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ABSTRACT. In this work, we study coerciveness notions and their implications to existence conditions.

We start with the presentation of classical ideas of coerciveness in the framework of Optimization Theory,

and, then, using a classical technical result, introduced by Ky Fan in 1961, we extend these ideas first to

Optimization Problems and then to Equilibrium Problems. We point out the importance of related condi-

tions to the introduced coerciveness notion in order to obtain existence results for Equilibrium Problems,

without using monotonicity or generalized monotonicity assumptions.
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1 INTRODUCTION

In this work, we consider two problems: Minimization and Equilibrium Problems. The Mini-
mization Problem (MP) is defined by a function h : Rn → R ∪ {+∞} and a nonempty subset C
of Rn , and it is formulated as

min
x∈C

h(x). (1)

The Equilibrium Problem (EP) is defined by a nonempty subset K of Rn and a function f : K ×
K → R, and it is formulated as

find x̄ ∈ K such that f (x̄, y) ≥ 0 for all y ∈ K . (2)

The Equilibrium Problem appeared for the first time with this name, in 1994, in the paper of
Blum and Oettli (see [6]). The interesting aspect about EP is that it has as particular cases the
following problems (for more details see [6], [12], [13] and references therein):

a) The minimization problem,

b) The fixed point problem,

c) The saddle point problem,
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d) The complementarity problem,

e) The Nash equilibria problem in non cooperative games,

f) The variational inequality problem,

g) The vector minimization problem.

The solution set of MP and EP, denoted as S(M P) and S(E P), can be represented respectively
as the intersection of a family of sets:

S(M P) =
⋂

y∈Rn

Lh(h(y)),

where, for each λ ∈ R, Lh(λ) = {x ∈ Rn : h(x) ≤ λ} denotes the λ-level set of h, and

S(E P) =
⋂

y∈K

L f y (0), (3)

where, for each y ∈ K , the function f y : Rn → R ∪ {+∞} is defined by

f y(x) =

{
− f (x, y) if x ∈ K ,

+∞ if x /∈ K .
(4)

In 1961, Ky Fan introduced in a technical Lemma (see Lemma 1 in [9]) two sufficient conditions
in order to guarantee non emptiness of the intersection of a closed set family. Also known as the
KKM condition, the first condition establishes that for all finite subset {x1, . . . , xm} of the index
set for the set family, its convex hull co{x1, . . . , xm} is a subset of the union of the corresponding
sets indexed by {x1, . . . , xm}. The second condition establishes the existence of at least one
compact set in the family.

Regarding minimization problems, considering lower semi-continuous functions over compact
sets, the Weierstrass Theorem gives the main classical existence result. In Section 3, we shall
verify that, under the assumptions of h being lower semi-continuous (lsc) and the existence of
at least one compact level set of h, minimization problems have solutions. In order to deal with
non compact sets, recession techniques have been introduced. In this sense, several conditions
have appeared in the literature such as coerciveness conditions. We observe that coerciveness
conditions of a lsc function h are based on compactness of all its level sets. It can be verified,
without using Ky Fan’s Lemma, that the solution set of the corresponding minimization problem
is exactly the intersection of all nonempty level sets of h, and, since the level sets are compact,
the intersection is nonempty. It is worth mentioning that some of the results that are presented
here for completeness are also in the working paper “Semi-continuous programming: existence
conditions and duality scheme” [15].

With respect to equilibrium problems, Ky Fan introduced a technical Lemma to prove his famous
Minimax Theorem (see [8]) that gives the main classical existence result for Equilibrium Prob-
lems, provided K is compact (2). In order to obtain existence results for equilibrium problem
considering non compact sets, some conditions using recession techniques have been introduced
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in the literature, but all of them require generalized monotonicity assumptions, see for example
([5], [6], [12] and the reference there in).

The objective of this paper is to introduce the notion of coerciveness for the Equilibrium Problem
as an extension of the classical coerciveness ideas for the Minimization Problem. In this way,
we use the Ky Fan’s Lemma, replacing the compactness assumption in the second sufficient
condition by another one that is related to a new coerciveness notion here introduced, making use
of recession techniques in order to guarantee non emptiness of the solution set of the Equilibrium
Problem without using generalized monotonicity assumptions.

The outline of paper is as follows. In Section 2, we recall some basic concepts and recession
tools in order to present known coerciveness ideas developed in the context of Optimization The-
ory. In Section 3, we introduce a new coerciveness idea for Minimization Problems, which is
related to other existence conditions already appeared in the literature, considering at least one
bounded level set. Some interesting results are commented and an application to the minimiza-
tion quadratic functions over polyhedral sets is considered in order to recuperate the famous
Frank Wolf Theorem. In Section 4, we present theoretical results on Equilibrium Problems and
introduce the coerciveness notion for Equilibrium Problems. Also, some existence results are
introduced and an application to saddle points for quadratic Lagrangian is considered. For this,
we transform the problem of finding a saddle point of a Lagrangian function into an Equilibrium
Problem in order to apply our results and so to guarantee the existence of saddle points of a
quadratic Lagrangian function over polyhedral sets.

