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ABSTRACT. This paper presents the application of a stochastic Benders decomposition algorithm for
the problem of supply chain investment planning under uncertainty applied to the petroleum byproducts
supply chain. The uncertainty considered is related with the unknown demand levels for oil products.
For this purpose, a model was developed based on two-stage stochastic programming. It is proposed two
different solution methodologies, one based on the classical cutting plane approach presented by Van Slyke
& Wets (1969), and other, based on a multi cut extension of it, firstly introduced by Birge & Louveaux
(1988). The methods were evaluated on a real sized case study. Preliminary numerical results obtained
from computational experiments are encouraging.
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1 INTRODUCTION

Oil companies are global multinational organizations whose decisions involve a large number
of factors related to the supply of raw materials, their processing and distribution. For compa-
nies with strongly diversified sources of petroleum supply, a long cast of products, and multiple
markets, the advance planning of all activities along the supply chain is vital. Such planning
includes the definition of production levels of oil (from oil fields) and of petroleum byproducts
(from oil refineries), as well as the distribution among these refineries and to the final consumers
of oil products. Major oil companies are characterized by integrated and verticalized activi-
ties, and the activities of refining and distributing oil products are characterized by low profit
margins. Therefore, techniques for decision-making optimization are frequently used in the con-
text of the oil supply chain.

The use of optimization techniques for supply chain design and planning has already been
observed in the literature since the 1970’s, especially the in seminal works of Geoffrion &
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Graves (1974). Vidal & Goetschalckx (1997) and Beamon (1998) present an extensive litera-
ture review on supply chain models. Although the research literature on the strategic modeling
of supply chains is quite rich, few studies have included uncertainty mitigation in addition to
other decisions of financial scope, such as commercialization income, market considerations and
investment planning. According to Sahinidis (2004), the incorporation of uncertainty into plan-
ning models using stochastic optimization remains a challenge due to the large computational
requirements involved.

For nearly 50 years, companies in the oil and chemical industries have led the development and
use of mixed integer linear programming to support decision making at all levels of planning.
An overriding feature in the oil industry is its wide range of uncertainties, typically related to
the unpredictable levels of demand for refined products, fluctuations in prices in domestic and
international markets and inaccuracies in the forecasted production of oil and gas. For this reason,
many works have used techniques based on mathematical programming to support decision-
making under uncertainty (Escudero ef al., 1999; Dempster et al., 2000; Al-Othman et al., 2008;
Khor et al., 2008).

Due to the great level of uncertainties taken into consideration, and the fact that the aforemen-
tioned problem is modeled as a mixed-integer linear program, it might become computationally
infeasible to deal with a great number of scenarios by solving deterministic equivalents of the
stochastic problems. Therefore, a decomposition approach might turn out to be a valid alternative
as solution methodology.

The first approaches using decomposition schemes for stochastic programs were presented by
Van Slyke & Wets (1969), a framework based on Benders decomposition (Benders, 1962)
applied to two-stage stochastic problems, which became known as the L-Shaped method. Birge
& Louveaux (1988) report an extension of the method presented by Van Slyke & Wets (1969),
exploiting the structure of two-stage stochastic problems to place several cuts at once at each
major iteration.

Cutting-plane schemes has been successfully used in solving large-scale problems since the
pioneering paper of Geoffrion & Graves (1974), e.g., the uncapacitated network design problem
with undirected arcs (Magnanti et al., 1986, Costa et al., 2012), the stochastic transportation-
location problems (Franca, 1982), the locomotive and car assignment problem (Cordeau ef al.,
2000; Cordeau et al., 2001), the non-convex water resource management problem (Cai et al.,
2001), hub location problem (Miranda Junior et al., 2011), to name a few.

The objective of this paper is to present a mathematical model for the optimization of the supply
chain investment planning problem applied to the petroleum products supply chain. Uncertainties
related to product demand levels are considered, thus, the stochastic programming framework is
adopted as modeling approach. Furthermore, it is shown an application of two primal decom-
position techniques based on cutting plane approaches as solution technique. Experiments were
performed in order to evaluate the efficiency of the proposed algorithms.
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The paper is organized as follows: Section 2 describes the proposed mathematical model; Sec-
tion 3 presents the traditional primal decomposition framework, while Section 4 presents the
multi cut framework; computational results are shown in Section 5; Section 6 draws some
conclusion.

