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ABSTRACT. The knapsack problem is basic in combinatorial optimization and possesses several variants
and expansions. In this paper, we focus on the multi-objective stochastic quadratic knapsack problem with
random weights. We propose a Multi-Objective Memetic Algorithm With Selection Neighborhood Pareto
Local Search (MASNPL). At each iteration of this algorithm, crossover, mutation, and local search are ap-
plied to a population of solutions to generate new solutions that would constitute an offspring population.
Then, we use a selection operator for the best solutions to the combined parent and offspring popula-
tions. The principle of the selection operation relies on the termination of the non-domination rank and the
crowding distance obtained respectively by the Non-dominated Sort Algorithm and the Crowding-Distance
Computation Algorithm. To evaluate the performance of our algorithm, we compare it with both an exact
algorithm and the NSGA-II algorithm. Our experimental results show that the MASNPL algorithm leads to
significant efficiency.

Keywords: non-dominated sort algorithm, crowding-distance, gradient algorithm, memetic algorithm with
selection neighborhood pareto local search.

1 INTRODUCTION

Knapsack problems are widely studied general combinatorial optimization problems that are use-
ful models for modeling many real-world problems in a variety of fields. The canonical version
(KP) of this class of problems is NP-hard and, given a set of items, each with positive weight
and profit, and a knapsack of fixed positive capacity, it consists of choosing a subset of items that
fit in the knapsack and of maximum total profit. For instance, suppose a firm has a fixed budget
for investment in several projects, each of which has a budget, and its implementation involves
a payoff. The problem for decision-makers is to select a subset of projects to invest in so that
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2 A HYBRIDIZED MULTI-OBJECTIVE MEMETIC ALGORITHM

the total profit of all chosen projects is maximum and the total budget invested in them does not
exceed the available budget.

Two fine monographs are entirely devoted to knapsack problems in their different versions and
variants. The first one, by Martello & Toth (1990), explicitly describes and comments in great
detail on the algorithms and computer implementations of knapsack problems and contains, on
250 pages with 200 references, the main results in this field published during the three previous
decades. The second monograph, by Kellerer et al. (2004), contains more than 500 pages, with
about 500 references, two-thirds of which were published after the first monograph, which shows
the interest of researchers in this field. In addition to these fine works, surveys are regularly
published to update knowledge in the field. Cacchiani et al. (2022a,b), have recently proposed
a survey on knapsack problems and structured it into two parts. Part I is devoted to problems
whose goal is to optimally assign items to a single knapsack and review problems with special
constraints and relatively recent fields of investigation, like robust and bilevel problems. Part II
covers multiple, multidimensional, and quadratic knapsack problems, and includes a succinct
treatment of online and multiobjective knapsack problems.

Here we focus on the quadratic form of KP, known as the Quadratic Knapsack Problem (QKP).
Given a knapsack with a fixed capacity and a set of items, each item associated with a positive
integer weight, an individual profit, and a paired profit achieved if both items are selected, we aim
to choose a subset of items whose overall weight does not exceed the given knapsack capacity
that maximizes the overall profit. A well-known survey by Pisinger (2007) gave numerous details
about the problem and the resolution aspects. Gallo et al. (1980) introduced the quadratic knap-
sack problem and derived the first bounds by using the concept of “upper plane”. The authors
presented and discussed different uses of this concept in a branch-and-bound scheme for solving
such a problem. Aı̈der et al. (2022a) considered a branch and solve strategies-based algorithm
for solving large-scale quadratic multiple knapsack problems. They developed an enhanced fix
and solve solution procedure and embedded it in the local branching-based method, where the
branches reflect intensification and diversification search around a solution. The same authors
Aı̈der et al. (2022b) used the hybrid population-based algorithm (namely HBPA) to efficiently
solve the bi-objective quadratic multiple knapsack problem. Létocart et al. (2014) proposed, to
solve the 0-1 exact k-item quadratic knapsack problem, a fast and efficient heuristic method that
produces both good lower and upper bounds on the value of the problem in a reasonable time.
Specifically, it integrates a primal heuristic and a semidefinite programming reduction phase
within a surrogate dual heuristic. To solve the generalized quadratic multiple knapsack problem
(GQMKP), Zhou et al. (2022) have proposed an efficient hybrid evolutionary search algorithm
(HESA) that relies on a knapsack-based crossover operator to generate new offspring solutions,
as well as a feasible and infeasible adaptive tabu search to improve the new offspring solutions.
Other new features of HESA include a dedicated strategy to ensure a diversified and a high-
quality initial population and a streamlining technique to speed up the evaluations of candidate
solutions
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However, in real life, problems are non-deterministic, that is, some parameters are known without
precision at the time a decision must be made. These parameters can be modeled by continuously
or discretely distributed random variables, which turn the underlying problem into a stochastic
optimization problem. In this case, we refer to the work of Kosuch & Lisser (2011), who con-
sidered two models of stochastic knapsack problems with random weights. The first model is
an unconstrained problem, namely the Stochastic Knapsack Problem With Simple Recourse.
The authors proposed different solving methods for the corresponding relaxed problem as the
branch-and-bound algorithm, while the second, as a two or multi-stage problem that allows later
corrections of the decision made in advance. The authors proposed a method to calculate the up-
per and lower bounds. These bounds are used in the branch-and-bound framework. Kosuch et al.
(2017) studied the stochastic knapsack problem with expectation constraints and proposed to
solve the problem with the relaxed version of this problem using a stochastic gradient algorithm
to provide upper bounds for a branch-and-bound framework. Blado & Toriello (2021) considered
a two-stage stochastic multiple knapsack problem together with a set of possible disturbances
with known probability of occurrence and proposed two branch-and-price approaches to solve
it. For the same problem, Tönissen et al. (2021) used branch-and-price scheme and compared
two different decomposition approaches. Range et al. (2018) considered the stochastic knapsack
problem and combined the chance-constrained knapsack problem and the stochastic knapsack
problem with simple recourse. They formulated the resulting model as a network problem and
showed that it could be solved by a dynamic labeling programming approach for the shortest
path problem with resource constraints. Tönissen & Schlicher (2021) introduced the two-stage
stochastic 3D printing knapsack problem for which they provided a two-stage stochastic pro-
gramming formulation which they later reformulated into an equivalent integer linear program.
Song et al. (2018) studied the stochastic quadratic multiple knapsack problem with the objective
to find a solution with the best expected quality under all possible cases. The authors used the
recoverable robustness technique which consists of first finding a solution that is feasible for the
static associated problem, and then adjusting the solution according to the emerging stochastic
scenarios.

In this paper, we study the case where the item weights are random and are supposed to be
independent, normally distributed, with known mean and variance while the capacity and benefits
remain deterministic. This case entails the following problem: we cannot be sure that the chosen
items in advance (i.e., before the revelation of the actual weights) meet the knapsack capacity
constraint. We used a stochastic gradient algorithm via a convolution method, and we refer to
Andrieu et al. (2007) and Kosuch & Lisser (2009).