2 PRELIMINARIES

In this section, we introduce some basic concepts and tools in order to introduce a new coercive-
ness notion in the context of Optimization Theory.

2.1 Some basic concepts and notations

Now, we introduce some basic concepts as well as their respective notations that will be used
hereafter. Denote by R the whole extended real line R∪{−∞, +∞}. Given a function h : Rn →
R, the effective domain of h is defined as dom(h) = {x ∈ Rn : h(x) < +∞}. The function h is
proper if dom(h) 6= ∅ and h(x) > −∞ ∀x ∈ Rn . For each λ ∈ R, the epigraph of h is defined
by epi(h) = {(x, λ) ∈ Rn × R : h(x) ≤ λ}. The function h is convex if epi(h) is convex in
Rn × R. The function h is quasi convex if Lh(λ) is convex for all λ ∈ R. The function h is
lower semi-continuous (lsc in short) if Lh(λ) is closed for all λ ∈ R, while h is upper semi-
continuous (usc in short) if −h is lsc. The function h is upper hemi-continuous if h is usc in the
segment lines of dom(h).

2.2 Some recession tools

The key for developing recession techniques is the concept of recession sets (see Definition 2.1.1
[3]). Given a set K ⊂ Rn , the recession set of K is defined by:

K ∞ =
{

x ∈ Rn : ∃ tn ↓ 0, ∃ xn ∈ K , tn xn → x
}
, (5)
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where ↓ means that the sequence converges to zero and tn > 0 ∀n.

By convention, the recession set of the empty set is the singleton {0} (i.e. (∅)∞ = {0}). Thus,
we have the following key property (see Proposition 2.1.2 in [3]):

A is bounded if and only if A∞ = {0}. (6)

In case K is also a nonempty closed convex subset of Rn , it is known that for any x0 ∈ K

K ∞ =
{

x ∈ Rn : x0 + t x ∈ K ∀ t > 0
}
. (7)

Note that definition (7) considers only the vectorial structure where as definition (5) considers
vectorial and topological structures.

Now, we enumerate some basic results on recession sets that will be useful in the sequel. Let K ,
K1 and K2 be subsets in Rn .

1. K1 ⊂ K2 implies K ∞
1 ⊂ K ∞

2 ;

2. (K + x)∞ = K ∞ for all x ∈ Rn ;

3. Let (Ki ), i ∈ I , be any family of nonempty sets in Rn , then
( ⋂

i∈I

Ki

)∞
⊂

⋂

i∈I

(Ki )
∞.

If, in addition, each set is convex and closed and ∩i∈I Ki 6= ∅, then we obtain an equality
in the previous inclusion.

Additional properties of the recession set C∞ of a set C are the following (see Proposition 2.1.1
[3]):

1. C∞ is nonempty closed cone.

2. (C)∞ = C∞.

3. If C is a cone, then C∞ = C

If C is a nonempty polyhedral set, Auslender [3] proved that if {xk} ⊂ C is a sequence such that
‖xk‖ → +∞ and xk

‖xk‖
→ d when k → +∞, then for any t > 0, there exists k ∈ N such that

xk − td ∈ C (Proposition 2.3 in [2]). It is easy to see that, for each t > 0, there exists k ∈ N,
such that xk − td ∈ C as well as ‖xk − td‖ < ‖xk‖ (for more details see [2], [3] and [4]). This
facts will be used later when we consider quadratic functions over polyhedral sets.

Remark 2.1. Note that the definition of K ∞ is related to the theory of set convergence of
Painleve-Kuratowski. Indeed, for a family {Kt }t>0 of subsets of Rn , the outer limit is the set

lim sup
t→+∞

Kt := {x : lim inf
t→+∞

d(x, Kt ) = 0}. (8)
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It can then be verified that
K ∞ = lim sup

t→+∞
t−1 K . (9)

Given h : Rn → R∪{+∞}, the recession function of h denoted by h∞ is defined as the function
whose epigraph is the recession set of the epigraph of h, i.e., epi(h∞) = (epi(h))∞.

It is well known that

h∞(d) = lim
t→+∞

[
inf

d ′→d

h(td ′)

t

]
(10)

or equivalently

h∞(d) = inf{lim inf
k→+∞

h(tkdk)

tk
: tk → +∞, dk → d}. (11)

The relation between the level set of h∞ for λ = 0 and any level set of h is as follows (see
Proposition 2.5.3 in [3]): for any proper function h : Rn → R ∪ {+∞} and any λ ∈ R, we have

(Lh(λ))∞ ⊂ Lh∞(0), (12)

where the equality holds if h is proper, convex and lsc.

Note that if Lh∞(0) = {0}, then from (12) we have that all level sets of the function h are
bounded. Moreover if h is lsc, then all the level set are compact.

2.3 Some classical coerciveness ideas in Optimization Theory

Here we collect the main ideas about coerciveness in Optimization Theory which can be found
in related books, such as, for example, [3] and [16].