2 PROBLEM STATEMENT

The problem approached in this paper can be defined as the strategic planning of petroleum
products distribution, where one seeks to select investments to be made in logistics infrastruc-
ture, taking into consideration decisions regarding the distribution of flows, inventory policies,
and the level of the external commercialization. Such decisions arise in the context of strategic
and tactical planning faced by petroleum products distribution companies operating over large
geographical regions. We consider this problem as an integrated distribution network design and
binary capacity expansion problem under a multi-product and multi-period setting.

Petroleum products from refineries are stored in tanks to be directed to distribution bases. These
bases serve as negotiation points with distributors and are considered as aggregation points of
demand for such products. They also might serve as an intermediate point for other bases further
away from the refineries. The bases are capable of storing product when necessary, given that the
problem is considered under a multi-period operation. The storage and throughput capacities of
the bases are limited. However, they can be improved through an expansion project. The same
idea holds for arcs, which can also be expanded in the same fashion. In addition to that, we also
consider the possibility of building new arcs and bases. The tanks of these bases are constantly
being loaded and unloaded. This process is known as the tank rotation and is subject to the
physical limitations that are inherent in the hardware associated with the tanks of the distribution
base. The rotating capacity refers to the number of times a tank can be filled and emptied over a
certain period of time.

For modeling the uncertainty we propose a two-stage mixed-integer linear stochastic program-
ming model. The uncertainty is represented through the consideration of discrete scenarios.
These scenarios are defined by means of sampling from a continuous distribution of the demand
levels for a given product at a certain base. Further details regarding the scenario generation
process can be found in Oliveira & Hamacher (2012).

The first-stage decisions are the selection of the expansion projects for tanks and arcs, as well as
their timing. These decisions are represented by binary variables. Typically, these investments
are highly capital intensive and are built-to-order due to their technical complexity and particular
specifications. For this reason, we assume that the same investment can only be implemented
once along the time horizon. Also, we assume that investment decisions are available for use at
the beginning of the selected time period.

The second-stage decisions, to be taken after know the unveiling of the uncertain parameters, are
those relating to the flows of products, inventory levels, supply provided to each demand site,
supply levels at sources, and levels of unmet demand.
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The objective function consists of investments costs of tanks and arcs expansion projects and the
expected costs related to freight, inventory, and emergency floating tank acquisition. The purpose
of the model is to plan the transportation and inventory decisions that will cope with the projected
(although uncertain) growth of product demands, together with the possible investments that
should be implemented and when, minimizing both investment and expected logistics costs.

3 MATHEMATICAL MODEL

The notation to be used for the presentation of the mathematical model is given below. For the
sake of notational compactness, the domains of summations will be omitted, except when the
summation is evaluated only on a subset of the natural domain. When there is no mention of this
fact, its domain should be considered as the original set to which the index refers. In addition to
that, we use bold caption to represent decision variable vectors.

Indexes

i,j,l e N — Locations

pe?P —  Products

teT —  Time periods

EeQ —  Uncertainty realizations
Sets

B €N — Subsets of distribution bases

N — Locations

P —  Products

SC N — Subsetof suppliers

T —  Time periods

Q — Uncertainty possible realizations
Parameters

A?j —  Current arc capacity

Ajj — Additional arc capacity

C! g —  Transportation cost

D 5 ,(&) - Demand

Hjp — Inventory cost

Ky —  Maximum number of tank rotations

M/Qp —  Current inventory capacity

M;, — Additional inventory capacity

Ol.’p —  Supply
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t _
S i Shortfall cost
W]’. » Inventory investment cost
Yl.t,. —  Arc investment cost
Variables
t _
Xijp &) Product flow
v 5 ,(&)  — Inventory level
u 5 ,(&)  —  Unmet demand
ylf g — Arc investment decision
w 5 » —  Location investment decision

The mathematical model for the optimization of aforementioned problem can be stated as

follows:
. min Z W]t-pw§p + Z Y,ijlt] +Q2(w, y) (1)
yef0.1} _—
],P,t l‘jxt

st Y wl <1, Vj.p @)

t
Y=t i (3)

t

where the term Q (w, y) = E[Q(w, y, §)] represents the expectation evaluated over all £ € Q
possible realizations for the uncertain parameters of the second-stage problem, given an invest-
ment decision (w, y). Constraints (2) and (3) define that each investment can happens only once
along the time horizon considered.

