computa-
tional results were reported for a set of instances ranging from 80 to 150 vertices and different

sizes of clusters.

Pesquisa Operacional, Vol. 36(1), 2016
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A GA for the CTSP which finds inter-cluster paths and then intra-cluster paths was developed in

Potvin & Guertin [37]. Comparisons were performed with the heuristic proposed in Gendreau,
Laporte & Potvin [14] and with lower bounds obtained using the procedure suggested in Jon-
gens & Volgenant [23]. This GA solved problems with up to 500 vertices and with 4 and 10

clusters. A Two-Level Genetic Algorithm (TLGA) was proposed for the CTSP in Ding, Cheng
& He [8]. In the lower level, the algorithm finds Hamiltonian cycles in each cluster, whereas
in the higher level, it randomly chooses an edge to be deleted on the cycle in each cluster and

simultaneously determines routing among clusters. Computational results demonstrated that the
TLGA outperformed the classical GA developed by the authors Ding, Cheng & He [8].

Several GRASP based heuristics for the CTSP were recently proposed in Mestria, Ochi &
Martins [33]. One heuristic corresponds to the traditional GRASP while another five include

alternative Path Relinking (Glover, Laguna & Martı́ [17]) procedures. The computational re-
sults showed that the proposed heuristics outperformed the GA presented in Ding, Cheng & He
[8]. Two particular versions, GPR1R2 and GPR4, had the best performance among the different

methods put forward by the authors. We compare the results obtained by our hybrid heuristic
with those found by these two approaches and also with the traditional GRASP.

3 A MATHEMATICAL FORMULATION OF CTSP

A mathematical formulation of CTSP using integer programming is described in Chisman [6],
Miller, Tucker & Zemlin [34]. The salesman leaves an origin city v1, without loss of generality,
and returns to v1. The cost ci j represents the distance between city vi and city v j . The salesman

proceeds from city vi to city v j if and only if xi j = 1.

The mathematical formulation is as follows:

Minimize z =
n∑

i=1

n∑
j=1

ci j xi j (1)

subject to
n∑

j=1

xi j = 1, ∀i ∈ V (2)

n∑
i=1

xi j = 1, ∀ j ∈ V (3)

ui − u j + (n − 1)xi j ≤ (n − 2), 2 ≤ i �= j ≤ n (4)∑
i∈Vk

∑
j∈Vk

xi j =| Vk | −1, ∀Vk ⊂ V , | Vk |≥ 1, k = 1, . . . , m (5)

ui ≥ 0 2 ≤ i ≤ n (6)

xi j ∈ {0, 1} ∀i, j ∈ V (7)

The objective function (1) minimizes the total distance traveled by the salesman and constraints
(2) and (3) ensure that each city is visited once. Constraints (4) serve to eliminate tours that do

Pesquisa Operacional, Vol. 36(1), 2016
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not begin and end at city v1 and tours that visit more than (n−1) cities. Constraints (5) state that

a Hamiltonian path of length | Vk | −1 must go through the | Vk | points of cluster k. Constraints
(6) and (7) define the domain of variables.

9
11
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5

V4

1V

6

1
4

3

2
7

V3V2

Figure 1 – A feasible solution for an example of an instance of the CTSP.

The Figure 1 shows a feasible solution for an example of an instance of the CTSP composed
of four clusters (V1, V2, V3, and V4) and 11 vertices, where V1={1, 4, 6}, V2={2, 3, 7}, V3={5,

8}, and V4={9, 10, 11}. The dotted line edge between the vertices 4 and 9 show a connection
inter-cluster and the full line edge between the vertices 9 and 11 a intra-cluster connection. Note
that the vertices of each cluster are visited contiguously.

4 THE PROPOSED HYBRID HEURISTIC

As already mentioned, the developed hybrid heuristic, called HHGILS, brings together com-
ponents of the metaheuristics GRASP, ILS, and VND. The pseudocode of the proposed hybrid
heuristic is illustrated in Algorithm 1. In step 2, the probability distribution of the parameter α,

which is related to the constructive procedure, is initialized. The role of this parameter (reactive
strategy) will be explained later.