Definition 2.2. [3] The function h : Rn → R ∪ {+∞} is strong coercive if

h∞(d) > 0 for all d 6= 0. (13)

It is evident that if h is strong coercive and lsc, then for each λ ∈ R, Lh(λ) is compact. The
converse is not true, for example, consider h(x) :=

√
|x |.

Definition 2.3. [3] The function h : Rn → R ∪ {+∞} is Inf-compact if ∀λ ∈ R, Lh(λ) is
compact.

It follows directly that, h is Inf-compact if and only if h is lsc and all level sets are bounded.

Definition 2.4. [3] The function h : Rn → R ∪ {+∞} is level bounded if ∀λ ∈ R, Lh(λ) is
bounded.

Note that if h is level bounded but not lsc, then h is not Inf-compact.

Definition 2.5. [3] The function h : Rn → R ∪ {+∞}, is zero-coercive if

lim
||x ||→+∞

h(x) = +∞ (14)
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It is well known that zero-coercive and level bounded notions are equivalent. Moreover, if h is
lsc, then Inf-compact, zero-coercive and level bounded notions are equivalent.

Note that all these coerciveness ideas require that all the level sets are bounded. Before exploiting
the condition that at least one of the level set is bounded, we need to consider some simple ideas
using recession techniques.

3 COERCIVENESS FOR MINIMIZATION PROBLEMS

In this section, we introduce some theoretical coerciveness ideas using recession techniques for
minimization problems. At the end, we show an application of these ideas to the minimization
of quadratic functions over polyhedral sets.

Let us consider first the minimization of a function h : Rn → R ∪ {+∞} and the correspond-
ing solution set denoted by S(h) := {x ∈ Rn : h(x) ≤ h(y) ∀y ∈ Rn}. Note that S(h) =⋂

x∈Rn Lh(h(x)), moreover, if λ = inf{h(x) : x ∈ Rn}, then S(h) = Lh(λ).

Lemma 3.1. Consider the minimization of h : Rn → R ∪ {+∞}. It follows that

(S(h))∞ ⊂
⋂

y∈Rn

(
Lh(h(y))

)∞
.

Proof. Since S(h) =
⋂

x∈Rn

Lh(h(x)) ⊂ Lh(h(x)) ∀x ∈ Rn , we have that

(S(h))∞ ⊂
(
Lh(h(x))

)∞ ∀x ∈ Rn,

and so (S(h))∞ ⊂
⋂

y∈Rn

(
Lh(h(y))

)∞. �

Lemma 3.2. Let h : Rn → R ∪ {+∞} be any function and let {λk}k∈N be a sequence such
that lim

k→+∞
λk = λ := inf{h(x) : x ∈ Rn}. If Lh(λ) = ∅ and Lh(λk) 6= ∅ ∀k ∈ N, then

⋂

y∈Rn

(
Lh(h(y))

)∞ =
⋂

k∈N

(
Lh(λk)

)∞.

Proof. First, we show that
⋂

k∈N

(
Lh(λk)

)∞ ⊂
⋂

y∈Rn

(
Lh(h(y))

)∞
.

Indeed, take u ∈
⋂

k∈N

(Lh(λk))
∞, thus u ∈ (Lh(λk))

∞ ∀k ∈ N. For each x ∈ Rn (arbitrarily

fixed), we have that λ < h(x), because Lh(λ) = ∅. Since lim
k→+∞

λk = λ and Lh(λk) 6= ∅

∀k ∈ N, there exists m ∈ N such that λm ≤ h(x). So, Lh(λm) ⊂ Lh(h(x)), which implies that
(Lh(λm))∞ ⊂ (Lh(h(x)))∞, and so u ∈ (Lh(h(x)))∞. The statement follows.
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Finally, we show that ⋂

y∈Rn

(
Lh(h(y))

)∞ ⊂
⋂

k∈N

(
Lh(λk)

)∞
.

Indeed, take u ∈
⋂

y∈Rn

(
Lh(h(y))

)∞, thus u ∈
(
Lh(h(y))

)∞ ∀y ∈ Rn . For each k ∈ N (arbitrarily

fixed), we have, by assumption, that λ < λk . Since Lh(λk) 6= ∅, take x ∈ Lh(λk). So h(x) ≤ λk ,
it implies that Lh(h(x)) ⊂ Lh(λk) and then

(
Lh(h(x))

)∞ ⊂
(
Lh(λk)

)∞. Here, u ∈
(
Lh(λk)

)∞.
The statement follows. �

Theorem 3.3. Let h : Rn → R ∪ {+∞} be a lsc function. S(h) 6= ∅ if and only if (S(h))∞ =⋂

y∈Rn

(
Lh(h(y))

)∞.

Proof. Consider λ := inf
x∈Rn

h(x). If S(h) 6= ∅ then Lh(λ) = S(h) 6= ∅. So, we have that

⋂

y∈Rn

(
Lh(h(y))

)∞ ⊂
(
Lh(λ)

)∞ =
(
S(h)

)∞
,

and the statement follows.