The Stochastic Quadratic Knapsack Problem (SQKP) is NP-hard. For solving such a problem,
exact and heuristic algorithms constitute two main and complementary solution methods in the
literature. On the one hand, the computing time needed to find an optimal solution by an exact
algorithm may become prohibitive for large instances. On the other hand, heuristic algorithms
aim to find satisfactory sub-optimal solutions (for too large problem instances) in an acceptable
computing time. For solving the Stochastic Quadratic Knapsack, Lisser & Lopez (2010) used the
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solution techniques based on semi-definite relaxations. Song et al. (2018) studied the stochastic
quadratic multiple knapsack problem with the objective to find a solution with the best expected
quality under all possible cases. The authors used the recoverable robustness technique which
consists to first find a solution that is feasible for the static associated problem, and then adjust
the solution according to the emerging stochastic scenarios.

Most real-world problems like scheduling, resource allocation,. . . have to simultaneously opti-
mize several criteria. These are called multi-objective optimization problems (MOOPs) and can,
in mathematical terms, be formulated as:

maxF(x) = ( f1(x), . . . , fm(x))T

subject to x ∈Ω,

(1)

where the integer m ≥ 2 is the number of objectives and the set Ω is the feasible set of decision
vectors, which is typically Ω⊆ Rn.

Our work is mainly inspired by the work of Chen & Hao (2016) who extended the single objective
quadratic multiple knapsack problem to a bi-objective quadratic multiple knapsack problem BO-
QMKP and proposed a hybrid two-stage HTS algorithm to approximate the Pareto front.

We consider a scenario where given the solutions in some space (of possible solutions), the so-
called decision space, which can be evaluated using the so-called objective functions, the goal
is to find a solution which the decision-maker can agree, and that is optimal in some sense.
Let u,v ∈ Rm, u dominates v if f j(u) ≥ f j(v), for all objective j and f j(u) > f j(v) for at least
one objective j ∈ {1, . . . ,m}. A solution x∗ ∈ Ω is Pareto Optimal (or efficient) to (1) if there
is no point x ∈ Ω such that x dominates x∗. F(x∗) is then called a Pareto Optimal (objective)
vector. In other words, any improvement in a Pareto optimal point in one objective must lead to
a deterioration in at least one other objective. The set of all the Pareto optimal points is called
the Pareto set PS, and the set of all the Pareto optimal objective vectors is the Pareto front PF.
It is well-known that a Pareto optimal solution to a MOP, under conditions, could be an optimal
solution for a scalar optimization problem in which the objective is an aggregation of all the
objective functions. Therefore, an approximation of PF can be decomposed into several scalar
objective optimization subproblems. This is a basic idea behind many traditional mathematical
programming methods for approximating PF.

Classical optimization methods (including multi-criteria decision-making methods) suggest con-
verting a multi-objective optimization problem into a single-objective optimization problem to
solve it. We were inspired by the methods used to solve the Multi-objective Capacitated Arc
Routing Problem (MO-CARP), for which Tang et al. (2009) proposed a memetic algorithm with
extended neighborhood search (MAENS), and Mei et al. (2011) developed a new Memetic Al-
gorithm (MA) called Decomposition-based Memetic Algorithm with Extended Neighborhood
Search D-MAENS. Shang et al. (2014) proposed another version of D-MAENS with two im-
provements consisting on the one hand in accelerating the convergence speed by the replacement
of the solutions immediately once an offspring is generated,referring to the steady-state evo-
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lutionary algorithm, and on the second hand in implementing elitism by using an archive to
maintain the current best solution in its decomposition direction during the search.

Zhang & Li (2007) suggested a multi-objective evolutionary algorithm based on decomposition
MOEA-D, that decomposes a multiobjective optimization problem into many scalar optimiza-
tion subproblems and optimizes them simultaneously, each subproblem being optimized by only
using information from its several neighboring subproblems. Bhuvana & Aravindan (2016) in-
troduced a Preferential Local Search mechanism to fine-tune the global optimal solutions further,
and an adaptive weight mechanism for combining multiple objectives. Kim & Liou (2012) pro-
posed a novel fitness sharing method for Multi-Objective Genetic Algorithm by combining a
new sharing function and sided degradations in the sharing process, with preference to either
of two close solutions. Arshad et al. (2009) presented a sequence based genetic algorithm, for
the symmetric traveling salesman problem, where a set of sequences are extracted from the best
individuals, which are used to guide the search and some procedures are applied to maintain the
diversity by breaking the selected sequences into sub tours if the best individual of the population
does not improve.

Some of these ideas have been integrated into NSGA-II to get at a new memetic algorithm for
solving multi-objective optimization problems. Deb et al. (2002) suggested a non-dominated
sorting-based multi-objective evolutionary algorithm MOEA, called non-dominated sorting ge-
netic algorithm NSGA-II, and Chu & Yu (2018) proposed the crowding distance in the standard
NSGA-II.

The remainder of the paper is organized as follows. Section 2 presents a mathematical formula-
tion of the quadratic multi-objective stochastic knapsack problem with simple recourse. Section
3 then describes, in detail, our solution methods that aim to provide a high-quality approximation
of the Pareto front. We first introduce the NSGA-II algorithm, then sketch the greedy algorithm
and the principle of subpopulation construction before describing the steps of the non-dominated
sorting algorithm and detailing the crowding-distance algorithm. In the next subsection, we de-
scribe the memetic algorithm with local Pareto search by selection neighborhood. The numerical
performance of our proposed method is analyzed and evaluated in Section 4, before concluding
in Section 5.

2 MATHEMATICAL FORMULATION

We consider a stochastic quadratic multi-objective knapsack problem of the following form:
given a knapsack with a fixed weight capacity c > 0 as well as a set of n items, i = 1, . . . ,n, each
item has a weight that is not known in advance, i.e. the decision of which items to choose must be
made without the exact knowledge of their weights. Therefore, we treat the weights as random
variables and assume that the weights χi, i = 1, . . . ,n, are independent and normally distributed
with means µi > 0, and standard deviations σi, i = 1, . . . ,n. Moreover, each item i = 1, . . . ,n has
a fixed m-vector reward per weight unit ri = (r1

i , . . . ,r
m
i )

T , rk
i ∈ Z+,k = 1, . . . ,m, and to each

pair of items i and j, 1 ≤ i 6= j ≤ n, is associated a m-vector of joint rewards per unit of weight
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6 A HYBRIDIZED MULTI-OBJECTIVE MEMETIC ALGORITHM

ri j = (r1
i j, . . . ,r

m
i j)

T , rk
i j ∈Z+,k = 1, . . . ,m . The choice of a reward per unit weight can be justified

by the fact that the value of an item often depends on its weight, which is not known in advance.

In case of overweight, items must be removed, and a penalty d must be paid for each unit of
weight unwrapped. Our goal is, therefore, to minimize the total penalty.

The selection of the item i is indicated by a binary decision variable xi which takes the value 1 if
item i is included in the selection and 0 otherwise.