Pesquisa Operacional, Vol. 36(1), 2016
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Algorithm 1 Pseudocode of the HHGILS algorithm.
1: i terprob← 1;
2: initializealphas( ); {initialize the probability distribution of the alphas}
3: for i=1 to maxext do
4: S0← ConstructiveHeuristic();

5: S← VND(S0);

6: for i=1 to maxint do
7: S

′ ← Pert(S);

8: S
′′ ← VND(S

′
);

9: S← AccepCrit(S, S
′′
, S∗);

10: if S is better than S∗ then
11: S∗ ← S;

12: end if
13: end for
14: if i terprob = maxprob then
15: updatealphas( ); {update the probability distribution of the alphas}
16: i terprob← 0;
17: end if
18: i terprob++;

19: end for
20: return S∗;

Other three important parameters of the algorithm are: maxext , maxint and max prob. They

correspond, respectively, to the maximum number of restarts of the method, ILS iterations, and
restarts to update the probability distribution of α.

The value of maxint is typically larger than max prob because more computational effort is usu-
ally required to improve an initial solution than to improve another one that has been slightly

modified (perturbed) from a local optimal solution. Restarting the method from a different ini-
tial solution and perturbing local optimal solutions are both promising ways of diversifying the
search, especially when put together. Since perturbations may lead to cycles, we build new so-

lutions so as to avoid this kind of cycling. Thus at each external iteration a solution is built.
For each of the maxext iterations (step 3 to step 19), a solution is generated by a constructive
procedure based on GRASP and, in step 5, a local search is performed by means of a VND pro-

cedure. For each of the maxint iterations (step 6 to step 13), a perturbation is applied in step 7
and a local search is performed again using VND (step 8). In steps 9-11, the incumbent solution
is updated.

The acceptance criterion (step 9) is responsible for deciding the solution from which the search

will continue. In our case, it chooses the solution, from S, S
′′

and S∗, associated with the mini-
mum cost. In traditional ILS, the acceptance criterion does not consider S∗ (the best solution in
the current iteration). It only consider S e S

′′
e thus if S passes an acceptance test, it becomes

the next element of the walk in S, otherwise, one returns to S
′′
. But, the our algorithm consists

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 10:48 — page 119 — #7
�

�

�

�

�

�
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in choosing the solution which presents the minimum cost among the three solutions S, S
′′

and

S∗. In step 15, the probability distribution of the α values is updated using a reactive strategy.
Finally, in step 20 the best solution is returned.

The constructive heuristic extends the well-known Nearest Insertion heuristic by introducing
concepts of GRASP. At each iteration of the constructive heuristic, a Restricted Candidate List

(RCL) is built using a parameter α to restrict the size of the list of candidates to be inserted
in the partial solution. The α values are defined using a reactive strategy, leading to a better
performance when compared with fixed values. The reactive strategy usually helps generating

better quality solutions, also avoiding parameter tuning (Festa & Resende [12]). The reactive
strategy is presented as follows. Let � = {α1, . . . , αm} be the finite set of m possible values
for α and let pi be the corresponding probability of selecting αi , i = 1, . . . , m. Initially, pi is

uniformly distributed:
pi = 1/m, i = 1, . . . , m. (8)

After K iterations, the pi values are reevaluated as follows. Let f ∗ be the best cost solution
found in K previous iterations and let fi be the average cost solutions obtained using α =
αi , i = 1, . . . , m during K iterations. The probabilities are updated after K iterations according
to:

pi = qi/

m∑
j=1

q j , i = 1, . . . , m. (9)

where qi = f ∗/ fi .

Algorithm 2 Pseudocode of the nearest insertion heuristic.
1: Select three vertices vl , vl+1 and vl+2;
2: S← {vl , vl+1, vl+2};
3: Initialize the candidate set C ← V\{vl , vl+1, vl+2};
4: while C �= ∅ do
5: Find the k nearest vertices of C with respect to the vertices of the constructed tour (solution S) and

evaluate the incremental costs c(vk) for vk ∈ C;
6: cmin ← min{c(vk )/vk ∈ C};
7: cmax ← max{c(vk)/vk ∈ C};
8: RCL ← {vk ∈ C/c(vk) ≤ cmin + α ∗ (cmax − cmin)};
9: Select an element vk from the RCL at random;

10: S ← S ∪{vk}; {connect vk to the vertices (vi and vi+1) of the tour with minimum cost (price)

p(vk )={pi,k +pk,i+1-pi,i+1} and update the tour}
11: Update the candidate set C ← C\{vk };
12: end while
13: return S

The pseudocode of the constructive heuristic is presented in Algorithm 2. In step 1, the vertex vl

is randomly selected and the two nearest neighborhood vertices from the same cluster as vl (vl+1

and vl+2) are chosen as the vertices that will form the initial partial solution S (step 2).

