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Abstract

Empirical modeling is considered from the perspectives of a general scheme for the Strategy of 
Empirical Research and Optimization Process (SEROP). This approach intends to facilitate the 
understanding of the necessary steps to arrive to mathematical models able to appropriately describe 
the behavior of a group of controllable independent variables related to a certain response. Aspects 
connected with definition of the problem, variable’s identification and optimization stages are 
discussed. As an example of SEROP application, it is presented the empirical modeling of the basic 
extraction of alginic acid from brown algae. 
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1. Introduction

The study of a technical or scientific situation, usually presents two different and, in many
ways, complementary points of view. These are: 

a) a generalized phenomenological description and;

b) a limited empirical modelling.

Human knowledge is continuously fed by both approaches and there are countless
examples of interactions between them. When the problem is to find a proper description
of a process in a short time, at low costs and with the necessary accuracy, the dilemma
emerges. Although theoretical models are to be preferred, they are unfortunately not
available for every new practical situation. In these cases, empirical models may be 
used, knowing that their results are limited to the experimental region in which they
were obtained. This drawback can be of no importance if what is sought is the behavior
of a particular process in a set of particular conditions. However, empirical models
building has also its own rules, that should be followed in order to arrive at reliable
information.

Author’s own experience in the field of empirical modelling is presented in this paper as a
modest contribution for better planned and interpreted experimental work. 

The paper is divided in three parts:

1. the search for the optimum;

2. practical considerations;

3. illustrative example.

2. The search for the optimum 

In a well defined problem, where responses are correctly selected and where a screening
process for the reduction of the identified independent variables has been applied, a search
for the optimum can be conducted. The search is limited to an experimental region in which
only one stationary point should be found. 

Figure 1 shows the hypothetical boundaries of an experimental region where responses are 
plotted as contour lines, considered factors are X1 and X2. Points I and II represented the
zones where initial exploring experimental designs are carried out and Point C stands for the
optimum (a maximum in this example).

The search is initiated somewhere inside the experimental region and each new
experiment is conditioned by the obtained response of the previous one. Vector I-II 
shows the direction to follow until a significant decrease in response is found. Then, a
readjustment of variable’s levels is done in a way as to get increasing responses through
the new design.
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Figure 1 – Boundaries of a system with an optimum.

The procedure is repeated until curvature effects begin to be noticeable. In this point of the 
search, it is advisable to establish the trajectory for best performance by means of the
steepest ascent method.

At the end of this last step, a new two level factorial design is conducted. The resulting 
model will show a big curvature effect, indicating that a second order design will describe 
the exact position of the stationary point. The obtained second order model is best analyzed
through its response surface. 

The search for the optimum is in no way a simple trial and error process and needs careful 
attention in every step. At this point it should be remembered that not all empirical studies
have to end with an optimization process. This case takes place when the only objective is to 
describe conditions under which a certain process operates and there is no intention or 
possibility to change it. 

In order to organize the different stages in the search for the optimum and also to include the 
simpler situation just mentioned above, a general scheme for the strategy of empirical
research and optimization process (SEROP) is presented in Figure 2. 

3. Practical considerations about steps of SEROP

Problem definition: To define the objective of an investigation, it is necessary to conduct an
information searching process that will allow answering the following questions:

a) Which will be the responses to be studied and which is their hierarchy order?

It is important to establish a hierarchical order when more than one answer is selected,
because they will be affected by the same factors, making it frequently impossible to find 
a combination of the given factors that optimizes all answers at the same time.

b) Which are the independent factors that may affect the answers?

The Larger the number of independent factors, the larger the number of experiments. The 
efficiency in this step will be strongly related to the investigator’s selection capacity. 
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Definition of the problem:
a) Objectives definition
b) Selection of responses according to defined objectives

Identification of involved independent variables
(factors) and their levels

Factor’s screening experimental designs up to finding k=3 of 4 
most important factors

Formulation of a 2k full factorial design (k  4) 

Is there pronounced
curvature in the selected

experimental zone ?
What is it wished ? Apply Haalands
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To find an
optimum

To study factor’s behavior in
a selected experimental zone
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steepest ascent
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Adjust a second order
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Figure 2 – Scheme showing the Strategy of Empirical Research and Optimization Process 
(SEROP)
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3.1 Selection of the experimental zone under study 

The space occupied by the experiment will be determined by the separation that exists 
between the higher and lower levels of each factor. 

