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ABSTRACT. This paper shows a method for solving linear programming problems that includes Interval

Type-2 fuzzy constraints. The proposed method finds an optimal solution in these conditions using convex

optimization techniques. Some feasibility conditions are presented, and some interpretation issues are

discussed. An introductory example is solved using the proposed method, and its results are described and

discussed.

Keywords: Fuzzy Linear Programming, Interval Type-2 fuzzy sets, Fuzzy Optimization.

1 INTRODUCTION

Some practical applications such as financial, logistics, Markov chains, control, etc, include non-
probabilistic uncertainty. This way, decision making has to deal with uncertainty using appropri-
ate methods and models to find a solution of the problem. Linear Programming (LP) is within

the most useful tools in decision making, and its application to non-deterministic problems has
proved to be efficient (stochastic programming, fuzzy linear programming, etc). This opens the
possibility of involving new uncertainty sources to problems where statistical information is not

reliable or is absent through new theories such as fuzzy sets.

In some cases, availability of the resources of a system cannot be measured in an exact way (i.e.
mathematical precision), due to different issues. Moreover, available information usually comes
from the experts of the system, so decision making is intimately related to their perceptions and

expertise. This information represents the knowledge of the experts about the availability of the
resources of the system (a.k.a as constraints), which can be measured using fuzzy sets.

A special kind of LP models known as Fuzzy Linear Programming (FLP) models include fuzzy
constraints. Roughly speaking, fuzzy constrained problems deal with non-probabilistic uncer-

tainty, which is a common practical issue that needs special methods at different complexity
levels.
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Some FLP models have been proposed by Ghodousiana & Khorram [8], Guu & Wu [9], Tanaka &
Asai [29], Tanaka, Asai & Okuda [30], Inuiguchi & Ramı́k [11], and Inuiguchi & Sakawa [12, 13]
who proposed solutions for several fuzzy sets, all of them considering only Type-1 fuzzy sets. An
intuitionistic fuzzy optimization approach has been presented by Angelov [2] and Dubey et al.
[3], based on the idea of using two measures μA(x) and υA(x) to represent both membership and
non-membership degrees of x regarding a concept A, constrained to 0 ≤ μA(x) + υA(x) ≤ 1,
which is similar to an Interval Type-2 fuzzy set in the sense that the distance between μA(x) and
υA(x) can be shown as an interval.

In this paper, we propose an extension of the FLP method proposed by Zimmermann [32, 33]
(originally designed for Type-1 fuzzy constrained problems) to an Interval Type-2 FLP (IT2FLP)
with linear membership functions. Our proposal uses Type-2 fuzzy numbers instead of pure
intervals or intuitionistic fuzzy sets (even when they are uncertainty measures as well) to address
non-probabilistic information coming from multiple experts.

The paper is divided into six sections. In Section 1, the Introduction and Motivation is presented.
In Section 2, the classical LP model with fuzzy constraints is presented. In Section 3, some ele-
ments of linguistic uncertainty, in particular Type-2 fuzzy constraints are introduced. In Section
4, a formal definition of an Interval Type-2 FLP model is provided, and Section 5 presents an
optimization method. In Section 6, an illustrative application is introduced, and finally Section 7
presents some concluding remarks.

1.1 Motivation of using Type-2 FLP sets

Many decision making problems involve uncertainty, so the analyst has to deal with it (proba-
bilistic and/or possibilistic) in different ways. In LP problems, all its parameters (costs, tech-
nological coefficients and constraints) can contain uncertainty, so different approaches can be
used when different uncertainty sources appear. As usual, as more uncertainty sources are in-
volved, more complex its modeling is (including the algorithms for finding a solution). A typical
uncertainty source comes from the concept of a constraint, which is commonly assumed as de-
terministic (in some cases, probabilistic). But, what if the constraints of the problem are defined
by experts, or are they based on non-probabilistic information?