Pesquisa Operacional, Vol. 36(1), 2016
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The candidate set C is initialized in step 3. In step 5, the k nearest vertices of C, with respect

to the vertices already in the partial tour, are determined and the incremental costs c(vk ) are
evaluated. Only feasible insertions are considered, meaning that the vertices chosen belong to
the same cluster of existing vertices in the partial solution. Note that the vertices of a same

cluster must be visited consecutively in a feasible CTSP tour. In steps 6 and 7, the minimum
cmin and maximum cmax incremental costs are determined. In step 9, a vertex vk is randomly
selected from RCL. In step 10, the partial tour (solution S) is updated by inserting a vertex vk

between two adjacent vertices (vi , vi+1) which leads to the minimum cost, denoted by price
p(vk ). In step 11, the candidate set C is updated and finally, in step 13, the initial feasible
solution S is returned.

Table 1 – Data for an example of the Algorithm 2.

vertex vk x-coordinate y-coordinate cluster Vi

1 177 311 1

2 924 320 3
3 265 52 1

4 45 500 3
5 233 300 1

6 167 104 3
7 117 275 1

8 190 78 3
9 61 269 2

10 684 539 2
11 380 526 1

12 550 549 2

Table 1 presents the data of a small size instance containing 12 vertices and 3 clusters. In the
first column shows o vertex vk , in the second the x-coordinate of vertex vk , in the third y-

coordinate of vertex vk , and in the last column the cluster Vi of vertex vk . This instance is con-
sidered to illustrate how Algorithm 2 works, as shown in Table 2. It shows the some steps of the
Algorithm 2 with data of Table 1. In the first column shows the steps, in the second the inserting

the initial vertices (vl , vl+1, vl+2) or vertex vk , in the third the cluster Vi of initial vertices or of
vertex vk , and the last column the initial, partial or final solution. In this case, the initial partial
tour is composed of vertices 1, 5 and 7, all belonging to cluster 1. Next, vertex 3 is inserted be-

tween vertices 5 and 7. The procedure is repeated until vertex 9 is inserted and a feasible initial
solution is built.

As pointed before, the local search procedure is based on VND and it is composed of four types
of neighborhood structures. The first neighborhood structure, N1, consists of moving vertex vk

from position i to position j �= i (1-Shift) of the same cluster so as to ensure feasibility. We
describe two types of procedures (Drop and Cheap) in order to define the second neighborhood
structure N2. The procedure Drop removes the vertex vk which leads to the best saving. The

Pesquisa Operacional, Vol. 36(1), 2016
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Table 2 – Steps of the Algorithm 2 with data of Table 1.

Steps vertex vk cluster Vi partial solution

1 and 2 1, 5, 7 a 1 {1 5 7}b
9 and 10 3 1 {1 5 3 7}
9 and 10 11 1 {1 11 3 7}
9 and 10 4 3 {1 5 4 11 3 7}
9 and 10 8 3 {1 5 8 4 11 3 7}
9 and 10 6 3 {1 5 8 6 4 11 3 7}
9 and 10 2 3 {1 5 8 6 4 2 11 3 7}
9 and 10 12 2 {1 5 8 6 4 2 12 11 3 7}
9 and 10 10 2 {1 5 8 6 4 2 10 12 11 3 7}

13 9 2 {1 5 8 6 4 2 10 12 9 11 3 7}c
a vertices (vl , vl+1, vl+2) b initial solution c final solution

procedure Cheap inserts a vertex vk between two adjacent vertices (vi , vi+1) using the cheap-

est insertion criterion. N2 thus consists in applying the Drop procedure followed by the Cheap
procedure. The moves of N2 are applied until no further improvement of the procedures (Drop
and Cheap) is found. The third neighborhood structure, N3, is based on vertex-exchange move-

ments in the same cluster (2-Swap). The fourth neighborhood structure, N4, uses the well-known
2-opt procedure both inside and between the clusters. In this work, we apply the first improve-
ment strategy for N1 and N3, with a view of reducing the computational time, and the the best

improvement strategy for N2 and N4.

The double-bridge Martin, Otto & Felten [31] was adopted as one of the perturbation mecha-
nisms. It consists of deleting four arcs and inserting another four in such a way that a new feasible
solution is built. This perturbation, called Pert, is only applied inside a cluster, with more than

eight vertices, which is selected at random. For the remaining cases, i.e, when the clusters have
less or equal than eight vertices, we introduce another perturbation mechanism, called Perttc,
which randomly chooses two clusters and modify their visiting order. In this case, the proce-

dure does modify the visiting order of vertices inside the clusters. Such perturbations are called
individually at a time, that is, they are never combined.