The second-stage problem Q(w, y, &) can be stated as follows in Egs. (4) to (9). The objective
function (4) represents freight costs between the nodes, inventory costs, and the cost of shortfall.
Equation (5) comprises the material balance in distribution bases. Constraint (6) limits the supply
availability at sources. Constraint (7) defines the arc capacities and the possibility of its expansion
through the investment decisions y. In a similar way, constraint (8) defines the storage capacities
together with its expansion possibility. Constraint (9) sets the throughput limit for bases, defined
by the product of the available storage capacity with the maximum number of tank rotations.
min D i@+ D Hipvj,©) + ) Sju,©) “)

x,uveRy < £ £
i,j,pt Jpit Jipit

st D xip () + 07,1 O+, ©)
=) xl, &)+ &) + DI, ©), VjieB pt (5
l
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> xip() < O, VieS.pt (6
J

3 xl, &) < A%+ 4 Y Vij.t ™
p t'<t

Vip ) < M+ Myp 3w VieBpt ®

t'<t

D xiip©) = Kjp | M, + Mip 3wl | VieBpt 0O

:

t'<t

4 STOCHASTIC BENDERS DECOMPOSITION

The model proposed in the previous section can be defined as an optimization model with bi-
nary first-stage variables, continuous second-stage variables and discrete random parameters.
Moreover, the model has relatively complete recourse (Birge & Louveaux, 1997) that is, for any
feasible first stage solution, the second stage problem is feasible. Such characteristics allow us a
decomposition framework based on Benders decomposition (Benders, 1962) applied to stochas-
tic optimization.

We start by noting that the so-called master problem can be equivalently reformulated as

follows:
min Z W]’-pwi-p—f-z)’,-ljyfj +M (10)
w,ye{0,1} : : — "
Jpt it

st Ywl <1, Vip )

!
Sl <1, Vi) (12)

!
M=>Qw,y) (13)

This formulation allows one to distinguish an important issue. Inequality (13) cannot be used
computationally as a constraint, since it is not defined explicitly, but only implicitly, by a number
of optimization problems. The main idea of the proposed decomposition method is to relax
this constraint and replace it by a number of cuts, which may be gradually added following
an iterative solving process. These cuts, defined as supporting hyperplanes of the second-stage
objective function, might eventually provide a good estimation for the value of Q (w, y) in a
finite number of iterations.

The decomposition method applied to the aforementioned problem can be stated as follows:
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Initialization: Define L B and U B as lower and upper bounds. Set LB = —oco and UB = oo.
Define B as the iteration counter and set B = 0. Let (@, p) denote the incumbent solution.

Step 1: Solve the master problem and let (w?, y?) and L B be its optimal solution and optimal
objective value respectively.

Step 2: For each realization £ €  solve the slave problem (4)-(9) stated before fixing (w2, y?)
and calculate the value for O (w?, y?) given by equation (14),

9w?, y?)y =Y P& OwW”" y° &) (14)
EeQ

where P (&) is the probability of realization & occurs. Let F(w, y) represent the first-stage cost
function and:

Gw”, y%) = Fw®, ¥+ 9w?, y¥) (15)
If Gw?, y?) < UB then update UB = G(w®, y?) and the incumbent solution (o, ) =

(w?, y®).

Step 3: If UB — L B < €, where € is a pre specified tolerance, then return the incumbent solution
(w, y) and U B as the objective function value. Otherwise, proceed to Step 4.

Step 4: Let a, B, y, 8, and ¢ be the dual variables associated with constraints (5) to (9) respec-
tively. Generate the cut (16):

e Y (S )+ S, (Sop |+ 19

it 1<t Jopit V<t

where:

al, = Y P@EAiv)®

EeQ
b, = Y PEM; [6}1, + ijg}p(é)]
EeQ

K = Y P& (e, D, + B0,

EeQ Jipst

0 0 0
8 @M, + KjpMjj, ) + v 6)4)
ijt
Add the cut to the master problem. Update B = B + 1 and go to step 1.
5 MULTI CUT STOCHASTIC BENDERS DECOMPOSITION
The structure of stochastic programs allows one to add multiple cuts to the master problem in-

stead of one in each major iteration. Birge & Louveaux (1988) show that the use of such a
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framework may greatly speed up convergence. The main idea behind this multi cut framework
is to generate an outer approximation for all functions Q(w, y, &), replacing the outer approxi-
mation of O(w, y). The multi cut approach relies on the idea that using outer approximations of
all O(w, y, &) send more information than the single cut on Q(w, y) and that, therefore, fewer
iterations are needed. In fact, following Birge & Louveaux (1988), it is possible to show that the
maximum number of iterations for the multi cut procedure is given by:

1+1Ql(g" - 1) (17)
while the maximum number of iterations for the single cut procedure is given by:
[1+1I(g — DI" (18)

where g represents the total of slopes for the second-stage problem and m the number of recourse
constraints. Although ¢ might turn out to be complicated to calculate for real world problems,
bounds (17) and (18) show that the maximum number of iterations needed for reaching the opti-
mum grows linearly with the number of uncertainty realizations for the multi cut approach, while
it grows exponentially for the traditional single cut approach.