The Multi-objective Stochastic Quadratic Knapsack Problem can be mathematically formulated
as follows:

2.1 Stochastic Quadratic Knapsack Problem with simple recourse

max
x∈{0,1}n

E
[n−1

∑
i=1

n

∑
j=i+1

r(k)i j xix j(χi +χ j)
]
+E
[ n

∑
i=1

r(k)i xiχi

]
−dE

[ n

∑
i=1

xiχi− c
]+

,k = 1, . . . ,m. (2)

Equation (2) aims to maximize the total profit of all assigned objects.

The special case when k = 2 is called bi-objective binary knapsack problem and is denoted by
0-1 BOKP.

2.2 Constrained Knapsack Problem

A. Expectation Constrained Knapsack Problem max
x∈{0,1}n

E
[n−1

∑
i=1

n

∑
j=i+1

rk
i jxix j(χi +χ j)

]
, k = 1, . . . ,m (3.1)

s.t. E
[
1R+

(
c−g(x,χ)

)]
≥ p. (3.2)

(3)

B. Chance Constrained Knapsack Problem
max

x∈{0,1}n
E
[n−1

∑
i=1

n

∑
j=i+1

rk
i jxix j(χi +χ j)

]
, k = 1, . . . ,m (4.1)

s.t. P
[
g(x,χ)≤ c

]
≥ p, (4.2)

(4)

where:

- P[A] denotes the probability of an event A,

- E[.] denotes the expectation,

- 1R+ denotes the indicator function of the positive real interval,

- g(x,χ) =
n

∑
i=1

xiχi,
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- d ∈ R+,

- p ∈ [0.5,1] is the prescribed probability.

In the formulation of the multi-objective stochastic quadratic knapsack problem with simple
recourse, the capacity constraint has been included in the objective function by using the penalty
function [.]+ and a penalty factor d > 0. In the case of an overload, items have to be removed and
a penalty d has to be paid for each unit of weight that is unpacked.

We write the objective function of the Stochastic Quadratic Knapsack Problem with simple
recourse as follows:

J(k)(x,χ) = E
[n−1

∑
i=1

n

∑
j=i+1

r(k)i j xix j(χi +χ j)
]
+E
[ n

∑
i=1

r(k)i xiχi

]
−dE

[ n

∑
i=1

xiχi− c
]+

, k = 1, . . . ,m. (5)

Since the function J is not differentiable, we present an approximation to its gradient, named
approximation by convolution. This is one of the two methods presented by Andrieu et al. (2007).

The basic idea of this method called,“Approximation By Convolution Method” is to approximate
the indicator function (1R+) by its convolution with a function :

ht(x) :=
1
t

h
(x

t

)
(6)

that approximates the Dirac Function when the parameter t goes to 0.

Let us consider a function h : R−→ R with the following properties:

a) h has a unique maximum at x = 0,

b) ∀x ∈ R, h(x)≥ 0,

c) ∀x ∈ R, h(x) = h(−x),

d)
+∞∫
−∞

h(x)dx = 1.

(7)

With any other function ρ : R −→ R and a small positive number t, the convolution of the two
functions ρ and h is defined as follows:

(ρ.ht)(x) =
1
t

+∞∫
−∞

ρ(y)h
(y− x

t

)
dy. (8)

The function (ρ.ht) is differentiable with:

(ρ.ht)
′(x) =

1
t2

+∞∫
0

ρ(y)h′
(x− y

t

)
dy =

1
t

h
(x

t

)
. (9)
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In case of ρ = 1R+ , we have:

(ρ.ht)(x) =
1
t

E
[ +∞∫
−∞

1R+(y)h
(x− y

t

)
dy
]
=

1
t

E
[ +∞∫

0

h
(y− x

t

)
dy
]

(10)

(ρ.ht)(x) = E
[
ρt(x)

]
(11)

ρt(x) =
1
t

E
[ +∞∫

0

h
(y− x

t

)
dy
]

(12)

Then,

(ρt(x))′(x) =
1
t2

+∞∫
0

h′
(x− y

t

)
dy =−1

t
h
(x

t

)
. (13)

Based on the method explained above, we get the following approximation ∇(Jt) of the gradient
of the function J:

∇(J(k)t )(x,χ) =
[
(r(k)1 χ1, . . . ,r

(k)
n χn)

T +
( n

∑
j=1
j 6=1

r(k)1 j (χ1 +χ j)x j, . . . ,
n

∑
j=1
j 6=n

r(k)n j (χn +χ j)x j

)T ]
−d
(
− 1

t
h
(g(x,χ)− c

t

)
.χ.
(
g(x,χ)− c

)
+1R+

(
g(x,χ)− c

)
.χ
)
,k = 1, . . . ,m.

(14)

Andrieu et al. (2007) and Kosuch & Lisser (2011) proposed various functions that may be chosen
for h. They computed for each function a reference value for the mean square error of the obtained
approximated gradient and compared them. It turned out that, the function :

h(x) =
3
4
(
1− x2)(1R+) (15)

offered the smallest of this value Andrieu et al. (2007).

Here the indicator function (11) is defined as:

(11) =

{
1 if 1≤ x≤ 1,
0 otherwise.

(16)

Based on the results of Kosuch & Lisser (2011), we get the following estimation of the gradient
of J:

∇(J(k)t )(x,χ) =
[
(r(k)1 χ1, . . . ,r

(k)
n χn)

T +
( n

∑
j=1
j 6=1

r(k)1 j (χ1 +χ j)x j, . . . ,
n

∑
j=1
j 6=n

r(k)n j (χn +χ j)x j

)T
]

−d.
(
− 3

4t

(
1−
(g(x,χ)− c

t

)2)
·11 ·

(g(x,χ)− c
t

)
.χ.
(
g(x,χ)− c

)
−1R+

(
g(x,χ)− c

)
.χ

)
,

k = 1, . . . ,m.

(17)
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2.3 Deterministic Equivalent Problem

The new random variable is defined as follows:

X :=
n

∑
i=1

xiχi, (18)

which is normally distributed with mean

µ̂i :=
n

∑
i=1

µixi, (19)

standard deviation

σ̂ :=

√
n

∑
i=1

σ2
i x2

i , (20)

density function

ϕ (x) =
1
σ̂

f
(

x− µ̂

σ̂

)
(21)

and cumulative distribution function

Φ(x) =z
(

x− µ̂

σ̂

)
. (22)

Cohn & Barnhart (1998) and Kosuch & Lisser (2009) proposed to rewrite the objective function
in a deterministic way by using the following calculations:

E
[
[X− c]+

]
=

∞∫
−∞

[X− c]+ ϕ (X)dX

=

∞∫
c

(X− c)ϕ (X)dX

=

∞∫
c

Xϕ (X)dX− c
∞∫

c

ϕ (X)dX

= µ̂

∞∫
c

ϕ (X) dX− σ̂2
∞∫

c

ϕ
′ (X)dX− c

∞∫
c

ϕ (X)dX

= σ̂2ϕ [(X)]∞c +(µ̂− c) [Φ(x)]∞c

= σ̂2ϕ (c)+(µ̂− c) [1−Φ(c)]

′ = σ̂ f
(

c−µ̂

σ̂

)
+(µ̂− c) ·

[
1−z

(
c−µ̂

σ̂

)]

(23)

Finally, we write the deterministic equivalent objective function as follows:

Jk
det(x) =

n−1

∑
i=1

n

∑
j=i+1

r(k)i j xix j(µi +µ j)+
n

∑
i=1

r(k)i µixi−d
[
σ̂ f
(c− µ̂

σ̂

)
− (c− µ̂)

[
1−z

(c− µ̂

σ̂

)]]
,

k = 1, . . . ,m.