A specific kind of linguistic uncertainty can be considered when having experts’ judgements.
This uncertainty appears when different perceptions of a concept are provided by different peo-
ple, like the one arising when multiple experts (with equally valuable opinions) are defining the
constraints of an LP problem. To do so, Interval Type-2 Fuzzy Sets (IT2FS) seem to be an ap-
propriate representation of this uncertainty, so we propose its use to deal with the perception of
multiple experts who define the constraints of an FLP problem.

A Type-2 fuzzy set is a more complex uncertainty measure, so it needs a specific mathematical
framework. This way, we propose a method for reducing its complexity using a Type-reduction
strategy that consists on finding a fuzzy set embedded into a Type-2 fuzzy set, in order to apply
convex optimization techniques, which is highly desirable by decision makers since it ensures
interpretability and simplicity.

Pesquisa Operacional, Vol. 34(1), 2014
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2 THE ZIMMERMANN’S SOFT CONSTRAINTS MODEL

Zimmermann [32] and [33] proposed the following LP model which includes Type-1 fuzzy
constraints:

max
x∈X

z = c′x + c0

s.t .

Ax � B (1)

x � 0

where x, c ∈ Rm , c0 ∈ R, A ∈ Rn×m . B is a vector of i ∈ Nm fuzzy numbers, where a fuzzy
number is a fuzzy set defined over the real numbers (see Fig. 1), and � is a fuzzy partial order.1

Nm is the amount of constraints of the problem.

1

μBi

b̌i b̂i b ∈ R

b � Bi

Figure 1 – Fuzzy set Bi .

Zimmermann proposed a method for solving this fuzzy constrained problem based on two re-
quirements: B is defined as a vector of Nm L-R fuzzy numbers with linear membership func-

tions B̃i , i ∈ Nm , and B is characterized by a single membership function. B is defined by two
parameters b̌i and b̂i (see Figure 1), and the remaining parameters are constants. The method is
as follows:

Algorithm 1

1. Define a fuzzy set Z with parameters ž and ẑ.

2. Compute ž = max{c′x | Ax � b̌, x � 0} as lower boundary of Z .

1Usually B is a linear fuzzy number, but there is the possibility of using nonlinear shapes.

Pesquisa Operacional, Vol. 34(1), 2014
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3. Compute ẑ = max{c′x | Ax � b̂, x � 0} as upper boundary of Z . Given a maximizing

goal, then the membership function of Z (x) is:

μZ (x; ž, ẑ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, c′x � ẑ
c′x − ž

ẑ − ž
, ž � c′x � ẑ

0, c′x � ž

(2)

Its graphical representation is:

1

μZ

ž ẑ z ∈ R

Set Z

Figure 2 – Fuzzy set Z .

4. Create an auxiliary variable α and solve the following model:

max {α}
s.t .

c′x + c0 − α(ẑ − ž) = ž (3)

Ax + α(b̂ − b̌) � b̂

x � 0, α ∈ [0, 1]

This method sets α as a global satisfaction degree of all constraints regarding the fuzzy set of
optimal solutions Z . In fact, α operates as a balance point between the use of the resources
(denoted by the constraints of the problem) and the desired profits (denoted by z), since more
resources usage imply higher profits, at different uncertainty degrees. Then, the main idea of this

method is to find an overall satisfaction degree of both goals (profits vs. resource usage) that
maximizes the global satisfaction degree, i.e. minimizing the global uncertainty.

Note that the set Z (x∗) represents the set of all optimal solutions regarding the goal. In other

words, a thick solution of the fuzzy problem (see Kall & Mayer [14] and Mora [26]) where [ ž, ẑ ]
are the boundaries of Z (x∗).

Pesquisa Operacional, Vol. 34(1), 2014
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3 INTERVAL TYPE-2 FUZZY CONSTRAINTS

As mentioned before, IT2FS allows to model linguistic uncertainty, i.e. the uncertainty about
different perceptions and concepts. Mendel [15, 16, 18, 21, 24, 25] and Melgarejo [19, 20]
provided formal definitions of IT2FS. Figueroa [4, 5, 6, 7] proposed an extension of the FLP
which involves linguistic uncertainty using IT2FS called Interval Type-2 Fuzzy Linear Program-
ming (IT2FLP). Some basic definitions include the following