Before stating the multi cut procedure, it is necessary to reformulate the original master problem
to conveniently adequate it to the multi cut framework:

min Y Wwh Y Yy Y PEME) (19)
w,ye(0,1) 4 &
Jipt i,jt £eQ
s.t. ijﬁ <1, Viji.p (20)
t
Y o=, Vi, 1)
t
ME) = O(w, y,§), \&3 (22)

The main difference between the two approaches relies on the modification of Step 4 from the
single cut approach. The previous three steps should be considered as identical to those presented
in the previous section. The modified Step 4 is now stated as follows:

Step 4: Let ., 8, ¥, 8, and g be the dual variables associated with constraints (5) to (9) respec-
tively. Generate the group of cuts (23):

ME) =Y a @ | Y i [+ 0,@ [ Ywl, | +KE.  veea  (23)

i,j,t t'<t Jj.p.t <t

where:
ai(§) = Ay
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bip® = Mjp[8), + Kjpgj,6)]

K@ = X (@D} + 8,610}, + 5, M), + Ky Myl ©))
Jspst

+ ) vh©4),

ijt
Add the cuts to the master problem. Update B = B 4+ 1 and go to step 1.

6 NUMERICAL EXPERIMENTS

In this section we describe numerical experiments using the proposed methodology for solving
a realistic supply chain investment planning under demand uncertainty. The transport in the
case study considered is primarily done using waterway modals, which are strongly affected by
seasonality issues regarding the navigability of rivers. Four different products were considered
— diesel, gasoline, aviation fuel and fuel oil — to be distributed over 19 locations (13 bases, 3 of
which have sea terminals, one refinery and two external supply locations).

Figure 1 schematically represents the network under study. The region considered comprises
approximately 3.7 MMkm?, which represents nearly 43% of Brazil’s national territory. As shown
in this figure, the bases of Manaus (AM), Itacoatiara (AM), Santarém (PA), Macapa (AP) and
Belém (PA) are particularly relevant because they act also as distribution points of the supply
coming from Sdo Luiz (MA).

Caracarai

Cruzeiro do Sul Rio Branco

-==——4

* f Porto Velho
A\ i
'
\ / =-eoipe  Large ferries
A\ / i Small boats
\ / — 4 Roadways
f- PR

Figure 1 — Case study schematically represented.

Pesquisa Operacional, Vol. 32(3), 2012



672 STOCHASTIC BENDERS DECOMPOSITION FOR THE SUPPLY CHAIN INVESTMENT PLANNING PROBLEM

Waterway transportation is typically done by large ferries during periods of river flooding and by
smaller boats during droughts, i.e., in periods of low water levels, the later having higher trans-
portation costs. The portfolio of projects considered for the study consists of 28 local projects
and 3 arc projects. Such projects are considered mutually independent and can therefore be com-
bined as needed by the problem. The planning horizon considered was 8 years, divided into a
total of 32 quarters.

To take into account the uncertainty in demand levels for petroleum products, scenarios were
generated by the following first-order autoregressive model:

DY, =DM+ w, +o¢] (24)

where wp represents the expected average growth rate for the consumption of product p over
the planning horizon, o represents the estimated maximum deviation for product consumption
in the region and ¢ ~ N (0, 1). The maximum deviation was estimated based on the analysis
of the annual consumption historical series over the last 40 years. Each scenario corresponds
to a series of demand forecasts for every location and product. The number of scenarios to be
used is determined based on a statistical method (Shapiro & Homem-de-Mello, 1998) to obtain
solutions within specific confidence intervals for a desired level of accuracy. We use this method
as a means of reducing the number of scenarios given that we are sampling from a continuous
limited space. For further details on the scenario generation method and definition of sample
sizes for this problem, please refer to Oliveira & Hamacher (2012).