(24)

Pesquisa Operacional, Vol. 42, 2022: 257386



10 A HYBRIDIZED MULTI-OBJECTIVE MEMETIC ALGORITHM

3 RESOLUTION METHOD

In the decomposition framework, the original MO-SQKP is first decomposed into many Single-
Objective Stochastic Quadratic Knapsack Problems (SO-SQKP). To be more precise, given the
objective vector

F(x) =
(

f 1(x), f 2(x), . . . , f m(x)
)T

, (25)

we include the capacity constraint in the objective function by using the penalty function [.]+ and
a penalty factor d > 0. This can be interpreted as follows: in the case where our choice of items
leads to a capacity excess, a penalty occurs per overweight unit.

Jk(x,χ) = E
[n−1

∑
i=1

n

∑
j=i+1

r(k)i j xix j(χi +χ j)
]
+E
[ n

∑
i=1

r(k)i xiχi

]
−d.E

[ n

∑
i=1

xiχi− c
]+

,

k = 1, . . . ,m.

(26)

3.1 Population initialization

The initial population is constructed according to the Greedy Constructive Heuristic. Initially,
the knapsack is empty. The heuristic includes the object with the highest value density relative to
the remaining available objects one by one to the knapsack. The Greedy Constructive Heuristic
for MO-SQKP examines relative value density vd(i,S) of an object i to select those to assign to
the knapsack. The value density vd(i,S) of an object i relative to a set of other objects is the sum
of the value of object i and its joint values with the objects in S divided by its weight Hiley &
Julstrom (2006):

vd(i,S) =

(
ri +∑ j∈S ri j

)
wi

(27)

Greedy Constructive Heuristic

1: Input: r∗: Quadratic reward.
2: r: linear reward.
3: w: weights of objects.
4: C: Capacity of knapsack.
5: Output: A greedy solution
6: S←− all objects
7: knapsack←− /0
8: while S 6= /0 do
9: b←− object with maximum vd (b,S)

10: if wb ≤C then
11: add b to knapsack;
12: C =C−wb;
13: end if
14: remove b from S;
15: end while
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Subpopulation construction First, we need to manipulate our reward par objective function
to create a new individual in the population. To do that, we need a vector reward V at each
iteration. This vector reward V represents the ratio of how we want to manipulate and favorite
the objective function. For instance, if we want to favorite only the first objective function, then
the vector reward look like V = (1,0,0, ...,0) where each value in V will multiply by the reward,
i.e.

new rewardsm =V (m)∗ rewardm, where k = 1, . . . ,number o f ob jectives. (28)

For the first number o f ob jectives population, we want to favorite the mth objective function by
giving 1 to mth element of V and 0 elsewhere. Then we send this new rewards to our greedy
algorithm in order to get a new individual. For the rest of the population, first we evaluate the
previous individuals that are already in our population, then we search for the maximum value
max∗ from all the values evaluated. We define a new vector max by

vector max =
(max( f ∗1 )

max∗
,

max( f ∗2 )
max∗

, ...,
max( f ∗m)

max∗

)
, (29)

where f ∗i is a vector of evaluation of the ith objective across all the individuals. Based on
vector max we create a new vector reward:

V =
vector max

∑vector max
. (30)

We use V as above to create a new rewards and send it to our greedy algorithm in order to get a
new individual. This process is repeated until we generate a population of size N.

3.2 NSGA-II Algorithm

Our resolution method is inspired by the non-dominated sorting genetic algorithm II (NSGA-II).
NSGA-II is one of the most popular multi-objective optimization algorithms, it is more efficient
than its previous version NSGA and tends to spread quickly. The main advantage is the strategy
of preserving the diversity of solutions. NSGA-II can be detailed as follows:

Step 1. Population initialization: The population is initialized based on the problem range and
constraints.

Step 2. Non dominated sort: The initialized population is sorted based on non-domination. The
fast sort algorithm is described in Section 3.3.

Step 3. Crowding distance: The Crowding distance algorithm is described in Section 3.4.

Step 4. Selection: The selection of individuals is carried out using a binary tournament selection
with the crowded-comparison operator.

Step 5. Genetic Operators: Real coded GA using simulated binary crossover and polynomial
mutation.

Step 6. Recombination and selection: The offspring population and the current generation popula-
tion are combined, and the individuals of the next generation are set by selection. The new gener-
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Subpopulation construction

1: Input: N: Population size.
2: rq: Quadratic rewards.
3: r: Linear rewards.
4: w: Weights of objects.
5: C: Capacity of knapsack.
6: Output: P: Population of size N.
7: P←− /0
8: for i = 1 to number o f ob jectives do
9: V = Zeros(1,number o f ob jectives)

10: V(i)=1
11: for j = 1 to number o f ob jectives do
12: new rewards j

q =V ( j)∗ r j
q

13: new rewards j =V ( j)∗ r j

14: end for
15: X ←− Greedy Construction(new rewardsq, new rewards,w,C)
16: P←− P∪X
17: end for
18: while |P| ≤ N do
19: max∗=maximum value obtained from evaluation of P
20: for j = 1 to number o f ob jectives do
21: vector max( j) = maximum value of f j across all individuals in P
22: end for
23: V =

vector max
∑vector max

24: for j = 1 to number o f ob jectives do
25: new rewards j

q =V ( j)∗ r j
q

26: new rewards j =V ( j)∗ r j

27: end for
28: X ←− Greedy Construction(new rewardsq, new rewards,w,C)
29: P←− P∪X
30: end while

ation is filled by each front subsequently until the population size exceeds the current population
size.

3.3 Non-dominated Sort Algorithm

In this section, we develop the two steps of the Nondominated Sorting Algorithm whose
main objective is to sort all individuals in the population according to different levels of
non-dominance.

The first step aims at finding the first level of non-dominated solutions in the population of
size N. This requires comparisons of each solution, for each objective function, with all the
other solutions in the population to check if it is dominated. The above process (Lines 3-17 of
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Algorithm 1) is repeated until all non-dominated members of the first front in the population are
found. When all individuals on the first non-dominated front are found, the process proceeds to
the next step to find all individuals on each subsequent non-dominated front.

Let p be any solution and denote by :

- ηp: an indicator that counts the number of solutions that dominate p.

- Sp : the set of solutions that p dominates.

After the first step of the non-dominated sorting procedure, the first non-dominated level is found
and the two entities are computed for each solution. Then, all the solutions of the first non-
dominated level will have their dominance number set to zero ηp = 0.