3.1 Basics on interval Type-2 fuzzy sets

A Type-2 fuzzy set is a collection of Type-1 fuzzy sets into a single fuzzy set. It is defined by
two membership functions: a primary membership function defines the degree of membership
over a linguistic label, and a secondary membership function that weights every Type-1 fuzzy set
embedded into the primary function. According to Mendel [21, 22, 23], some basic definitions
of Type-2 fuzzy sets include the following:

Definition 3.1 (Type-2 fuzzy set). A Type-2 fuzzy set, Ã, is:

Ã =
∫

x∈X

∫
u∈Jx

fx (u)/(x, u) =
∫

x∈X

[∫
u∈Jx

fx (u)/u

]/
x, (4)

where x is the primary variable, Jx is its primary membership function, Jx ⊆ [0, 1], u is the
secondary variable and

∫
u∈Jx

fx (u)/u is the secondary membership function. Uncertainty about

Ã is conveyed by the union of all of the primary memberships and is called the Footprint Of
Uncertainty of Ã (FOU(Ã)), i.e.

FOU(Ã) =
⋃
x∈X

Jx (5)

Therefore, an FOU weights all the embedded Jx by using a secondary membership function
fx (u)/u. In a General Type-2 fuzzy set (GT2FS), fx (u)/u is defined by a Type-1 membership
function, while an Interval Type-2 fuzzy set is a special GT2FS since its secondary membership
function is 1 (one), fx (u) = 1, as shown as follows

Definition 3.2 (Interval Type-2 fuzzy set). An Interval Type-2 fuzzy set, Ã, is:

Ã =
∫

x∈X

∫
u∈Jx

1/(x, u) =
∫

x∈X

[∫
u∈Jx

1/u

]/
x, (6)

The FOU of Ã is bounded by two membership functions: an Upper membership function (UMF)
μ Ã and a Lower membership function (LMF) μ

Ã
. Note that Ã has embedded e sets (Ae) as well,

so there is an infinite amount of Ae enclosed into the FOU of Ã. A graphical representation of
an IT2FS, its FOU and Ae is shown in Figure 3.

Here, Ã is an IT2FS defined over a set �, supp(Ã) ∈ �, its support2 supp(Ã) is the support of
Ã, supp(Ã) = [ ¯̌a, ¯̂a]. μã is a linear Type-2 fuzzy set with parameters ¯̌a, ¯̂a, ǎ, â and a. FOU is
the Footprint of Uncertainty of Ã, and Ae is a Type-1 fuzzy set embedded on its FOU.

2� is a compact set which represents the domain of the variable e.g. speed, height, etcn and usually it is defined as a
subset of the real numbers.

Pesquisa Operacional, Vol. 34(1), 2014
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Ae

1

μÃ

a ∈ �¯̌a ǎ â ¯̂aa

F OU

Figure 3 – Interval Type-2 Fuzzy set Ã.

3.2 Uncertain constraints

There are many ways to define the “knowledgeability” of an expert, so an infinite number of
Ae fuzzy sets can be comprised into FOU(Ã). Each Ae is a representation of either the the
knowledge of an expert about A or his perception about it. When multiple experts are defining a

constraint, linguistic issues and multiple opinions about the same word A do appear, which is an
uncertainty source itself.

Now we have defined what a Type-2 fuzzy set is, then an uncertain constraint can be defined as
follows

Definition 3.3 (IT2FS Constraint – Figueroa [5]). Consider a set of constraints of an FLP

problem defined as an IT2FS called b̃ defined on the closed interval b̃i ∈ [ bi , bi ], {bi , bi } ∈ R
and i ∈ Nm. The membership function which represents b̃i is:

b̃i =
∫

bi∈R

[∫
u∈Jbi

1/u

]/
bi , i ∈ Nm, Jbi ⊆ [0, 1] (7)

Note that b̃ is bounded by both Lower and Upper primary membership functions, namely μ
b̃
(x)

with parameters b̌ and b̂ and μ̄b̃(x) with parameters ¯̌b and ¯̂b. Now, the (FOU) of the set b̃ can be
composed by two distances called � and ∇, defined as follows.