1. if the levels are chosen too closely, it is possible that the response variation (Y) is not
observed in the experiment or may have the order of magnitude of the stochastic
fluctuations, and therefore the model will be Y = constant. (Figure 3, a  Xi  b) 

2. if the levels are chosen too for apart, two mistakes may be made. (Figure 3, a  Xi  d) 

The points “a” and “d” may be found on both sides of a maximum or a minimum and the 
difference between the Y value results may be impossible to be observed. 

The experimental errors made at different points of the region being significantly distinct,
indicating in this case a lack of variance homogeneity and therefore the utilized
parametric tests, for example t and F, would not be powerful enough, because they are 
based on the assumption that variance homogeneity exists, among other conditions. 

The interval (Figure 3, a  Xi  c) gives more reliable results, a since it contains relevant
changes in the response. Naturally, before conducting the experiments, these situations are 
unknown, therefore the initial selection of values of the operating variables will be affected 
by Guerra Debén & Sevilla (1988): 

a) the historical knowledge of the system under study;
b) the available theory; 
c) the existence of exploratory experiments;
d) the luck factor. 

Figure 3 – Behavior of response Y when the level of the Xi factor is varied 

3.2 The screening of independent variables (Sutton, 1997; Box et al., 1993; and Barros
Neto et al., 1995) 

To avoid selecting a factor that carries little or no significance use should be made of known 
screening techniques (Sutton, 1997; Box et al., 1993; and Barros Neto et al., 1995). It should
be borne in mind that initially identified factors must be reduced in number in order to follow
an optimization strategy.
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If a factor of strong influence over the response, is not controlled, it won’t be possible to 
obtain reliable results due to the large fluctuations that are to be observed in the 
response, and what is even worse, the noted behavior can be wrongly attributed to some of 
the controlled factors. It can also be the case that it is not possible to introduce changes 
in a known important factor. In such cases, the wisest thing to do is to control it at a 
definite favorable level. Thus, the obtained results are said to be conditioned or restricted by 
the factor. 

3.3 Formulation of a 2k full factorial design 

When screening work is finished, the number of independent variables should be around 4 or 
less. It is possible, however, to count with a fractioned design having also a maximum of 16 
experiments in its planning. These numbers are not rigid limits and specific conditions will 
have the last word. Box et al. (1993) as well as Barros Neto et al. (1995) are excellent 
treatises in this respect. 

3.4 Curvature check 

When a supposed linear model, contains interaction’s coefficients as big as or even bigger 
than individual factor’s coefficients, the corresponding response surface will show 
curvature. There are cases where curvature, although present, is rather slight and the 
obtained model shows no lack of fit. However, if curvature is pronounced, linear models 
are not able to represent experimental behavior and need to be replaced by second order 
models. 

Curvature can also be evaluated quantitatively by means of central points replicates. This 
will be shown in the illustrative example. 

3.5 Establishing the trajectory for best performance 

If the main objective of the research is to find either a maximum or a minimum for the 
studied response, several strategies are available. One, or perhaps the most known method, is 
the method of steepest ascent (Box et al., 1993), which makes use of a few exploratory 
points conducted according to a stepwise change in the levels of the involved factors. This 
change is determined by a reference factor, that usually is the one with the highest coefficient 
in the linear model. 

In this way, an experimental trajectory is followed until a change is noted in the direction of 
response’s increase. This point of rupture gives the necessary information about both sides 
of the noted change (possible stationary point) and allows a proper factor levels 
selection for a new two level factorial design. The resulting linear model will show a 
great curvature effect. This last obtained linear model is used at the nucleus of a second 
order design, which requires additional experimental points to fully describe the 
optimum zone. 