5 COMPUTATIONAL RESULTS

The set of instances used in Mestria, Ochi & Martins [33] were used to evaluate the performance

of the proposed hybrid heuristic. These instances are available on-line at http://labic.ic.
uff.br/Instance/index.php. Six different classes of instances were considered.

Class 1: instances adapted from the TSPLIB Reinelt [38] using the k-means clustering algo-
rithm to generate the clusters.

Pesquisa Operacional, Vol. 36(1), 2016
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Class 2: instances adapted from those found in Johnson & McGeoch [22] where the clusters

were created by grouping the vertices in geometric centers.

Class 3: instances generated using the Concorde interface available in Applegate, Bixby, Chvátal
& Cook [2].

Class 4: instances generated using the layout proposed in Laporte, Potvin & Quilleret [25].

Class 5: instances similar to Class 2, but generated with different parameters.

Class 6: instances adapted from the TSPLIB Reinelt [38], where the rectangular floor plan is

divided into several quadrilaterals and each quadrilateral corresponds to a cluster.

We chose a set of small, medium and large size instances. The set of small instances is composed
of 27 test-problems from Class 1. The set of medium instances is composed of 3 instances from
each of the six classes, which leads to a total of 18 instances. Finally, the last set is composed

of 15 instances, more specifically, 5 from classes 4, 5 and 6, respectively. In this way, we
have a variety of different classes of instances with varying sizes. Each class has one different
granularity (the vertices are positioned and dispersed in various ways).

The empirical performance of HHGILS was compared with the optimal solution or the lower

bound obtained by a Mixed Integer Programming (MIP) formulation proposed in Chisman [6].
The Parallel ILOG CPLEX was used a MIP solver, with four threads. The classes of cuts used in
the CPLEX were clique cuts, cover cuts, implied bound cuts, flow cuts, mixed integer rounding

cuts, and Gomory fractional cuts. The tests were executed in a 2.83 GHz Intel Core 2 Quad with 4
cores and 8 GB of RAM running Ubuntu Linux (kernel version 4.3.2-1). The HHGILS algorithm
was coded in C programming language and it was executed in the same environment mentioned

above, but in this case only a single thread was used.

The main parameters used in our testing are described as follows. Eleven values were used for
αk and they were initially chosen with uniform probability from the interval {0.0, 0.1, 0.2,

. . . , 1.0}. The parameter maxint was set to 35, maxext (maximum number of external itera-

tions) set to 40, and maxprob was set to 10. HHGILS was executed ten times for each instance.
These parameters were calibrated after preliminary experiments.

5.1 Comparison with CPLEX

Table 3 shows the results found in the set of instances of Class 1, where the first column contains

the instances. The instances XX-nameYYY is composed of XX clusters, one name name, and
YYY vertices, for example, (a) the instance 5-eil51 is composed of five clusters and 51 vertices
(first row of Table 3 with the results), (b) the instance 10-eil51 is composed of ten clusters and

51 vertices (second row), (c) the instance 75-lin105 is composed 75 clusters and 105 vertices
(last row), and so on. The second column contains the optimal values obtained by CPLEX and
the third column the time (in seconds) required by CPLEX to find the optimal solution, i.e., the

CPLEX was carry out until to find the optimal solution with gap equal a 0 (zero). The gap
is calculated by (10). The fourth column presents the gap between the solution obtained by

Pesquisa Operacional, Vol. 36(1), 2016
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Table 3 – Comparison between HHGILS and CPLEX for the small size instances of Class 1.

CPLEX HHGILS
Instances

Opt Time (s) Gap (%) Time (s)