Definition 3.4 (Figueroa [5]). Consider an Interval FLP problem (IFLP) with restrictions in the

form �. Then � is defined as the distance between b̌ and b̌, � = b̌ − b̌ and ∇ is defined as the

distance between b̂ and b̂, ∇ = b̂ − b̂.

A graphical representation of b̃i is shown in Figure 4.

Pesquisa Operacional, Vol. 34(1), 2014
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μ
b̃

μ̄b̃

1

μb̃

b ∈ Rb̌ b̌ b̂ b̂

αb

αb

b

FOU
�

∇

∇ 	= �

Figure 4 – IT2FS constraint with joint uncertain � & ∇.

In Figure 4, b̃ is an IT2FS with linear membership functions μ
b̃

and μ̄b̃ . A particular value b has
an interval of infinite membership degrees u ∈ Jb, as follows

Jb ∈
[

αμ̄b̃,
αμ

b̃

]
∀ b ∈ R (8)

where Jb is the set of all possible membership degrees (u) associate to b ∈ R. αμ̄b̃ is the α-
cut made over the upper membership function of b̃, and αμ

b̃
is the α-cut made over the upper

membership function of b̃, where the α-cut of a fuzzy set b is defined as αb = {x | μb(x) � α}.
Now, the FOU of b̃ can be composed by the union of all values of u, as defined as follows

Definition 3.5 (FOU of b̃). As defined in (8), it is possible to compose the footprint of uncertainty

of b̃, u ∈ Jb as follows:

FOU(b̃) =
⋃
b∈R

[
αμ̄b̃,

αμ
b̃

]
∀ b ∈ b̃, u ∈ Jb, α ∈ [0, 1] (9)

Remark 3.1. Definition 3.2 presents an L-R Type-2 fuzzy set as the union of all possible L-R

Type-1 fuzzy sets into its FOU. Definition 3.3 defines an uncertain constraint as a monotonic
decreasing Type-2 fuzzy set which represents the statement “Approximately less or equal than
bi ”. In this way, we refer to an uncertain constraint as the IT2FS defined in Definitions 3.3 and

3.2 with a membership function as displayed in Figure 4.

The problem of having a type-2 fuzzy constrained problem cannot solved in a closed form, so

there is a need for finding an appropriate solution. Some interesting ideas about the concept of
an optimal solution in terms of the decision variables x ∈ R given uncertain constraints b̃, can be
discussed. A first way would be to use Type-reduction to all IT2FS based on centroid methods,

and afterwards solve the resultant interval-valued optimization problem. However, this is not
recommendable because the centroid of an IT2FS constraint is usually outside its FOU. Another
easy way is by using the Center of FOU which is simply to use the center of ∇ and � as extreme

Pesquisa Operacional, Vol. 34(1), 2014
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points of a fuzzy set embedded into the FOU of b̃, and then apply the Zimmermann’s method.

This method can be used in cases where the analyst has no a defuzzification criteria.

We have based our results in the Bellman-Zadeh fuzzy decision making principle, so the idea
is to find a maximum intersection value between all constraints and Z . To do so, we need to
provide some definitions of LP problems with IT2FS constraints in order to design a method for

finding an optimal solution in terms of x ∈ R regarding z and b̃.

4 THE IT2FLP MODEL

Given the concept of an IT2FS constraint and the definition of an FLP, an uncertain constrained

FLP model (IT2FLP) can be defined as follows:

max
x∈X

z = c′x + c0

s.t.

Ax � b̃ (10)

x � 0

where x, c ∈ Rm , c0 ∈ R, A ∈ Rn×m . b̃ is an IT2FS vector defined by two primary membership
functions μ

b
and μ̄b . � is a Type-2 fuzzy partial order.