Then, in the second step of our procedure, we reduce the dominance number by one for each
member q visited by each solution p with ηp = 0 of sets Sp. After that, we add, to the separate
list Q, any member q if its dominance count becomes zero ηq = 0. These members belong to
the second non-dominated level. We continue the above procedure with each member of Q and
identify the third front. This process continues until all levels are identified. At this point, the
solution is assigned a non-dominated level and will never be visited again.

3.4 Crowding-Distance Algorithm

The crowding distance value of a solution provides an estimate of the density of solutions sur-
rounding a particular solution in the population. We calculate the average distance of two points
on either side of this point along each of the objectives. Figure 1 shows the computation of
the crowding distance of the ith solution, which is an estimate of the size of the largest cuboid
enclosing i without including any other point.

-

6 r r r r

r

r
i−1

i
i+1

Figure 1 – Computation of the Crowding distance.

The crowding-distance computation requires sorting the population according to each objective
function value in non-decreasing order. The crowding distance value of a particular solution
is the average distance of its two neighboring solutions. Then, for each objective function, the
boundary solutions with the lowest and the highest objective function values are given an infinite
crowding distance value. All other intermediate solutions are assigned a distance value equal to
the absolute normalized difference in the function values of two adjacent solutions. This process
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Algorithm 1 Non-dominated Sort Algorithm

1: Input: N: Size of the Population;
2: Input: P: initial Population
3: for each p ∈ P do
4: Sp = /0
5: ηp = 0
6: for each q ∈ P do
7: if p� q then . if p dominates q
8: Sp = Sp∪{q} . Add q to the set of solutions dominated by p
9: else if q� p then

10: ηp = ηp +1 . Increment the domination counter of p
11: end if
12: end for
13: if ηp = 0 then . p belongs to the first front
14: prank = 1
15: F1 = F1∪{p}
16: end if
17: end for
18: i = 1 . Initialize the front counter
19: while Fi 6= /0 do
20: Q = /0 . Used to store the members of the next front
21: for each p ∈ Fi do
22: for each q ∈ Sp do
23: ηq = ηq−1
24: if ηq = 0 then . q belongs to the next front
25: qrank = i+1
26: Q = Q∪{q}
27: end if
28: end for
29: end for
30: i = i+1
31: Fi = Q
32: end while

is done for each objective function. The overall crowding-distance value solution is computed by
adding the entire individual crowding-distance value corresponding to each objective function.

Algorithm 2 below outlines the Crowding-Distance Computation procedure of all solutions in a
non-dominated set P.
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Algorithm 2 Crowding-Distance Computation Algorithm

1: Input. m: number of objective functions;
2: Input: P: initial Population
3: L = |P| . Number of solutions in P
4: for each i do
5: P[i]distance = 0 . Initialize distance
6: end for
7: for each objective function m do
8: P = Sort(P,m) . Sort using each objective value
9: P[1]distance = P[L ]distance = ∞ . Boundary points are always selected

10: for i = 2 to L −1 do . For all other points

11: P[i]distance = P[i]distance +
P[i+1].m−P[i−1].m

f m
max− f m

min
12: end for
13: end for

Note that P[i].k refers to the kth objective function value of the individual i in the set P and f k
max

and f k
min are respectively the maximum and the minimum values of the kth objective function.

At this stage, all population members in the set P are assigned a distance metric. A solution with
a smaller value of this distance measure is, in some sense, more crowded by other solutions. This
is exactly what we compare in the proposed Crowded-comparison operator above.

Crowded-comparison operator The crowding comparison operator guides the selection pro-
cess at different stages of the algorithm towards a uniformly spread Pareto optimal front. The
crowding distance is introduced only when it is a must to select individuals of the same non-
domination rank, i.e., the crowding distance is a criterion for selecting individuals of the same
rank.

Suppose that each individual i in the population has two attributes:

• non-domination rank (irank),

• crowding distance (idistance).

The individuals are selected by using a binary tournament selection with crowded comparison-
operator.

• If (xrank)< (yrank).

• If x and y belong to a same front Fi and (xdistance)> (ydistance).

• If x and y are both solutions and are in different ranks (xrank) 6= (yrank), a solution with
lower rank is selected.
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• If x and y are both solutions and are in different ranks (xrank) = (yrank), a solution that is
located in a higher crowded region is selected.

• If x and yare both solutions and are in a same rank then a solution from greater crowded
space will be selected.

3.5 Selection Neighborhood Pareto Local Search (SNPLS) Algorithm

Algorithm 3 Selection Neighborhood Pareto Local Search SNPLS Algorithm

1: Input: m, the number of objectives;
2: Input: Q, the set of new offspring.
3: Output: Procedure to compute one-step Local Search to improve Iold to Inew.
4: for k = 1 to m do
5: Compute ωk with respect to Iold ;
6: Compute adaptive weight λ k with respect to Iold ;
7: end for
8: Construct Single objective function J(x,λ );
9: Inew← Gradient algorithm J(x,λ ) of Iold ;

10: Evaluate Fitness (Inew);
11: if Inew is better than Iold then
12: return Inew;
13: else return Iold ;
14: end if

In the decomposition framework, the original MO-SQKP is first decomposed into many SO-
SQKP. To be specific, given the objective vector F(x) =

(
f 1(x), f 2(x), . . . , f m(x)

)T and weight
vector λ = (λ 1, . . . ,λ m)T , where the sum of weights vector should be equal to 1, the objective
function of a subproblem is stated as:

J(x,χ) =
m

∑
k=1

λ
(k) f (k)(x) (31.1)

m

∑
k=1

λ
(k) = 1 (31.2)

λ (k) ≥ 0, k = 1, . . . ,m (31.3)

(31)

We can write J(x,χ) as follows:

J(k)(x,χ) =
m

∑
k=1

λ
(k).

[
E
[n−1

∑
i=1

n

∑
j=i+1

r(k)i j xix j(χi +χ j)
]
+E
[ n

∑
i=1

r(k)i xiχi

]
−dE

[ n

∑
i=1

xiχi− c
]+]

, (32)
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and an approximation of the gradient of the function J(x,χ) is given by:

∇(J(k)t )(x,χ) = λ
(k)

[[
(r(k)1 χ1, . . . ,r

(k)
n χn)

T +
( n

∑
j=1
j 6=1

r(k)1 j (χ1 +χ j)x j, . . . ,
n

∑
j=1
j 6=n

r(k)n j (χn +χ j)x j

)T
]

−d.
(
− 3

4t

(
1−
(g(x,χ)− c

t

)2)
·11 ·

(g(x,χ)− c
t

)
.χ.
(
g(x,χ)− c

)
−1R+

(
g(x,χ)− c

)
.χ

)]
,

k = 1, . . . ,m.

(33)

The weight vectors are calculated based on the value of the Euclidean norm and parameters ωi

as follows:

λ
k =

ωk

∑
m
i=1 ω i , (34)

where:

- ωk is given by:

ω
k =

f k(x)
‖ f (x)‖

, (35)

- m is the number of objective functions.