5-eil51 437 12.31 0.00 3.80
10-eil51 440 74.38 0.00 5.50

15-eil51 437 2.04 0.00 5.00
5-berlin52 7991 201.80 0.11 4.50

10-berlin52 7896 89.17 0.52 5.10

15-berlin52 8049 75.93 0.00 4.00
5-st70 695 13790.11 0.00 6.90

10-st70 691 4581.00 0.43 3.70
15-st70 692 883.50 0.87 6.40

5-eil76 559 83.70 0.00 5.10
10-eil76 561 254.30 1.07 8.60

15-eil76 565 49.66 0.88 6.80
5-pr76 108590 99.29 0.00 6.30

10-pr76 109538 238.13 0.00 8.30
15-pr76 110678 261.94 0.00 9.70

10-rat99 1238 650.67 0.00 12.60
25-rat99 1269 351.15 0.00 21.40

50-rat99 1249 2797.58 0.00 18.60

25-kroA100 21917 3513.57 0.00 21.70
50-kroA100 21453 947.55 0.00 21.70

10-kroB100 22440 4991.44 0.91 12.40
50-kroB100 22355 2579.22 0.00 22.40

25-eil101 663 709.45 1.06 21.10
50-eil101 644 275.33 0.16 20.80

25-lin105 14438 6224.55 1.38 16.70
50-lin105 14379 1577.21 0.00 22.60

75-lin105 14521 15886.77 0.00 23.70

Average values 2266.73 0.27 12.05

HHGILS and the optimal solution. The last column shows the average computing time (in sec-
onds) of HHGILS. The stopping criterion of HHGILS in this case was the number of iterations.

The boldface values indicate that the hybrid heuristic found the optimal solution. From Table 3,
it can be seen that HHGILS found 17 optimal solutions out of 27 instances. The average gap
between the solutions obtained by HHGILS and the optimal ones was 0.27%, whereas the aver-

age computing time was 12.05 seconds. In this case, the perturbation Perttc was used in 11 of
the 27 instances.

gap = 100 ∗
(

best − lb

best + ε

)
, (10)

where, best is the best value found by CPLEX, lb the lower bound, and ε is equal to 10−10.
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In Table 4, we present the computational results obtained by CPLEX and HHGILS for medium

size instances. The first column contains the names of the instances and in the second their
identifiers, followed by the number of vertices, number of clusters and the Class of the instances.
The next three columns show the upper bound, the lower bound and the gap found by CPLEX.

The last two columns show the best and average gaps found by HHGILS with respect to the
lower bound obtained by CPLEX. We set a time limit of 7200 seconds for all CPLEX executions.
The stopping criterion for HHGILS was set to 720 seconds. As already mentioned, the hybrid

heuristic was executed ten times for each instance, leading to a total time of 7200 seconds.

On average, the best and average solutions found by HHGILS are less than 1% away from the
lower bounds obtained by CPLEX, which suggests that the proposed hybrid heuristic had a robust
performance, in terms of solution quality, on this set of instances.

It should be noticed that, for the set of small instances, the worst average gap found by HHGILS,

with respect to the optimal solutions, was 1.38%, whereas the worst average gap for the medium
instances, with respect to the lower bound, was 1.45%. To our knowledge, the best CTSP α-
approximation algorithm proposed in the literature is the one presented in Bao & Liu [4], with an

approximation factor of 13/6 (≈ 2.17). Therefore, it is possible to observe that the largest gaps
found by HHGILS are much smaller than the approximation factor obtained in Bao & Liu [4].

Table 4 – Comparison between HHGILS and CPLEX for medium size instances.

CPLEX HHGILS gap (%)
Instances Id. #vertices #Vi Class

Cost Lower Bound Gap (%) Best Average

i-50-gil262 J1 262 50 1 135529 135374.68 0.11 0.10 0.15

10-lin318 J2 318 10 1 534640 526412.07 1.54 0.73 0.83

10-pcb442 J3 442 10 1 547152 536478.33 1.95 0.46 0.65

C1k.0 J4 1000 10 2 134025123 131354923.50 1.99 1.45 1.81

C1k.1 J5 1000 10 2 130750874 128540131.50 1.69 0.99 1.28

C1k.2 J6 1000 10 2 144341485 141501445 1.97 1.24 1.41

300-6 J7 300 6 3 8969 8915.18 0.60 0.21 0.31

400-6 J8 400 6 3 9117 9021.51 1.05 0.33 0.46

700-20 J9 700 20 3 41638 41274.00 0.87 0.43 0.51

200-4-h J10 200 4 4 63429 62244.84 1.87 0.89 1.29

200-4-x1 J11 200 4 4 60797 60242.96 0.91 1.13 1.85

600-8-z J12 600 8 4 132897 127901.75 3.76 1.17 1.56

600-8-x2 J13 600 8 4 132228 127901.75 3.27 1.04 1.38

300-5-108 J14 300 5 5 68361 67128.93 1.80 1.01 1.18

300-20-111 J15 300 20 5 311286 308595.45 0.86 0.52 0.59

500-15-306 J16 500 15 5 196001 193522.8 1.26 0.86 0.98

500-25-308 J17 500 25 5 367586 364108.13 0.95 0.47 0.54

25-eil101 J18 101 25 6 23671 23668.63 0.01 0.04 0.09

42-a280 J19 280 42 6 130043 129560.53 0.37 0.12 0.21

144-rat783 J20 783 144 6 916174 913715.52 0.27 0.16 0.18

Average 1.36 0.67 0.86
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5.2 Results obtained by the hybrid heuristic HHGILS for large size instances

Table 5 illustrates the best and average results obtained by HHGILS for large size instances using
a stopping criterion of 1080 seconds for each run. The first column contains the names of the

instances and the second column their identifiers, followed by the number of vertices, number of
clusters and the Class of the instances. The sixth and seventh columns show the values obtained
by HHGILS. These results appear to be quite competitive when compared to other approaches

from the literature as shown later in Table 8.