Conversely, if S(h) = ∅, then (S(h))∞ = {0} and so Lh(h(y)) are unbounded ∀y ∈ Rn . Now,
take uk ∈ (Lh(λk))

∞ with ||uk || = 1 ∀k ∈ N, where λk → λ with λk ≥ λk+1 > λ and
λ = inf

y∈Rn
f (y). Since λi ≤ λk ∀k ∈ N and ∀i ≥ k, we have that

(Lh(λi ))
∞ ⊂ (Lh(λk))

∞ and {ui }i≥k ⊂ (Lh(λk))
∞ ∀k ∈ N

and so any cluster point of {uk}k∈N belongs to (Lh(λk))
∞ ∀k ∈ N. From Lemma 3.2, we have

that any cluster point of {uk}k∈N belongs to
⋂

y∈Rn

(
Lh(h(y))

)∞, and so, the statement follows. �

The following theorem states necessary and sufficient conditions for the existence of at least one
nonempty bounded level set. Here co means the closed convex hull.

Theorem 3.4. For any given function h : Rn → R ∪ {+∞}, the following statements are equiv-
alent:

(a)
⋂

y∈Rn

(
Lh(h(y))

)∞ = {0}.

(b) There exists y ∈ Rn such that Lh(h(y)) is bounded.

(c) There exists y ∈ Rn such that coLh(h(y)) is bounded.

Proof. We need to prove only that (a) implies (b), because the other equivalences follow from
classical results of classical convex analysis. From Lemma 3.1, we have that

{0} ⊂ (S(h))∞ ⊂
⋂

y∈Rn

(
Lh(h(y))

)∞ = {0}

and from Theorem 3.3 we have that S(h) 6= ∅. Finally, the statement follows from the fact that
S(h) = Lh(λ), where λ = inf

x∈Rn
h(x). �
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Now, we are able to introduce a new coerciveness notion for Optimization Theory.

Definition 3.5. We say that h : Rn → R∪ {+∞} is a coercive function if there exists λ ∈ R such
that Lh(λ) is nonempty and bounded. From Theorem 3.4, this is equivalent to say that

R(h) :=
⋂

y∈Rn

(
Lh(h(y))

)∞ = {0} (15)

We notice that, level boundedness implies coerciveness, but the converse is not true; consider,
for example, the function h : R → R defined by h(x) = −exp(−x2).

Corollary 3.6. If h : Rn → R∪{+∞} is a coercive and lsc function, then h reaches its minimum
value over Rn. Moreover, S(h) is nonempty and compact.

In the convex case, all the previous ideas about coerciveness are equivalent under the lsc assump-
tion on the function, which we can verify in the following result.

Proposition 3.7. If h : Rn → R ∪ {+∞} is a proper convex and lsc function, then the following
statements are equivalent:

(1) h is a strong coercive function.

(2) h is a Inf-compact function.

(3) h is a level bounded function.

(4) h is a zero-coercive function.

(5) h is a coercive function.

(6) S(h) is nonempty, convex and compact.

Proof. The equivalence between (2) and (3) is evident from the lsc assumption. The equiva-
lence between (3) and (5) follows from the fact that if a convex function has a nonempty bounded
level set, then all the level sets are bounded. The remaining equivalences follow from Proposition
3.1.3 in [3]. �

Now, given h : Rn → R ∪ {+∞}, we consider the following assumptions:

(H1) ∀{xk}k∈N ⊂ dom(h) with lim ||xk || = +∞ and lim xk

||xk ||
= u ∈ R(h), ∃m ∈ N large

enough such that Lh(h(xm))
⋂

B(0, ||xm ||) 6= ∅.

(H2) ∀{xk}k∈N ⊂ Rn with lim ||xk || = +∞, ∃m ∈ N large enough such that

Lh(h(xm))
⋂

B(0, ||xm ||) 6= ∅.

Conditions related to assumptions H1 or H2 can be found, for instance, in [1], [2], [4], [12], [13],
[14] and references therein.

The following result is given without proof because it is evident.
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Lemma 3.8. Given h : Rn → R ∪ {+∞}. If h is coercive, then H1 holds.

Theorem 3.9. If h : Rn → R∪ {+∞} is proper and lsc, then H1 holds if and only if the solution
set of the minimization of h is nonempty, i.e., S(h) 6= ∅.

Proof. If H1 holds, for each k ∈ N, consider hk : Rn → R ∪ {+∞} defined by

hk(x) =

{
h(x) if ‖x‖ ≤ k
+∞ if ‖x‖ > k

.