If the search for the optimum is, by any reason, initiated very close to the stationary point, 
models with significant curvature effects will be obtained and the steepest ascent method 
looses efficiency. In those cases is better to apply the techniques recommended by 
Haaland (1989). 
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3.6 Second order design (Montgomery, 1991) 

Two of the most used second order designs are: 
Central composite orthogonal designs; 
Central composite rotational designs. 

Both types of designs are carried out sequentially. This means that the information obtained 
from a full or fractional design is used in the data processing after adding new experiments 
according to the characteristics of each design. 

3.6.1 Central composite orthogonal designs (CCOD) 

These designs are distinguished by (see Table 1): 
having a nucleus made out of a full factorial design or a fraction of it; 
two extra runs for each factor, located at a coded  distance from the center of the 
experimental region. These are called axial points as they are at (+)  and (–) 
distance from the zero point on the factors axes. 
one or more runs at the center of the design. 

Table 1 – Structures of Central Composed Orthogonal Designs 

Number of Runs Number of 
Factors 

Design’s Nucleus 
(fraction of a full 

2K design) 
at the 

nucleus at the axis at the 
center

Total
Runs

 distance 
for axial 
points

2 1 4 4 1 9 1
3 1 8 6 1 15 1.215
4 1 16 8 1 25 1.414
5 ½ 16 10 1 27 1.547

Second order CCOD have higher precision when: 
optimum finds itself in the close neighborhood of experimental zone’s center. This is 
perfectly possible if an adequate optimization strategy (i.e. – steepest ascent method) 
has been followed or the investigators own experience indicates this is so; 
there are no time changes in experimental responses between first experiments (at the 
nucleus) and additional experiments (center and axis); 
variance is approximately the same for all experimental points located at equal 
distance from the center of the design. 

3.6.2 Central composite rotational designs (CCRD) 

This type of second order design assures the same standard error in predicted values for all 
experimental points located at the equal distance from the center of the design. Usually the 
precise nature of the response surface is not known before experimental work begins. 
In this situation, it is highly improbable to distribute planned experimental points along 
maximum (minimum) surface slope in a way as having also minimum variance. This is why 
CCRD are very appreciated. Table 2 shows the structure of these designs. 
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Table 2 – Structure of CCRD 

Number of Runs 
Number of 

Factors 

Design’s nucleus 
(fraction’s of a 
full 2K design) 

at the 
nucleus

at the 
axis

at the 
center

Total
Runs

 distance 
for axial 
points

2 1 4 4 5 13 1.414
3 1 8 6 6 20 1.682
4 1 16 8 7 31 2.000
5 1/2 16 10 6 32 2.000

4. Example of SEROP 
Alkaline extraction of alginic acid from brown algae (Mesa Pérez et al., 1998) 

Problem Definition: Brown algae, previously crushed and acidified with HCl solution, 
contains alginic acid that is intended to be extracted in the form of its sodium salt. 

The final product, once purified, has many industrial applications based on the viscosity of 
its aqueous solutions. The research objective is to test an extraction method based on the 
reaction of a solution of sodium carbonate with alginic acid inside acid treated algae 
residues. The operation is batch wise conducted at room temperature (26ºC) under agitation. 
To evaluate if the objective is achieved, two responses are to be followed: 

yield of sodium alginate; 
viscosity of 1% aqueous solution of sodium alginate. 

To be brief, only viscosity will be treated here. 

4.1 Identification of factors 

Initial acid treated algae as well as sodium carbonate solutions came from the same stock. 
All experiments were performed in the same reactor with the same reaction time and same 
operators.

A constant agitation speed was adopted throughout all experimental work. Under these 
conditions no screening was considered necessary and the following factors were identified 
together with their levels (see Table 3). Of course, this is a simplified situation. Screening 
work is almost always necessary when beginning to study a new problem. 

Table 3 – Alkaline extraction of acid treated brown algae (identified factors, symbols, and levels) 

Levels (coded) 
Factor Coded Symbol 

Inferior (–1) Central (0) Superior (+1) 
Temperature (oC) X1 30 45 60

Na2CO3 mass 
concentration (g/L) X2 0.6 1 1.4

Liquid-solid ratio (kg/kg) X3 10 15 20

Factor’s levels were chosen according to literature information and researcher’s own 
experience.
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4.2 Formulation of a 2K full factorial design

As K=3, a 23 = 8 experiments full factorial design is chosen. 