The mathematical model and the scenario generation routines were implemented using AIMMS
3.10. The mathematical model was solved using CPLEX 11.2. All experiments were performed
on a Pentium Quad-Core 2.6 GHz with 8 Gb RAM. In AIMMS, an optimality parameter can be
specified to decide whether to find the optimal solution or to quickly obtain a suboptimal solution,
referred to as a e-optimal solution. In these experiments, the execution of AIMMS was stopped
when the value of the objective function was within 0.5% of the optimal solution, which is a
reasonable choice in terms of solution accuracy. In addition, a time limit of 1 h (3600 s) was set.
For the decomposition procedures, the tolerance € was equivalently set as € = 0.005(UB — L B),
which is equivalent to define a 0.5% optimality tolerance. Table 1 summarizes the data of the
experiments performed.

We solved this case study with sample sizes up to 100 scenarios. For the sample with 100
scenarios, the objective function of the stochastic problem is $73,512.9 million. The solution
of the deterministic problem considering the average demand levels for the same 100 scenarios
is the suboptimal solution value of $69,714.3 million. The Value of Stochastic Solution (Birge
& Louveaux, 1998) for this scenario sample is thus $3,952.6 million, which represents savings
of about 5.2%. Table 1 shows the first stage solution for two different sample sizes, namely
N =20and N = 100. Typically, what we observe in this case is that, as the number of scenarios
increases, the model tends to decide for a larger selection of projects. In the meanwhile, the
timing decisions tend to be anticipated, so that the supply chain can handle higher levels of
demand.
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Table 1 — First-stage solutions.

Project N =20 N =100
Investment period | Investment period

Tank — Manaus — Aviation Fuel 9 5

Tank — Santarem — Diesel - 16
Tank — Santarem — Gasoline 24 19
Tank — Santarem — Fuel Oil 1 1

Tank — Belém — Diesel 29 24
Pipeline — Macapa-Santarém - 15

The first column of Table 2 represents the 9 different instances generated, with 20 up to 100
scenarios. The next two columns summarize the size of the complete model considering all
scenarios at once, what is commonly known as the deterministic equivalent (Birge & Louveaux,
1997). 1t is worth to notice that all instances have the same number of integer variables, a total
of 840 each.

The last three columns from Table 2 show the solving time taken by each technique to reach
the e-optimal solution, namely solving the complete deterministic equivalent (DE), using the
classical decomposition framework (SCut), and using the proposed multi cut approach (MCut).
Figure 2 presents a graphical comparison among the three experiments regarding the CPU time
required to reach the optimal solution.

Table 2 — Experiment summary.

N #Var #Const. DE(s) | SCut(s) | MCut(s)
20 194,443 204,024 18.20 56.08 12.25
30 | 291,243 306,024 29.81 41.14 28.52
40 | 388,043 408,024 40.92 45.70 24.98
50 | 484,843 510,024 48.34 84.42 45.53
60 | 581,643 612,024 86.31 113.92 51.17
70 | 678,443 714,024 160.84 | 101.30 70.75
80 | 755,243, | 816,024 110.20 | 98.28 61.09
90 | 875,043 918,024 136.06 | 138.28 71.11
100 | 968,843 | 1.020,024 | 150.13 | 171.28 53.48

As can be seen in Table 2 and in Figure 2, the multi cut approach has the smallest solution time
for every instance, being up to 3 times faster than solving the deterministic equivalent and up
to 5 times faster than using the single cut approach. Furthermore, it is worth to notice that the
solution time for the single cut procedure is often higher than the solution of the deterministic
equivalent among the experiments performed. This indicates that, for this particular case, it
seems more efficient to simply solve the complete deterministic problem than use the traditional
decomposition procedure.
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Figure 2 — Comparison of computation times.

7 CONCLUSIONS

This paper presents the application of a decomposition scheme for the problem of supply chain
design applied to the petroleum byproducts supply chain. We propose a mathematical model that
captures the impact of uncertainty on investment decisions, since the problem approached here is
a mixture of logistic infrastructure investment planning problem and the stochastic transportation
problem. With demand at each destination as a random variable, the objective is to minimize the
sum of expected holding and shortage costs, transportation costs, fixed investment costs, and
demand shortfall costs.

In order to solve the proposed model, we propose an application of the stochastic Benders de-
composition method to the problem also considering the multi cut extension of it, firstly proposed
by Birge & Louveaux (1988).

The results suggest that the first approach performs worse than the second in terms of computa-
tional time. It is an expected, yet important, result that corroborates the theoretical bounds for the
total number of necessary iterations before complete convergence of the algorithms. In a general
sense, the multi cut framework performs better than simply solving the deterministic equivalent
— or even than directly applying the classic primal decomposition framework — allowing one
to solve instances of greater size and, thus, with a more precise representation of the random
variables.
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