Without loss of generality, consider hk proper ∀k ∈ N. So, from Corollary 3.6 S(hk) is nonempty
and compact ∀k. Now, take xk ∈ argmin{‖x‖: x ∈ S(hk)} ⊂ dom(h). Suppose that the
sequence is unbounded, without loss of generality we can consider ‖xk‖ → ∞ when k → ∞
and xk

‖xk‖
→ u. We see that u ∈ R(h). Indeed, take x ∈ Rn arbitrarily fixed, then for all

m ≥ ‖x‖, we have that xm ∈ Lh(h(x)) and making tm = 1
‖xm‖ , we have that tm xm → u when

m → ∞ and so u ∈ (Lh(h(x)))∞. Since x is arbitrary, then u ∈ R(h). From H1, ∃m ∈ N large
enough such that Lh(h(xm))

⋂
B(0, ||xm ||) 6= ∅. Now, taking y ∈ Lh(h(xm))

⋂
B(0, ||xm ||),

then h(y) ≤ h(xm) and ‖y‖ < ‖xm‖, and so y ∈ S(hm), which is a contradiction. Then the
sequence {xk}k∈N is bounded. If {xk} is bounded, the statement follows, because any cluster
point of {xk} is a minimizer of h.

If S(h) 6= ∅, take {xk}k∈N ⊂ dom(h) with limk→+∞ ||xk || = +∞ and lim xk

||xk ||
= u ∈ R(h).

The statement follows taking x̄ ∈ S(h) and k ∈ N such that ‖xk‖ > ‖x̄‖. �

Theorem 3.10. If h : Rn → R ∪ {+∞} is a proper and lsc, then H1 is equivalent to H2.

Proof. We need to prove only that H1 implies H2. Take {xk}k∈N ⊂ Rn with limk→+∞ ||xk || =
+∞. Since H1 holds and h is lsc, then from Theorem 3.9 we have that S(h) 6= ∅. The statement
follows taking x̄ ∈ S(h) and k ∈ N such that ‖xk‖ > ‖x̄‖. �

Since H1 and H2 are equivalent when h is proper and lsc, from now on, we shall refer to one of
them as just H.

3.1 The application to linear constrained quadratic minimization

We finish this section with an application of the introduced coerciveness ideas to the minimiza-
tion of a quadratic function over nonempty polyhedral set.

Here, we want to minimize h : Rn → R ∪ {+∞} defined as:

h(x) =

{
1
2 xT Ax + aT x + α if x ∈ C := {y : By ≤ b},

+∞ if x /∈ C
, (16)

where A is a n × n matrix, B is a p × n matrix, a ∈ Rn , b ∈ Rp and α ∈ R are known given
data.

Note that in (16), h : Rn → R ∪ {+∞} is proper and lsc on Rn .
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The following result will be used in the sequel.

Lemma 3.11. If infx∈Rn h(x) = β > −∞, then for each x ∈ C and each u ∈ R(h) fixed,
the application l : [0, +∞[→ R defined by l(t) = h(x + tu) is linear and l(t) ≥ l(0) for all
t ∈ [0, +∞[.

Proof. Take d ∈ R(h) arbitrarily fixed, then d ∈
(
Lh(h(x))

)∞ ∀x ∈ Rn . Now, take x ∈ C
arbitrarily fixed, then ∃{yk}k∈N ⊂ Lh(h(x)), ∃{tk}k∈N ↓ 0 such that tk yk → u when k → +∞.
So, u ∈ C∞ and −∞ < β ≤ h(yk) = 1

2 (yk)T Ayk +aT yk +α ≤ h(x) < +∞ ∀k ∈ N, implying
uT Au = 0. Since (x+tu) ∈ C ∀t > 0, then l(t) = h(x+tu) = h(x)+t

[ 1
2 xT Au+ 1

2 uT Ax+aT u
]

∀t > 0. So, the application l is linear on [0, +∞[. Here, l(t) ≥ l(0) ∀t ≥ 0, because l(t) =
h(x + tu) ≥ β > −∞ ∀t ≥ 0. �

Theorem 3.12. Consider the minimization of h as defined in (16). Then

inf
x∈Rn

h(x) = β > −∞

if and only if the assumption H holds.

Proof. If dom(h) is bounded, then H holds. If not, take {xm}m∈N ⊂ C such that ‖xm‖ → +∞
and xm

‖xm‖ → u ∈ R(h) when m → +∞. So, from Lemma 3.11, we have that h(x) ≤ h(x + tu)

∀t ≥ 0. From Proposition 2.3 in [2], we have that for any t > 0, there exists k ∈ N large enough
such that (xk − tu) ∈ C . Taking y = xk − tu, we have that h(y) ≤ h(y + tu) = h(xk). Note
that, for k large enough we have that ‖y‖ = ‖xk − tu‖ < ‖xk‖, and so H holds.

Conversely, the statement follows from the lsc of h, H and Theorem 3.9. �

Finally, we state that the well known Frank-Wolf Theorem is a consequence of Theorems 3.9 and
3.12.

Corollary 3.13. (Frank-Wolf Theorem). Consider the minimization of h as defined in (16). If h
is bounded below, then S(h) 6= ∅.

4 COERCIVENESS FOR EQUILIBRIUM PROBLEMS

In the Introduction, we showed that the solution set of EP can be written as an intersection of
a set family, where the index set is the set K , and, for each y ∈ K , the respective set is the
0-level set of the function f y (4). In other words, it follows that x̄ ∈ S(E P) (3) if and only if
x̄ ∈

⋂

y∈K

L f y (0).

Now, we present the contents of the Ky Fan’s Lemma.