Independent variable matrix (X matrix) (includes experiment matrix), as well as response
matrix (  matrix) are shown below:

00000001
00000001
00000001
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

3213231213210 XXXXXXXXXXXXX

X

960
967
974
230
534
157
363
840
795
557
840

Following a well known procedure (Montgomery, 1991), first order model is obtained. The
corresponding analysis of variance is shown in Table 4. 

Table 4 – ANOVA for first order model

Variation source SS df MSS F test p-value
X1 69938 1 69938 1427 0.0007
X2 29040.5 1 29040.5 593 0.0017
X3 381938 1 381938 7795 0.0001
X1 X2 6612.5 1 6612.5 135 0.0073
X1 X3 9248 1 9248 189 0.0053
X1 X2 X3 22684.5 1 22684.5 463 0.0022
Lack of fit 398745.4 2 199372.7 4069 0.0002
Pure error 98 2 49
Total (Corr) 918304.9 10

R2 = 0.57 

After testing for coefficients significance at  = 0.05 level, the coded final model is:

............... (4.2.1)3213121321 5334292186093656 XXXXXXXXXX

A brief look to the relative magnitude of interactions coefficients, gives a clear evidence of
pronounced curvature. As it can be observed, all interactions have values of the same order 
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of individual factors. An analysis of variance, in this case, will show that the regression sum
of squares is quite smaller than the total sum of squares and that there exists a large and,
therefore, significative lack of fit in the model.

Of course, a curvature check is always possible. Thus, 

Curvature Effect = exp,12 Styy v ..................................... (4.2.2)

1y = average of the n1 experimental responses of the design (here n1 = 8 and 1y = 539.5) 

2y = average of the n2 center points (here n2 = 3 and 2y = 967) 

t = student statistic (two tailed’s test) 

= significance level = 0.05 

v = degrees of freedom of  (here v = 2) expS

expS = standard deviation of pure error (here S = 7), and so 

Curvature Effect = (967 – 539.5)  t (0.05, 2) (7) = 427.5  4.3 . (7) = 427  30 

This result shows that responses at the center points are well higher than those belonging to
the base design points and constitute a quantitative proof of curvature.

A closer look to the obtained model shows that factor X3 (liquid-solid ratio) should work at
the lowest level in order to obtain greater viscosities. Figure 4, shows response surface for a 
fixed X3 = –1 level. It is clearly seen, that viscosity reaches a so called saddle point, that 
can’t be described completely by the so far obtained model.
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Figure 4 – Response Surface for Viscosity Behavior at X3 = –1 (First order model)

On the other hand, if X3 is held constant at +1 level Figure 5 shows a different situation, in
which a plane with some curvature can be appreciated. 
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Figure 5 – Response Surface for Viscosity Behavior at X3 = +1 (First order model)

A tridimensional picture of both cases is given in Figure 6 and 7. In this particular case, a 
lowering of the liquid-solid ratio (X3) should have it’s limits because otherwise power 
increase due to stirring could be too high. Also, a point may be attained where very little or
no liquid exits. This is, of course, a hypothetical situation, but helps to make a reasonable
appreciation of how to change factor’s levels.
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Figure 6 – Tridimensional picture of first order model for X3 = –1 
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Figure 7 – Tridimensional picture of first order model for X3 = +1 

According to the SEROP scheme, it is recommended now to adjust a second order model due 
to the fact that the lineal model does not describe adequately viscosity behavior.

4.3 Adjustment of a second order model (Montgomery, 1991) 

As there were evidences of a maximum in the vicinity of the initially studied
experimental region, a CCOD was tried, making use of former 23 full factorial as
nucleus of the new design and performing 6 new experiments for the axial points
( = 1.215). An additional center point is also added in order to improve  precision,
although three of them are already done. The corresponding experimental matrix as well
as the response matrix are:

2
expS
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961
960
967
974

1081
1617
555
420
323
542
230
534
157
363
840
795
557
840

000
000
000
000
215.100
215.100
0215.10
0215.10
00215.1
00215.1
111
111
111
111
111
111
111
111
321 XXX

X

After obtaining a second order model, ANOVA is conducted (Table 5). 