Two possible partial orders � and � can be used depending on the problem. We use only linear

membership functions since we are going to use LP models (easy to optimize using classical
algorithms), which means less complexity. The membership function of � (see Figure 4) is:

μ
b̃
(x; b̌, b̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x � b̌

b̂ − x

b̂ − b̌
, b̌ � x � b̂

0, x � b̂

(11)

and its upper membership function (see Fig. 4) is:

μ̄b̃(x; ¯̌b,
¯̂b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x � ¯̌b
¯̂b − x
¯̂b − ¯̌b

,
¯̌b � x � ¯̂b

0, x � ¯̂b

(12)

A first approach for solving IT2FS problems is by reducing its complexity into a simpler form in
order to use well known algorithms. In this case, we propose the following three-step methodol-
ogy: 1– compute a fuzzy set of optimal solutions namely z̃; 2– apply a Type-reduction strategy

to find a single fuzzy set Z ; and 3– apply the Zimmermann’s soft constraints method to find a
crisp solution. This allows us to see the above problem as the problem of finding a vector of
solutions x ∈ Rm such that:

max
x∈Rn

α

{
m⋂

i=1

{ b̃i , bi}
⋂

z̃

}
(13)

Pesquisa Operacional, Vol. 34(1), 2014
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where α is the α-cut made over all fuzzy constraints b̃i and z̃, defined as follows

μz̃(b̃)(z) = sup
z=c′x∗+c0

min
i

{
μb̃i

(x∗) | x∗ ∈ Rm
}

(14)

Given μz̃ , the problem becomes in how to find the maximal intersection point between z̃ and b̃,
where α is an auxiliary variable. In practice, the problem is solved by x∗, so α allows us to find
x∗ according to (13). The proposed methodology for using α over z̃ and b̃ to find x∗ is presented

in Figure 5.

Crisp

constraints B
Fuzzy

Constraints
b̃

Bounds

of z̃

Fuzzifier

Compute z̃

Type-Reducer

Zimmermann’s
method

Optimal
solution (x∗, α∗)

Type-Reduced
set Z

Interval FLP Optimization Process

Figure 5 – IFLP proposed methodology.

Figure 5 shows the three basic steps of our proposal: fuzzification, fuzzy optimization, and
defuzzification. The main idea is to compute the fuzzy set Z̃ before applying a Type-reduction

method for Type-2 fuzzy sets, to finally obtain a crisp solution using the Zimmermann’s soft
constraints method. Now, there are two important conditions which ensures that an IT2FLP has
an optimal solution in some point of supp(b̃): feasibility and convexity which are described next

4.1 Feasibility of an IT2FLP

An LP problem should be feasible. The concept of a feasible IT2FLP leads us to think that an

IT2FLP should be feasible at every point of b ∈ supp(b̃). In other words:

Proposition 4.1 (Feasibility of the IT2FLP). An IT2FLP is feasible iff the system

A(xi j ) � ¯̂bi ∀ i ∈ Nm (15)

is feasible itself.

This means that an IT2FLP is feasible only if the broadest value of suppb̃ is feasible, i.e. the

boundary provided by ¯̂b. It is clear that if a solution in this point exists, then every value of b � ¯̂b
is feasible as well, since they are contained into a convex hull defined by ¯̂b (see Wolsey [31], and
Papadimitriou & Steiglitz [27]).

Pesquisa Operacional, Vol. 34(1), 2014
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4.2 Convexity of an IT2FLP

Another important condition to be satisfied by any LP model is convexity. In an LP problem, con-
vexity means that the halfspace generated by all A(xi j ) � b should be continuous and compact.

This implies that every set b should not be empty (non-null).

An IT2FLP has to guarantee two convexity conditions: a first one regarding b ∈ supp(b̃) and a
second one regarding μb̃ . This leads us to the following proposition:

Proposition 4.2 (Convexity of an IT2FLP). An IT2FLP is said to be convex iff

A(xi j ) � b̃ ∀ i ∈ Nm (16)

is a non-null halfspace, and b̃ is composed by convex μb̃ and μ
b̃

membership functions.

According to Kearfott & Kreinovich [17], global optimization is only possible for convex objec-
tive functions, so the Proposition 4.2 agrees with this. As z̃ is a function of b̃, then we need to
guarantee that μb̃ be convex to ensure that z̃ be convex as well.