Table 5 – The best and average results obtained by HHGILS for large size instances.

Instances Id. #vertices #Vi Class Best Average

49-pcb1173 J21 1173 49 6 67043 68260.70
100-pcb1173 J22 1173 100 6 68786 70640.83

144-pcb1173 J23 1173 144 6 66830 69084.25

10-nrw1379 J24 1379 10 6 63620 64643.88
12-nrw1379 J25 1379 12 6 63558 64741.57

1500-10-503 J26 1500 10 5 11986 12109.45
1500-20-504 J27 1500 20 5 17107 17315.72

1500-50-505 J28 1500 50 5 25264 25558.90
1500-100-506 J29 1500 100 5 32260 33760.64

1500-150-507 J30 1500 150 5 37658 38433.09
2000-10-a J31 2000 10 4 116254 116881.38

2000-10-h J32 2000 10 4 36447 37305.14
2000-10-z J33 2000 10 4 37059 37443.69

2000-10-x1 J34 2000 10 4 36752 37704.03
2000-10-x2 J35 2000 10 4 36660 37117.11

5.3 Comparison with other heuristic algorithms and an exact method

We now compare our results with those reported in Mestria, Ochi & Martins [33]. More pre-
cisely, we compare HHGILS with the following methods: GPR1R2, GPR4 and G. The first
two consist of a combination between GRASP and Path Relinking while the third one is the

traditional GRASP. According to the experiments performed in Mestria, Ochi & Martins [33],
GPR1R2 outperforms all other methods proposed in that paper. The other two methods also ob-
tained satisfactory results but only in a particular class of instances. Therefore, GPR1R2 will

be considered in all comparisons, while GPR4 and G will only be considered in some partic-
ular cases. It is important to mention that GPR1R2, GPR4 and G were executed in the same
computational environment of HHGILS.

Table 6 compares the results obtained by HHGILS and GPR1R2 for the small size instances of

Class 1. The stopping criterion for both methods in this case was the number of iterations. It can
be observed that GPR1R2 appears to have a better performance both in terms of solution quality
and computational time. Nevertheless, HHGILS found more optimal solutions than GPR1R2.
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Table 6 – Comparison between HHGILS and GPR1R2 Mestria,
Ochi & Martins [33] for the small instances of Class 1.

HHGILS GPR1R2
Instances

Gap (%) Time (s) Gap (%) Time (s)

5-eil51 0.00 3.80 0.00 1.00

10-eil51 0.00 5.50 0.00 1.00
15-eil51 0.00 5.00 0.00 1.00

5-berlin52 0.11 4.50 0.00 1.20
10-berlin52 0.52 5.10 0.00 1.10

15-berlin52 0.00 4.00 0.00 1.10
5-st70 0.00 6.90 0.00 2.30

10-st70 0.43 3.70 0.00 2.00
15-st70 0.87 6.40 0.00 2.00

5-eil76 0.00 5.10 0.36 2.70
10-eil76 1.07 8.60 0.53 2.40

15-eil76 0.88 6.80 0.35 2.50

5-pr76 0.00 6.30 0.00 2.70
10-pr76 0.00 8.30 0.00 2.20

15-pr76 0.00 9.70 0.15 2.30
10-rat99 0.00 12.60 0.00 4.90

25-rat99 0.00 21.40 0.63 4.70
50-rat99 0.00 18.60 0.72 4.90

25-kroA100 0.00 21.70 0.00 4.70
50-kroA100 0.00 21.70 0.00 5.20

10-kroB100 0.91 12.40 0.16 4.80
50-kroB100 0.00 22.40 1.33 5.20

25-eil101 1.06 21.10 1.36 4.60
50-eil101 0.16 20.80 1.09 5.40

25-lin105 1.38 16.70 0.00 5.10

50-lin105 0.00 22.60 1.08 5.70
75-lin105 0.00 23.70 0.59 6.40

Average values 0.27 12.05 0.25 3.30

In Table 7 we compare the gaps between the best solutions obtained by HHGILS, GPR1R2 and

GPR4 and the lower bounds found by CPLEX on instances of Mestria, Ochi & Martins [33]. The
stopping criterion for all methods is 720 seconds for each of the 10 executions.