Lemma 4.1. (Lemma 1 in [9], Ky Fan’s Lemma). Given Y 6= ∅ and for each y ∈ Y consider
C(y) as a closed set. If the following two conditions hold:
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(C1) For any finite subset {x1, . . . , xq} ⊂ Y : co{x1, . . . , xq} ⊂
q⋃

i=1

C(xi ),

(C2) C(x) is compact for at least some x ∈ Y ,

then
⋂

y∈Y

C(y) 6= ∅.

In the sequel, let us denote EP by EP(f,K) and consider the following assumptions for the func-
tion f .

(f0) f y is lsc ∀y ∈ K ,

(f1) For any finite set {x1, . . . , xq} ⊂ K and for any x ∈ co{x1, . . . , xq}:

max
i=1,...,q

f (x, xi ) ≥ 0.

Remark 4.2. We point out that assumptions f0 and f1 are related to the Ky Fan’s Lemma. Indeed,
taking Y = K and C(y) = L f y (0) for each y ∈ Y

1. Assumption f1 is equivalent to condition C1.

2. Assumption f0 implies that C(y) is a closed for each y ∈ Y .

3. If K is convex, f (x, x) ≥ 0 for each x ∈ K , and the function fx : Rn → R ∪ {+∞}
defined by

fx (y) =

{
f (x, y) if y ∈ K
+∞ if y /∈ K

(17)

is quasi-convex, then f1 holds, as well as C1.

Given EP(f,K), we introduce the coerciveness notion for it, using the notation of the previous
section, as follow.

Definition 4.3. We say that EP(f,K) is:

1. Strong coercive if there exist y ∈ K such that f y is strong coercive.

2. Inf-compact if there exist y ∈ K such that f y is Inf-compact.

3. Level bounded if there exist y ∈ K such that f y is level bounded.

4. Coercive if there exist y ∈ K such that L f y (0) is bounded.

Remark 4.4. We can find in the literature some extensions of classical coerciveness ideas that
were introduced in the setting of the Variational Inequality Problem (VIP), which is defined by
the set K and the operator T , and consists of

VIP(T,K): Find x ∈ K such that 〈T (x), y − x〉 ≥ 0 for all y ∈ K .

Pesquisa Operacional, Vol. 33(2), 2013



“main” — 2013/8/2 — 16:24 — page 210 — #12

210 FROM WEIERSTRASS TO KY FAN THEOREMS AND EXISTENCE RESULTS

We cited a couple of the these developed coerciveness ideas by applying recession techniques to
the operator T : K ⊂ X → X∗ (here, X∗ denote the dual topological space of X ):

1. Harker and Pang [11] consider the following condition for some ȳ ∈ K

lim
‖x‖→+∞, x∈K

〈T (x), x − ȳ〉

‖x‖
= +∞ (18)

2. Guo and Yao [10] consider another condition for some ȳ ∈ K

lim inf
‖x‖→+∞, x∈K

〈T (x), x − ȳ〉 > 0 (19)

The following trivial result is given without proof.

Lemma 4.5. Given VIP(T,K), consider conditions (18) and (19). Take f (x, y) = 〈T (x), y − x〉,
it follows that

1. Condition (18) implies that EP(f,K) is strong coercive.

2. Condition (19) implies that EP(f,K) is level bounded.

Existence results for EP(f,K) with K compact have been introduced for the first time in 1972,
with the formulation of the famous Minimax Theorem by Ky Fan (see [8]). In the same year,
Brezis, Nirenberg and Stampacchia extend the Minimax Theorem to non compact sets (see [7])
using the following assumption regarding f : K × K → R:

(BNS) there exists a nonempty compact subset L of Rn and ȳ ∈ L ∩ K such that for every
x ∈ K \ L , f (x, ȳ) < 0.

As a consequence, we have the following result.

Lemma 4.6. Given EP(f,K).

1. If K is compact, then EP(f,K) is strong coercive.

2. If BNS holds, then EP(f,K) is coercive.

Recall that R(h) (15) was set as an upper bound to the recession cone of the solution set of the
minimization problem. As the solution set of EP(f,K) is the intersection of L f y (0), for all y ∈ K ,
analogous to R(h) we define

RE( f ) =
⋂

y∈K

(
L f y (0)

)∞
. (20)

The following Lemma is given for completeness.

Lemma 4.7. Given EP(f,K). If f0 is fulfilled, then the following statements hold.

Pesquisa Operacional, Vol. 33(2), 2013



“main” — 2013/8/2 — 16:24 — page 211 — #13

WILFREDO SOSA 211

1. If EP(f,K) is strong coercive, then EP(f,K) is Inf-compact.

2. If EP(f,K) is Inf-compact, then EP(f,K) is level bounded.

3. If EP(f,K) is level bounded, then EP(f,K) is coercive.

4. If EP(f,K) is coercive, then RE( f ) = {0}.

Theorem 4.8. Given EP(f,K) with K nonempty and closed, and assume that f0 and f1 hold. If
RE( f ) = {0}, then the solution set of EP(f,K), denoted by S(EP), is compact and nonempty.