5 SOLUTION PROCEDURE OF AN IT2FLP

Until now our main problem is how to deal with interval fuzzy sets, since most of fuzzy opti-
mization methods were designed for Type-1 fuzzy sets, and what we have is an interval of infinite

choices. This way, our proposal is based on finding two endpoints enclosed into � and ∇ (see
Fig. 4), and use these points as the parameters of a single fuzzy set, suitable to be optimized
using the Algorithm 1.

Figueroa [4, 5, 6] proposed a method to find an optimal fuzzy set embedded into the FOU of

the problem using �, ∇ as auxiliary variables weighted by c� and c∇ and the Zimmermann’s
method. A description of the algorithm is presented next.

Algorithm 2

1. Compute an optimal inferior boundary called Z minimum (ž) by using b̌ + � as a frontier
of the model, where � (see Definition 3.4) is an auxiliary set of variables weighted by c�
which represents the lower uncertainty interval subject to the following statement:

� � ¯̌b − b̌ (17)

To do so, �∗ is obtained solving the following LP problem

max
x,� z = c′x + c0 − c� ′�

s.t .

Ax − � � b̌ (18)

� � ¯̌b − b̌

x � 0

Pesquisa Operacional, Vol. 34(1), 2014
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2. Compute an optimal superior boundary called Z maximum (ẑ) by using ¯̂b +∇ as a frontier

of the model, where ∇ (see Definition 3.4) is an auxiliary set of variables weighted by c∇
which represents the upper uncertainty interval subject to the following statement:

∇ � ¯̂b − b̂ (19)

To do so, ∇∗ is obtained solving the following LP problem

max
x,∇ z = c′x + c0 − c∇ ′∇

s.t .

Ax − ∇ � b̂ (20)

∇ � ¯̂b − b̂

x � 0

3. Find the final solution using the third and subsequent steps of the Algorithm 1 using the
following values of b̌ and b̂

b̌ = b̌ + �∗ (21)

b̂ = b̂ + ∇∗ (22)

Remark 5.1 (About c� and c∇). In Algorithm 2, we have defined c� and c∇ as the weights of
� and ∇. In other words, c�

i and c∇
i are the unitary cost associated to increase each resource b̌i

and b̂i respectively.

Remark 5.2 (max − min objectives). The proposed algorithm was designed for maximization

problems, so equations (21) and (22) apply to a max goal. For a min goal, equations (18), (20),
(21) and (22) have to be changed.

Therefore, � and ∇ are auxiliary variables that operate as Type-reducers3, where �∗
i and ∇∗

i
become b̌i and b̂i as the inputs of the Zimmermann’s method which returns ž∗, ẑ∗ and α∗ (see

Section 2).

6 APPLICATION EXAMPLE

To illustrate how the proposed procedure works, we present a classical transportation problem
where its demands and supplies are defined by the perception of the experts of the system in two
fronts: experts of the behavior of the customer and experts of the suppliers’ capabilities.

Therefore, if different experts provide opinions based on their previous knowledge, the problem

is how to handle the information they have provided. Sometimes, the experts provide opinions

3A Type-reduction strategy regards to a method for finding a single fuzzy set embedded into the FOU of a Type-2 fuzzy
set.

Pesquisa Operacional, Vol. 34(1), 2014
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using words instead of numbers through sentences such as “I think that the demand of the product

X should be between b1 and b2”, where b1 and b2 become b̌i and b̂i , as presented in Section 1.

When different experts have different opinions for the same concept, then linguistic uncertainty
appears and Type-2 fuzzy sets arise as an alternative to handle this kind of uncertainty. Is in
that way how we present the demands and supplies of the system defined by the experts, where

the main idea is to minimize the shipping costs of the system. A general IT2FLP transportation
model is as follows:

min z = ci j xi j (23)

s.t.

−
m∑

i=1

xi j � −ã j ∀ j ∈ Nn (24)

n∑
j=1

xi j � d̃i ∀ i ∈ Nm (25)

where ci j , xi j ∈ Rn,m , ã j and d̃i areIT2FS whose supports are defined over the real numbers R,
� and � are Type-2 fuzzy partial orders.

Index sets:

Nm is the set of all

“i′′ resources, i ∈ Nm , Nm = 1, 2, . . . , m.