The last three columns of Table 7 show the gap of the average solutions for all methods with
respect to the lower bound found by CPLEX. From Table 7, one can verify that HHGILS yields

the best solutions in most cases. On average, HHGILS also produced superior results when
compared to the other two methods.
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MÁRIO MESTRIA 127

Table 7 – Comparison between HHGILS, GPR1R2 Mestria, Ochi & Martins [33] and

GPR4 Mestria, Ochi & Martins [33] for medium size instances.

Best gap (%) Average gap (%)
Instances

HHGILS GPR1R2 GPR4 HHGILS GPR1R2 GPR4

10-lin318 0.73 0.76 0.84 0.83 1.18 1.65
10-pcb442 0.46 0.66 0.66 0.65 1.22 1.52

C1k.0 1.45 1.60 1.68 1.81 1.76 1.81
C1k.1 0.99 1.27 1.27 1.28 1.42 1.46

300-6 0.21 0.49 0.50 0.31 0.78 1.04

700-20 0.43 0.64 0.61 0.51 0.72 0.72
200-4-h 0.89 1.19 1.24 1.29 2.30 3.31

600-8-z 1.17 1.96 1.95 1.56 2.54 2.63
300-20-111 0.52 0.43 0.44 0.59 0.63 0.78

500-25-308 0.47 0.58 0.61 0.54 0.73 0.76
25-eil101 0.04 0.03 0.03 0.09 0.18 0.33

144-rat783 0.16 0.20 0.19 0.18 0.24 0.24

Average values 0.67 0.82 0.83 0.80 1.14 1.35

Finally, Table 8 presents a comparison between the best and average results found by HHGILS,

G, and GPR1R2 on large size instances. In this case we report the gaps between the solution
found by the respective method and the best solution values found by GPR1R2.

The stopping criterion for the hybrid heuristics was set to 1080 seconds for each run. The first

column contains the identifiers of the instances, the second and third columns the results obtained
by the GPR1R2 heuristic, followed by the gaps of the best solution and the average solution of
the methods.

From Table 8, we can observe that HHGILS found better solutions when compared to G and

GPR1R2, except for the instance J28. With respect to the best solution values, HHGILS obtained
an average gap of −2.93%, whereas G obtained 0.35%. As for the average solutions, HHGILS
obtained an average gap of −3.83%, while G obtained 1.57%.

We also compare our results with an exact method by the Concorde solver, reported in Applegate,

Bixby, Chvátal & Cook [2] through of instances of Class 3 (instances generated using its own
user interface). Table 9 shows the results found in the set of instances of Class 3, where the first
column contains the instances. The instances XXXX-YY is composed of XXXX vertices and YYY
clusters, for example, (a) the instance 300-6 is composed of 300 vertices and 6 clusters (first row

of Table 3 with the results), (b) the instance 350-6 is composed of 350 vertices and 6 clusters
(second row), and (c) the instance 1000-30 is composed of 1000 vertices and 30 clusters (last
row). The second column contains the best values obtained by Concorde and the third column

the time (in seconds) required by Concorde to find the solution. The fourth column presents the
gap between the solution obtained by HHGILS and the best solution. The last column shows

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 10:48 — page 128 — #16
�

�

�

�

�

�

128 A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

Table 8 – Comparison between HHGILS, G Mestria, Ochi & Martins [33] and GPR1R2
Mestria, Ochi & Martins [33] for large size instances.

GPR1R2 Results Best gap (%) Average gap (%)
Id.

Best Average HHGILS G HHGILS G

J21 70651 73311.92 -5.11 0.40 -6.89 2.94

J22 72512 74871.65 -5.14 0.54 -5.65 2.87
J23 72889 74621.57 -8.31 0.08 -7.42 2.68

J24 66747 68955.78 -4.68 0.66 -6.25 2.33

J25 66444 69141.16 -4.34 0.26 -6.36 2.96
J26 12278 12531.44 -2.38 0.32 -3.37 1.03

J27 17252 17589.12 -0.84 0.06 -1.55 1.36
J28 25124 25761.53 0.56 0.03 -0.79 0.65

J29 33110 33692.73 -2.57 0.52 0.20 1.19
J30 38767 39478.00 -2.86 0.01 -2.65 0.43

J31 116473 118297.46 -0.19 0.86 -1.20 0.53
J32 37529 38861.78 -2.88 0.25 -4.01 1.11

J33 37440 38765.91 -1.02 0.17 -3.41 1.29
J34 37262 39253.08 -1.37 0.91 -3.95 0.49

J35 37704 38699.53 -2.77 0.19 -4.09 1.64

Average values – – -2.93 0.35 -3.83 1.57

the computing time (in seconds) of HHGILS. For the specific case, we set a time limit for all
HHGILS executions, as the stopping criterion.