Table 5 – ANOVA for second order model

Variation
source SS df MSS F test p-value

X1 93894 1 93894 2253 0.0000
X2 38105 1 38105 915 0.0001
X3 525577 1 525577 12614 0.0000
X1 X2 6613 1 6613 159 0.0011
X1 X3 9248 1 9248 222 0.0007
X1 X2 X3 22685 1 22685 544 0.0002

2
1X 677441 1 677441 16259 0.0006
2
2X 544965 1 544965 13079 0.0000
2
3X 349098 1 349098 8378 0.0000

Lack of fit 87 5 17 0.42 0.8164
Pure error 125 3 42
Total (Corr) 2259454 17

R2 = 0.99 R2 (adjusted df) = 0.99 
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The final coded model, after significance tests for the coefficients and a lack of fit test for the
model are done, is:

2
3

2
2

2
13213121321 2593243615334292195993966 XXXXXXXXXXXXX

(4.3.1)

4.4 Analysis of response’s surfaces 

If in former model X3 is fixed at –1 level, following model is obtained:

Model 1: (X3 = –1) 

......................... (4.4.1)2
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Figure 8 – Response Surface for Viscosity Behavior (Second Order model for X3 = –1) 

Now, holding X3 at +1 level, a new model can be shown:

Model 2: When X3 = +1 

....................... (4.4.2)2
2

2
12121 324361245912671006 XXXXXX
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Figure 9 – Response Surface for Viscosity Behavior (Second Order model for X3 = +1) 

Response’s surfaces for both models are presented in Figure 7. 

Both maximum points are conditioned by the values assigned to X3 and as expected are quite 
different.

4.5 Determination of the optimum point 

In order to obtain the coordinates of the stationary point
i

= 0 (i being 1 and 2) are determined

for each model and from the solution of both equation systems, the conditional maximum
coordinates are obtained. Thus, for model 1 (X3 = –1), maximum viscosity is reached at: 

X1: Temperature = 44oC
X2: Na2CO3 mass concentration = 1.036 g/L
X3: Liquid-solid mass ratio = 10 kg/kg

opt = Maximum viscosity = 1449 mPa.s

For model 2 (X3 = +1), optimum conditions are given when:

X1: Temperature = 42oC
X2: Na2CO3 mass concentration = 1.04 g/L
X3: Liquid-solid mass ratio = 20 kg/kg

opt = 1015 mPa.s

Due to practical reasons (values of X3 below 10 kg/kg were not recommended), model 1 was 
taken as the final model.
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5. Conclusions

The SEROP is composed of a series of steps applicable to experimental regions in which
only one stationary or optimum point exists and where all the involved factors or
independent variables can be controlled. The number of necessary steps to reach the 
stationary point will depend in a great measure on the previous knowledge of the problem.
The more knowledge of the nature of the investigated process, the less stages will have to be
carried out. The presented general scheme shows a common sense way of dealing with these 
situations, looking for faster, cheaper and rigorous experimental procedures of research, 
based on an empirical approach. 
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Nomenclature

CCOD Central composed orthogonal designs
CCRD Central composed rotational designs
SEROP Strategy of empirical research and optimization process 
k Number of factors
n1 Number of experimental responses of the fractional design
n2 Number of responses at the center of the design

2
expS  Pure error

t Student statistic
Xi Factor or independent variable i
[X] Independent variable matrix

1y Average of n1 responses 

2y Average of n2 responses 

Distance from the zero point of a factor’s axis in CCOD and CCRD. Also
significance level 

Degrees of freedom of 2
expS

 Viscosity (mPa.s)
[ ] Responses matrix for viscosity

iX
Partial derivative of  in respect to Xi

SS Sum of squares 
MSS Medium sum of squares 
F -test-Fischer test
df . Degrees of freedom
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