Nn is the set of all “ j ′′ products, j ∈ Nn , Nn = 1, 2, . . . , n.

Decision variables:

xi j = Quantity of product to be shipped from the supplier “i′′ to the customer “ j ′′.

Parameters:

a j = Quantity of product available by the supplier “ j ′′.

di = Quantity of product required by the customer “i′′ .

Note that b̃ (defined in (10)) is composed by two vectors: d̃ with parameters ¯̌d, ď, d̂ and ¯̌a,
which are the demands of the customers, and ã with parameters ¯̌a, ǎ, â and ¯̌a, which are the

availabilities offered by suppliers.

Now, we need to compute z̃ and z∗ = c(x∗) using (14), d̃ , ã and c which are provided as follows.

¯̌di =
⎡
⎢⎣10

11
12

⎤
⎥⎦ ď i =

⎡
⎢⎣13

14
18

⎤
⎥⎦ ¯̂di =

⎡
⎢⎣12

13
15

⎤
⎥⎦ d̂ i =

⎡
⎢⎣16

17
21

⎤
⎥⎦

¯̌a j =
⎡
⎢⎣24

37

29

⎤
⎥⎦ ǎ j =

⎡
⎢⎣16

30

23

⎤
⎥⎦ ¯̂a j =

⎡
⎢⎣20

32

24

⎤
⎥⎦ â j =

⎡
⎢⎣14

25

18

⎤
⎥⎦
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ci j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

2
4
1

3
2
4
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5

1
1

0.5

0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3
3

6
6
7

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

c∇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5

1
1

0.5

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4
4

6
8
7

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This example is composed by three suppliers and three customers whose parameters are defined
by experts using IT2FS, so we apply the Algorithm 2 to find a crisp solution of the problem. The
obtained fuzzy set Z̃ is defined by the following boundaries:

¯̌z = 76

¯̂z = 96

ž = 55

ẑ = 67

6.1 Obtained results

First, we have applied the LP models shown in (18) and (20), which lead to the following results:

�∗
1 = 3 → ď∗

1 = 10 ∇∗
1 = 4 → d̂∗

1 = 12
�∗

2 = 3 → ď∗
2 = 11 ∇∗

2 = 4 → d̂∗
2 = 13

�∗
3 = 6 → ď∗

3 = 12 ∇∗
3 = 6 → d̂∗

3 = 15
�∗

4 = 0 → ǎ∗
1 = −16 ∇∗

4 = 0 → â∗
1 = −14

�∗
5 = 0 → ǎ∗

2 = −30 ∇∗
5 = 0 → â∗

2 = −25
�∗

6 = 0 → ǎ∗
3 = −23 ∇∗

6 = 0 → â∗
3 = −18

Now, we use �∗ and ∇∗ alongside equations (21) and (22) to obtain the values of ž∗ = 65.5

and ẑ∗ = 79. Then, by using ď, ǎ, d̂, â and the Zimmermann’s method we obtain the following
results: α∗ = 0.9412 and z∗ = 66.29. The shipping quantities x∗

i j that should be sent from
suppliers to customers are shown next.

x∗
11 = 0 x∗

21 = 0 x∗
31 = 118.82

x∗
12 = 0 x∗

22 = 128.82 x∗
32 = 0

x∗
13 = 141.76 x∗

23 = 0 x∗
33 = 0.71

Figure 6 shows the Type-reduced fuzzy set of optimal solutions z̃ which is embedded into the

FOU of Z̃ , where the global satisfaction degree of α∗ = 0.9412 allows us to find a crisp solution
of the problem.
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1

μz̃

z ∈ Rž
55

ž∗ = 65.5

¯̌z
76

¯̂z
96

α∗
0.9412

ẑ
67

ẑ∗ = 79

z∗ = 66.29

FOU

Figure 6 – Fuzzy set z embedded into the FOU of Z̃ .