- f k(x) is the value of the kth objective function of a solution x,

- ‖ f (x)‖ is the Euclidean norm, given by:

‖ f (x)‖=
√

( f 1(x))2 + . . .+( f m(x))2 (36)

Once the individual weights are determined for all the objectives, they are combined together
into a single objective F as follows:

F = λ
1 f 1 +λ

2 f 2 + . . .+λ
m f m (37)

We then apply local gradient algorithm to compute the new local solution xp+1 from the current
solution xp.

After that, the Evaluate Fitness is done to new solution because the value of fitness is our param-
eter of comparison between the new and the old solutions. Finally, we choose a solution that has
the best fitness.

We repeat the above process for each offspring.

After having built these twice Algorithms (Non-dominated Sort Algorithm,Crowding-Distance
Computation Algorithm) including a crowded comparison operator and determining different
parameters (irank) and (idistance), we are now ready to describe the Memetic algorithm.
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Algorithm 4 Gradient algorithm

1: Choose x0 ∈ Xad = [0,1]n

2: At step p, X p = (X p
1 , . . . ,X

p
n ) of χ according to its normal distribution

3: Update xp as follows: xp+1 = xp + ε prp . where rp = ∇xJ(xp,χ p) and (ε p)p∈N is the step
size.

4: for i = 1 to n do
5: if xp+1

i � 1 then
6: Set xp+1

i = 1
7: if xp+1

i ≺ 0 then
8: Set xp+1

i = 0
9: end if

10: end if
11: end for

3.6 Memetic Algorithm with Selection Neighborhood Pareto Local Search

In this section, we detail our Memetic Algorithm with Selection Neighborhood Pareto Local
Search Algorithm MASNPL for MO-SQKP, including initialization, crossover, and local search.

Then, the fitness of each individual is evaluated and Non-dominated Sorting is applied to assign a
non-domination rank irank equal to its non-domination level, and Crowding-Distance is computed
for each individual i in the population idistance.

These two parameters, irank and idistance, are used to select individuals in the most crowded region
and maintain the diversity of solutions on the Pareto front. Then, binary tournament selection is
applied to choose the parents, after which, crossover and mutation operators are performed to
generate new candidate solutions, i.e., the offspring population of size N.

Crossover operator Select randomly two parents (chromosomes) P1 =
{

x1
1,x

1
2,x

1
3, . . . ,x

1
n
}

and P2 =
{

x2
1,x

2
2,x

2
3, . . . ,x

2
n
}

from the current population. A random crossover point is se-
lected. Hence, two substrings are generated before and after cut point in each of the parent
(chromosomes). At this cut, the genetic information to the left (or right) of the point is swapped
between the two parents (chromosomes) to produce two offspring chromosomes (children).

Copy first substring from P1 and copy the second substring from P2 and insert as they are in
offspring 1.

Copy first substring from P2 and copy the second substring from P1 and insert as they are in
offspring 2.
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Algorithm 5 Memetic Algorithm With Selection Neighborhood Pareto Local Search (MASNPL)

1: Input: P: the current Population of size N;
2: Input: N: the size of the population;
3: Input: Q: the set of new offspring;
4: Input: N: the size of new offspring.
5: Initialize the population to size N;
6: Evaluate Fitness for every individual in the population of size N;
7: Apply Non-dominated Sort Algorithm (P,N);
8: Compute Crowding-Distance Computation Algorithm (P,N);
9: NG = 1;

10: while NG≤ NGmax do
11: Q = /0;
12: for k = 1 to P

2 do
13: Select Parents using Binary Tournament;
14: Apply the crossover operator to generate two new offsprings (Q1,Q2);
15: Apply Mutation operator on both (Q1,Q2) with probability Pm = 1

n ;
16: for j = 1 to 2 do
17: Q j←− the Selection Neighborhood Pareto Local Search (Q j);
18: Q = Q∪{Q j};
19: end for
20: end for
21: Rt = Pt ∪Qt ;
22: Apply Non-dominated Sort Algorithm (Rt);
23: Pt+1 = /0 and i = 1;
24: while (|Pt+1|+ |i|)≤ N do . until the parent population is filled
25: Crowding-Distance Computation (Fi); . calculate crowding-distance in Fi

26: Pt+1 = Pt+1∪Fi; . include i-th non-dominated front in the parent population
27: i = i+1 . check the next front for inclusion
28: end while
29: Sort Fi; . sort in descending order using crowded comparison operator
30: Pt+1 = Pt+1∪Fi[1,N−|Pt+1|]; . choose the first (N−|Pt+1|) elements of Fi

31: Qt+1 = Make New Population (Pt+1); . use selection, crossover and mutation to create
a new population (Qt+1)

32: NG = NG+1;
33: end while
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Mutation Mutation is an operator that applies changes randomly to one or more genes to
produce and introduce the diversity to a new offspring and is usually applied with a low
probability pm.

In the mutation stage, one individual is selected randomly from the current population, then it is
flipped from 0 to 1 or from 1 to 0. After that, this individual is inserted in the population. The
mutation probability is fixed to 0.95.

Tournament We select two individuals randomly from the current population. After that, there
is a competition amongst the selected individuals. The competition is used to determine the
individual with the highest fitness value to be used in the generation of the new population. The
individual winner has the best non-domination rank.

The next stage is to apply a single step of the SNPLS Algorithm on the new offspring. The
combined population (Rt = Pt ∪Qt) is formed where:

- Pt : is the parent population of size N.

- Qt : is the offspring population of size N.

- Rt : is the combined population of size 2N.

Non-dominated sorting and Crowding distance are applied to a combined population. Then, the
population Rt is sorted according to non-domination. Now, solutions belonging to the best non-
dominated set F1 are of the best solutions in the combined population and must be emphasized
more than any other solution in the combined population.

If the size of F1 equals N, we definitely add all members of the set F1 to the new population
Pt+1.

If the size of F1 is smaller than N, we definitely put all members of the set F1 in the new
population Pt+1. The remaining members of the population Pt+1 are chosen from subsequent
non-dominated fronts in the order of their ranking.

Thus, solutions from the set F2 are chosen next, followed by solutions from the set F3, and so
on.

The above process (Lines 17-20 of Algorithm 4) is continued until a final set of non-dominated
solutions of size N is obtained. The new population Pt+1 of size N is now used for selection,
binary tournament selection operator, crossover, and mutation to create a new population Qt+1

of size N. The above process (Lines 6-23 of Algorithm 4) is repeated until NGmax is obtained.
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4 NUMERICAL RESULTS

In this section, we present our numerical results. As the multi-objective stochastic quadratic
knapsack problem is not treated before, and in order to evaluate the performance of our resolution
method, we suggest comparing our algorithms firstly with an exact method, and secondly with
NSGA-II. The results of our comparison are presented in the following subsections.

Note that all our experiments are realized on an Intel core i5-4200U CPU machine with 1.60
Ghz and 4 Go of RAM.