Proof. Since S(E P) =
⋂

y∈K L f y (0),
( ⋂

y∈K L f y (0)
)∞ ⊂ R = {0} and f0 hold, we have that

S(E P) is closed and bounded and so it is compact. In order to prove that S(E P) is nonempty,
we define for each i ∈ N, Ki = {x ∈ K : ‖x‖ ≤ i}. Without loss of generality, we can consider
Ki 6= ∅ for all i ∈ N. The compactness of Ki , f0 and f1 imply that E P( f, Ki ) satisfies C1
and C2 of Ky Fan’s Lemma and so we can take xi ∈ S(E P( f, Ki )). Suppose that the sequence
{xi } is unbounded, without loss of generality, consider that ‖xi‖ → +∞ and xi

‖xi ‖
→ u when

i → +∞. Now take y ∈ K arbitrarily fixed, then

f (xi , y) ≥ 0 ∀i ≥ ‖y‖, and so {xi }i≥‖y‖ ⊂ L f y (0).

It implies that u ∈ (L f y (0))∞. Since y ∈ K is arbitrary, then 0 6= u ∈ R. This contradiction
implies that the sequence {xi } is bounded. Finally, any cluster point of {xi } is a solution of
EP(f,K). �

Before extending the assumption H to the setting of the Equilibrium Problems, we consider the
definition of function h : Rn → R ∪ {+∞} as

h(x) = sup
y∈K

f y(x). (21)

Note that −h(x) = infy∈K f (x, y) and − infx∈Rn h(x) = supx∈K infy∈K f (x, y).

Proposition 4.9. Given EP(f,K) and the definition of h as in (21). If K is compact and f satisfies
f0, then

E P( f, K ) has solution if and only if inf
x∈Rn

h(x) ≤ 0.

Proof. Let x̄ be a solution of EP(f,K), then we have that f (x̄, y) ≥ 0. Thus, infy∈K f (x̄, y) ≥ 0
and so − infx∈Rn h(x) = supx∈K infy∈K f (x, y) ≥ 0.

Conversely, from f0 the application h is lsc. On the other hand, K compact implies that exists
x̄ such that 0 ≤ − infx∈Rn = −h(x̄) = infy∈K f (x̄, y) and so x̄ is solution of EP(f,K). �

If we replace the compactness of K by the assumption H for the function h, we have the following
result that is given without proof, since it is a direct consequence of Proposition 4.9.

Theorem 4.10. Given EP(f,K). If f satisfies f0 and h defined as in (21) satisfies H, then EP(f,K)
has solution if and only if infx∈Rn h(x) ≤ 0.
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Given f : K × K → R, we consider for each x ∈ K the following sets, called Lower Diagonal
level sets of the function f .

L D f (x) := {y ∈ K : f (x, y) ≤ 0}.

Note that, if x /∈ L f y (0), then y ∈ L D f (x).

Now, we are able to extend the assumptions H (introduced for Optimization Problems) to an
assumption for Equilibrium problems as follows:

(F1) ∀{xk}k∈N ⊂ K with lim ||xk || = +∞ and lim xk

||xk ||
= u ∈ RE( f ), there exists m ∈ N

such that L D f (xm)
⋂

B(0, ||xm ||) 6= ∅.

(F2) ∀{xk}k∈N ⊂ K with lim ||xk || = +∞, there exists m ∈ N such that

L D f (xm)
⋂

B(0, ||xm ||) 6= ∅.

Theorem 4.11. Given a nonempty set K and f : K × K → R. The assumptions F1 and F2 are
equivalent.

Proof. We need only to show that F1 implies F2. Indeed, take {xk}k∈N ⊂ K with lim ||xk || =
+∞. Without loss of generality, we can consider that lim xk

||xk ||
= u. If u ∈ RE( f ), then

the statement follows from F1. In other case, u /∈ RE( f ), so there exists y ∈ K such that
u /∈ (L f y (0))∞. It implies that there exists N ∈ N such that ∀k ≥ N , xk /∈ L f y (0). Finally, we
can take k large enough such that ‖y‖ < ‖xk‖ and y ∈ DL f (xk). �

Since F1 and F2 are equivalent, then hereafter we refer to one of them as just F.

The notion of pseudo-convexity for functions in the setting of real vectorial spaces (without
topological structure) appears in [13] as follows, given a function h : Rn → R ∪ {+∞}, we say
that f is pseudo-convex if for all (x, y) ∈ Rn × Rn and all t ∈]0, 1[: h(t x + (1 − t)y) ≥ f (x)

implies h(t x + (1 − t)y) ≤ f (y). So, now we consider the following assumption for f .

(f1’) For all x ∈ K , fx is pseudo-convex and f (x, x) ≥ 0.

It is easy to see that convexity implies pseudo-convexity and pseudo-convexity implies quasi-
convexity. But, the converses are not true.

Theorem 4.12. Given f satisfying f0, f1’ and let K be a nonempty closed convex set. If F holds
then EP(f,K) has solutions.