6.2 Discussion of the results

We started to solve the problem with a set of constraints d̃ , ã, in which we cannot make a shipping
decision. Then we applied the Algorithm 2 to obtain the endpoints �∗ and ∇∗ which leads to

ď∗, ǎ∗, d̂∗ and â∗. Finally we have applied the Algorithm 1 to find a crisp solution, which are in
this case the optimal amount of demand to be satisfied, the amount of supplies to be used, and
the shipping quantities x∗

i j to be sent through the route i → j .

Note that our results depend on c� and c∇ , so at a first glance, the method should not increase its
delivering costs, but this does not happen as shown before. Moreover, the method decreases the
satisfied demand, even by paying an additional cost c� and c∇ , plus shipping costs. Also note
that �∗ = 0 and ∇∗ = 0 when the availability of suppliers ã is increased, since this leads to

increase its global shipping costs.

There is an interesting reason for: our method selects the constraints that increases the objective
function, accomplishing (13) instead of the natural reasoning of treating all constraints in the
same way.

Remark 6.1. Note that the presented example is feasible according to Propositions 4.1 and 4.2.

This means that the problem is feasible since ¯̌d, ¯̌a are feasible points, and the problem is convex
since μd̃ and μd̃ are linear convex membership functions, so Z̃ as displayed in Figure 6 is convex

as well.

Recall that our results are based on computing ¯̌z, ¯̂z, ž, ẑ, �∗, ∇∗, ž∗, ẑ∗ which leads to a crisp so-
lution of α∗, z∗ and x∗

i j through LP models which can be solved using GAMS, LINGO, MatLab
or any other optimization software. This provides a well known framework for further imple-

mentations since there is no need for additional software and/or routines.

Finally, the crisp optimal solution of the problem comes from solving the Zimmermann’s soft
constraints method alongside ď∗, ǎ∗, d̂∗ and â∗. The results are the optimal shipping quantities
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to be sent x∗
i j , accomplishing (13). This way, what we are doing here is making a decision using

the Bellman-Zadeh fuzzy decision making principle.

7 CONCLUDING REMARKS

The proposed methodology (see Section 5 and Fig. 5) deals with Type-2 fuzzy uncertainty com-
ing from the experts by using well known fuzzy optimization techniques, achieving satisfactory

results. Our proposal computes a fuzzy set Z̃ from b̃ before applying an optimization strategy,
which is divided into two sub-steps: Type-reduction and defuzzification (performed by the Zim-
mermann’s soft constraints method).

Our proposal uses the Zimmermann’s method for finding a crisp solution to a Type-2 constrained
problem, so many similar problems can be solved using our proposal due to its flexibility and
interpretability. Note that different Type-reduction strategies may be used, each one providing
supplementary information for decision making.

Finally, the proposed methodology is a guide for handling Type-2 fuzzy constraints (involving
the opinions and perceptions of different experts, their knowledge, and non-probabilistic uncer-
tainty). Other methods can be used for (see Almeida, Yamakami & Takahashi [1], Silva, Cantao
& Yamakami [28], and Hernandes, Berto & Castanho [10]), so our proposal is just an approach

to solve this kind of problems.
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[7] FIGUEROA JC & HERNÁNDEZ G. 2012. Computing optimal solutions of a linear programming prob-

lem with interval type-2 fuzzy constraints. Lecture Notes in Computer Science, 7208: 567–576.

[8] GHODOUSIANA A & KHORRAM E. 2006. Solving a linear programming problem with the convex
combination of the max-min and the max-average fuzzy relation equations. Applied Mathematics and

Computation, 180(1): 411–418.

Pesquisa Operacional, Vol. 34(1), 2014



�

�

“main” — 2014/4/27 — 23:45 — page 88 — #16
�

�

�

�

�

�

88 SOLVING LINEAR PROGRAMMING MODELS WITH INTERVAL TYPE-2 FUZZY CONSTRAINTS

[9] GUU S-M & WU Y-K. 2002. Minimizing a linear objective function with fuzzy relation equation

constraints. Fuzzy Optimization and Decision Making, 1(4): 347.

[10] HERNANDES F, BERTON L & CASTANHO M. 2009. O problema de caminho mı́nimo com incertezas

e restrições de tempo. Pesquisa Operacional, 29(2): 471–488.
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