4.1 Performance comparison of MASNPL and an exact method

To solve the multi-objective stochastic knapsack problem with simple recourse by an exact
method, we implement the equivalent deterministic problem already found and execute it on
randomly generated instances. Note that the comparison is performed for three examples, and
each algorithm is executed once. The results for each example are shown in the figures below.

The instances are created randomly with the parameters given below.

Example 4.1.1. .

• Number of objective functions: 2.

• Weights : uniformly distributed with mean 225 and variance 25.

• Rewards per weight: generated uniformly between 1 and 10.

• Number of objects is 50.

• Knapsack capacity is 9000.

• Penalty d; equal to 330.

• Number of generations for MASNP: 50.

The result of our comparison is presented graphically on Figure 2.

The figure shows the non-dominated solutions obtained by an exact method and our resolution
method (MASNPL algorithm). The CPU-time needed to obtain the final solution with an exact
method is: 52179,75 seconds (' 15 hours and 30 mn) and the total CPU-time with the MASNPL
algorithm is 41,62 seconds (less than a minute). MASNPL algorithm is, of course, faster than the
exact method and provides good quality solutions.
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Figure 2 – Comparison between Pareto Fronts of an exact algorithm and MASNPLfor 50 objects.

Example 4.1.2. .

• Number of objective functions: 2.

• Weights : uniformly distributed with mean 225 and variance 25.

• Rewards per weight: generated uniformly between 1 and 10.

• Number of objects is 20.

• Knapsack capacity is 3600.

• Penalty d; equal to 132.

• Number of generations for MASNP: 50.

The result of our comparison is presented graphically in Figure 3.

The figure shows the non-domination solutions obtained by an exact method and our resolution
method (MASNPL algorithm). The CPU-time needed to obtain the final solution with an exact
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Figure 3 – Comparison between Pareto Fronts of an exact algorithm and MASNPL for 20 objects.

method is: 2983,02 seconds ('49 minutes) and the total CPU-time with the MASNPL algorithm
is 43,69 seconds (less than a minute). MASNPL algorithm is, of course, faster than the exact
method and provides good quality solutions.

Example 4.1.3. .

• Number of objective functions: 2.

• Weights : uniformly distributed with mean 225 and variance 25.

• Rewards per weight: generated uniformly between 1 and 10.

• Number of objects is 15.

• Knapsack capacity is 2700.

• Penalty d; equal to 99.

• Number of generations for MASNP: 50.
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Figure 4 – Comparison between Pareto Fronts of an exact algorithm and MASNPLfor 15 objects.

The result of our comparison is presented graphically on Figure 4.

The figure shows the non-domination solutions obtained by an exact method and our resolution
method (MASNPL algorithm). The CPU-time needed to obtain the final solution with an exact
method is: 1175,48 seconds (' 20 minutes) and the total CPU-time with the MASNPL algorithm
is 35,91 seconds. MASNPL algorithm is, of course, faster than the exact method and provides
good quality solutions.

4.2 Performance comparison of MASNPL and NSGA-II

To compare our MASNPL algorithm and NSGA-II, we implemented these methods on MATLAB
and used the multi-objective stochastic quadratic knapsack instances created randomly with the
following common parameters:

• Weights : uniformly distributed with mean equal to 225 and variance equal to 25.

• Rewards per weight: generated uniformly between 1 and 10.

• Numbers of generations: 50 for MASNPL, and 2500 for NSGA-II.
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We iterate each algorithm 20 times to create a final population of size 50, and in each iteration,
the algorithms (MASNPL and NSGA-II) use the same parameters and the same instance created
above.

We calculate the value of the objective functions fi for each individual in the population. After
this, we sort the population into different levels of non-domination, and we assign the value of
the crowding distance to each individual in the population. For each iteration of the 20h runs, we
save the non-dominated solutions (rank equal to 1).

The next step of our comparison consists to merge all the non-dominated solutions already saved
and obtained by (MASNPL and NSGA-II) algorithm, then applying the non-domination sort
algorithm in order to sort (rank) the solutions merged into different non-domination levels and
attribute the Crowding-Distance values for each individual of the population merged by applying
the crowding distance algorithm.

Example 4.2.1. The parameters of this instance are:

• Number of objective functions: 2.

• Number of objects: 50.

• Knapsack capacity: 9000.

• Penalty d: 330.

Table 1 represents the results (number of non-dominated solutions) obtained by MASNPL and
NSGA-II for each test.

Table 1 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
MASNPL NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 10 0 1713,51311 3419,76764 100 0
2 6 0 1609,18844 3376,87798 100 0
3 10 0 1516,1261 3250,44791 100 0
4 20 5 1347,10586 2879,00458 80 20
5 2 0 1400,02226 2831,42838 100 0
6 5 0 1319,84907 2909,47836 100 0
7 5 0 1328,41828 2930,77582 100 0
8 6 1 1418,68944 2882,2089 85,71 14,28
9 5 1 1357,27806 2911,37711 83,33 16,67
10 16 2 1422,045 2757,8156 88,89 11,11

To evaluate the quality of the solutions obtained by applying the MASNPL and NSGA-II algo-
rithms, we use the ratio that determines the percentage of the number of non-dominated solutions
for each algorithm compared to the total number of 1-rank solutions.

Pesquisa Operacional, Vol. 42, 2022: 257386



26 A HYBRIDIZED MULTI-OBJECTIVE MEMETIC ALGORITHM

For the 10 tests, we note that for 6 tests, the 1 rank solutions obtained by the MASNPL algorithm
dominate the solutions obtained by the NSGA-II algorithm (the number of 1 rank solutions is
equal to 0) although the generation number for NSGA-II is 50 times the generation number for
the MASNPL algorithm.

For the rest of the tests, we can observe that:

• the number of non-dominated solutions obtained by the MASNPL algorithm is greater
than the number of non-dominated solutions obtained by the NSGA-II algorithm,

• the 1 rank solutions obtained by the MASNPL algorithm are more crowded than the
solutions obtained by NSGA-II, i.e., they are located in a more crowded region,

• in terms of CPU time, MASNPL is faster than NSGA-II.

According to these results, we can conclude that the MASNPL algorithm performs significantly
better than the NSGA-II algorithm.

Example 4.2.2. The parameters of this instance are:

• Number of objective functions: 2.

• Number of objects: 100.

• Knapsack capacity: 21000.

• Penalty d: 7520.

Table 2: represents the results (number of the non-domination solutions) obtained by the
(MASNPL and NSGA-II) algorithm for every test.

Table 2 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
(MASNPL) NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 4 0 2555,20082 4160,13939 100 0
2 1 1 2485,20063 4235,54793 50 50
3 3 0 2393,36046 4176,23395 100 0
4 8 0 2481,62 3965,26625 100 0
5 1 0 2501,27197 4039,40369 100 0
6 1 0 2578,42903 4144,85823 100 0
7 8 0 2270,357 4106,02298 100 0
8 1 0 2590,46484 8054,85057 100 0
9 1 0 2504,63287 4205,24089 100 0

10 16 0 2092,41251 3490,4851 100 0
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In Table 2, for the 10 tests, we note that in 09 tests, the 1 rank solutions obtained by MAS-
NPL dominate the solutions obtained by NSGA-II (no 1 rank solution), although the generation
number for NSGA-II is 50 times the generation number for the MASNPL algorithm.