Proof. From f0, f1’ and the compactness of Ki := {x ∈ K : ‖x‖ ≤ i} we have from Ky
Fan’s Lemma that the Equilibrium Problem defined by f and Ki (E P( f, Ki )) has solutions for
all i ∈ N (without loss of generality, we can consider that Ki 6= ∅). Take a solution xi of
E P( f, Ki ).

If the sequence {xi } is unbounded, without loss of generality, we can consider ‖xi‖ → +∞,
when i → +∞. So, from assumption F, there exists m ∈ N such that L D f (xm)

⋂
B(0, ||xm ||)
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6= ∅. Take y ∈ L D f (xm)
⋂

B(0, ||xm ||), then f (xm, y) ≤ 0 and ‖y‖ < ‖xm‖. Now taking
w ∈ K arbitrary fixed, there exists t ∈ ]0, 1[ such that wt = tw + (1 − t)y ∈ Km . Then,
f (xm, wt ) ≥ 0 ≥ f (xm, y), from f1’ we have 0 ≤ f (xm, wt ) ≤ f (xm, w). Since w ∈ K is
arbitrary, we have that xm is a solution of EP(f,K).

If {xi } is bounded, from f0, we have that any cluster point of {xi } is solution of EP(f,K). �

Finally consider the following problem:

Let U ⊂ Rm and V ⊂ Rn be two nonempty convex polyhedral sets; let L : U × V → R be the
Lagrangian function defined by

L(x, y) =
1

2
〈x, Px〉 −

1

2
〈y, Qy〉 − 〈y, Sx〉, (22)

where S is a real matrix of order (n, m), and P (resp. Q) is a real symmetric matrix of order
(m, m) (resp. (n, n)). We are interested in solving the Saddle Point Problem (SPP) formulated as
follows:

find (x̄, ȳ) ∈ U × V such that L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) ∀(x, y) ∈ U × V . (23)

SPP(L,U,V) is a particular case of the Equilibrium Problem. Indeed, let us consider K = U × V ,
u = (x, y) and v = (w, z), and let us define the function f : K × K → R by

f (u, v) = L(w, y) − L(x, z).

We now consider the following equilibrium problem

find ū ∈ K such that f (ū, v) ≥ 0 for all v ∈ K . (24)

Proposition 4.13. (x̄, ȳ) is a solution of SPP(L,U,V) (23) if, and only if, ū = (x̄, ȳ) is a solution
of EP(K,f) (24).

Take

A =

(
P 0
0 Q

)

and B =

(
0 St

−S 0

)

We notice that A is a symmetric matrix and Bt = −B. One can verify that K is a polyhedral set
and

f (u, v) =
1

2
〈v, Av〉 −

1

2
〈u, Au〉 + 〈u, Bv〉. (25)

Lemma 4.14. Given L as defined in (22) and f as defined in (25). If U ⊂ Rn and V ⊂ Rm are
nonempty convex polyhedral sets and K = U × V ⊂ Rn+m, then the following statements are
equivalent.

1. infx∈U supy∈V L(x, y) = supy∈V infx∈U L(x, y) ∈ R.

2. infv∈K supu∈K f (u, v) = 0 = supu∈K infv∈K f (u, v).
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3. supu∈K infv∈K f (u, v) = 0.

4. infv∈K supu∈K f (u, v) = 0.

Theorem 4.15. Given EP(f,K) as defined in (24). It follows that

EP(f,K) has solutions if and only if sup
u∈K

inf
v∈K

f (u, v) = 0.

Proof. We only need to prove that supu∈K infv∈K f (u, v) = 0 implies that EP(f,K) has so-
lutions. Indeed, take h : Rn+m → R ∪ {+∞} defined by h(u) = supv∈K f v(u). Note that
infu∈Rn+m h(u) = − supu∈K infv∈K f (u, v) = 0. The statement follows from Theorem 4.10,
if we prove that H holds. By contradiction, there exists {uk} ⊂ dom(h) with ‖uk‖ → +∞
and uk

‖uk‖
→ d ∈ R(h), such that for all k we have that Lh(h(uk) ∩ B(0, ‖uk‖) = ∅, i.e., for

each k we have that h(u) > h(uk) for all ‖u‖ < ‖uk‖. From Proposition 2.3 in [2], take t > 0
such that for k large enough ‖uk − td‖ < ‖uk‖, uk − td ∈ K , then h(uk − td) > h(uk).
Since h(v) = supu∈K f (u, v), then from the continuity of f , there exists v̄ ∈ dom(h) such
that h(uk − td) ≥ f (v̄, uk − td) > h(uk) ≥ f (v̄, uk). Taking u = uk − td , we have that
f (v̄, u) > f (v̄, u + td), but this is a contradiction to Lemma 3.11. �

Corollary 4.16. The Lagrangian function L (22) has saddle points on a polyhedral set U × V ⊂
Rn × Rm if and only if

inf
x∈U

sup
y∈V

L(x, y) = sup
y∈V

inf
x∈U

L(x, y) ∈ R.
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