From Table 9, it can be seen that HHGILS found good solutions. The boldface values indicate
that the algorithms carry out in less time. Table 9 shows strong robustness of our hybrid heuristic.
The average gap between the solutions obtained by HHGILS and the best ones was 6.46%,
whereas the average computing time was 43.33 seconds. The results from Table 9 show that

HHGILS reached good results in a short period of time. Thus, the HHGILS allows for greater
freedom of decision-making in operational planning in automated warehouse routing, emergency
vehicle dispatching, production planning, vehicle routing, among others.

6 CONCLUSIONS

In this paper we proposed a hybrid heuristic algorithm, called HHGILS, based on GRASP, ILS,
and VND for the Clustered Traveling Salesman Problem (CTSP). To our knowledge, this is the

first time that ILS was applied to solve the CTSP. The results obtained for small and medium size
instances were compared with optimal solutions or lower bounds found by a MIP formulation
using CPLEX. For the set of instances of small size, HHGILS was capable of finding several
optimal solutions. Moreover, the average gap between the average solutions and the optimal

solutions, for the small size instances, was 0.27%, whereas the average gap, with respect to the
lower bounds, for the medium size instances was 0.67%.
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Table 9 – Comparison between HHGILS and Concorde Applegate,
Bixby, Chvátal & Cook [2] for the instances of Class 3.

Concorde HHGILS
Instances

Best Time (s) Gap (%) Time (s)

300-6 774 21.00 1.94 15.00
350-6 894 27.79 5.59 15.00
400-6 885 58.88 4.52 15.00
450-6 945 34.77 6.46 15.00
500-6 1063 41.08 6.49 15.00
550-20 1419 51.55 4.09 45.00
600-20 1475 50.02 6.10 45.00
650-20 1545 71.03 5.57 45.00
700-20 1625 69.47 6.77 45.00
750-25 1694 23.89 7.50 45.00

800-25 1784 30.61 6.39 70.00
850-25 1882 114.19 6.59 70.00
900-25 1949 38.50 9.08 70.00
950-30 2072 121.58 9.89 70.00
1000-30 2144 61.99 9.93 70.00

Average values 54.42 6.46 43.33

The CTSP has many applications in real life, for example, automated warehouse routing, emer-
gency vehicle dispatching, production planning, vehicle routing, commercial transactions with

supermarkets and shops and grocery suppliers and so on. This applications, set of small size in-
stances, need to be solved by heuristic algorithm for rapid response to the operational planning
process. In this paper we proposed the hybrid heuristic algorithm (HHGILS) for this applications

with the best performance and high-quality solutions in a reasonable computational time.

We compare the results found by HHGILS with other GRASP based methods from the literature
for small, medium and large size instances. It was observed that the method which combines
GRASP with Path Relinking (GPR1R2) Mestria, Ochi & Martins [33] found, on average, better

solutions for small size instances, but HHGILS outperformed such method when considering
medium and large size instances. Our hybrid heuristic also was compared with an exact method
and it presented robustness.

We observe that the largest gap (0.0376) found by HHGILS was much smaller than the approxi-

mation factor obtained in Bao & Liu [4], a new approximation algorithm with a factor of 13/6.

Because the running times of the algorithm presented here in this paper does not grow rather
rapidly as the problem size grows, we can generalize that many problems of combinatorial opti-
mization can be solved by using HHGILS, adapting it to the problem.

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 10:48 — page 130 — #18
�

�

�

�

�

�

130 A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

ACKNOWLEDGEMENTS.

This paper has been partially supported by the Instituto Federal de Educação, Ciência e Tecnolo-
gia do Espı́rito Santo (IFES). This acknowledgment extends to Prof. Anand Subramanian for

your comments.

References

[1] ANILY S, BRAMEL J & HERTZ A. 1999. A 5/3-approximation Algorithm for the Clustered Traveling
Salesman Tour and Path Problems. Operations Research Letters, 24(1-2): 29–35.
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