In the remaining test, the number of non-dominated solutions obtained by MASNPL equals the
number of 1 rank solutions obtained by NSGA-II.

In terms of CPU time, for all tests, MASNPL is faster than NSGA-II.

According to these results, we can say that the MASNPL algorithm performs significantly better
than NSGA-II.

Example 4.2.3. The parameters of this instance are:

• Number of objective functions: 2.

• Number of objects: 200.

• Knapsack capacity: 40000.

• Penalty d: 1424.

Table 3: represents the results (number of the non-domination solutions) obtained by the
(MASNPL and NSGA-II) algorithm for every test.

Table 3 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
(MASNPL) NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 5 0 4298,38137 4627,86451 100 0
2 5 0 4329,33696 4577,69908 100 0
3 2 1 4286,61502 4587,7257 66,67 33,33
4 1 0 4457,91234 4567,6765 100 0
5 5 0 4040,51267 4342,15335 100 0
6 1 0 4341,55699 4465,75378 100 0
7 3 0 4451,06075 4527,91025 100 0
8 3 0 4537,64983 4554,9791 100 0
9 5 0 4267,92233 4471,04282 100 0
10 1 0 4479,37789 4662,25679 100 0

In Table 3, for the 10 tests, we note that in 09 tests, the 1 rank solutions obtained by MAS-
NPL dominate the solutions obtained by NSGA-II (no 1 rank solution), although the generation
number for NSGA-II is 50 times the generation number for the MASNPL algorithm.

In the remaining test, the number of non-dominated solutions obtained by MASNPL is twice the
number of 1 rank solutions obtained by NSGA-II.

In terms of CPU time, for all tests, MASNPL is faster than NSGA-II.
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According to these results, we can say that the MASNPL algorithm performs significantly better
than NSGA-II.

Example 4.2.4. The parameters of this instance are:

• Number of objective functions: 4.

• Number of objects: 50.

• Knapsack capacity: 9000.

• Penalty d: 330.

Table 4: represents the results (number of the non-domination solutions) obtained by the
(MASNPL and NSGA-II) algorithm for every test.

Table 4 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
(MASNPL) NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 66 26 1851,74066 2445,45638 71,74 28,26
2 31 2 1905,95985 2648,07941 93,94 6,06
3 71 22 1905,95985 2648,07941 76,34 23,65
4 69 19 1930,86798 2560,80004 78,41 21,59
5 29 9 1886,09592 2627,31683 76,31 23,68
6 14 31 1951,97476 2582,64445 36,84 68,69
7 97 10 1946,74633 2408,61901 90,65 9,34
8 13 5 1938,47225 2592,48961 72,22 27,78
9 1 13 2003,46515 2616,81209 7,14 92,86

10 9 11 1965,69301 2734,79297 45 55

In Table 4, for the 10 tests, we note that in 7 tests, MASNPL obtained more solutions of rank 1
than NSGA-II, although the generation number for NSGA-II is 50 times the generation number
for MASNPL. We also observe that the non-dominated solutions obtained by MASNPL are more
crowded (i.e., they are located in a greater crowded region) than the non-dominated solutions
obtained by NSGA-II.

In the remaining (3) tests, the number of non-dominated solutions obtained by MASNPL is less
than the number of the solutions of rank 1 obtained by NSGA-II, but the solutions of rank 1,
obtained by MASNPL, are more crowded than those obtained by NSGA-II.

In terms of CPU time, for all tests, MASNPL is faster than NSGA-II.

According to these results, we can conclude that the MASNPL algorithm performs significantly
better than NSGA-II.
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Example 4.2.5. The parameters of this instance are:

• Number of objective functions: 3.

• Number of objects: 100.

• Knapsack capacity: 21000.

• Penalty d: 752.

Table 5 represents the results (number of the non-domination solutions) obtained by the
(MASNPL and NSGA-II) algorithm for every test.

Table 5 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
(MASNPL) NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 18 6 3338,65774 4686,83084 75 25
2 1 0 3255,72489 4753,71708 100 0
3 17 1 3316,3073 4848,68752 94,44 5,55
4 10 1 3164,97535 4761,14919 90,91 9,09
5 0 2 3261,58644 4751,8666 0 100
6 18 6 3251,30331 4100,82273 75 25
7 1 0 3204,16986 4137,24102 100 0
8 17 1 3233,53408 4234,42546 94,44 5,55
9 10 1 3138,91231 4260,57573 90,91 9,09

10 1 0 3101,46999 4057,35701 100 0

In Table 5, for the 10 tests, we note that in 3, the solutions of rank 1 obtained by MASNPL dom-
inate those obtained by NSGAII (that did not get any 1 rank solution), although the generation
number for NSGA-II is 50 times those for MASNPL. We also observe that the non-dominated
solutions obtained by MASNPL are more crowded.

In 6 tests, MASNPL obtained more solutions than NSGA-II, and the non-dominated solutions
obtained by MASNPL are more crowded than those obtained by NSGA-II.

But for the remaining test, the solutions of rank 1 obtained by NSGA-II dominate those obtained
by MASNPL.

In terms of CPU time, for all tests, MASNPL is faster than NSGA-II.

According to these results, we can conclude that the MASNPL algorithm performs significantly
better than NSGA-II.
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Example 4.2.6. The parameters of this instance are:

• Number of objective functions: 5.

• Number of objects: 150.

• Knapsack capacity: 28000.

• Penalty d: 1008.

Table 6 represents the results (number of the non-domination solutions) obtained by the
(MASNPL and NSGA-II) algorithm for every test.

Table 6 – Numbers of non-dominated solutions obtained by MASNPL and NSGA-II.

Number of solutions of Rank 1 CPU-time (s) Ratio %
(MASNPL) NSGA-II MASNPL NSGA-II MASNPL NSGA-II

1 14 15 4994,0142 7138,69308 48,27 51,72
2 6 11 5149,28687 7544,84421 35,29 64,7
3 2 3 5273,99488 7636,07286 40 60
4 30 21 5119,07871 7084,38893 58,82 41,18
5 12 2 5262,87698 7011,5114 85,71 14,28
6 3 1 4743,11459 6919,07195 75 25
7 4 0 4885,45103 7210,53789 100 0
8 3 1 4791,12316 7187,80439 75 25
9 5 1 5134,35748 7932,27036 83,33 16,67

10 3 1 5063,31278 7366,53774 75 25

In Table 6, for the 10 tests, we note that in 1 test, MASNPL obtained solutions of rank 1, but
NSGA-II did not, although the generation number for NSGA-II is 50 times those for MASNPL.
We also can observe that the non-dominated solutions obtained by MASNPL are more crowded
than those obtained by NSGA-II.

In 6 tests, MASNPL obtained more solutions than NSGA-II, and the non-dominated solutions
obtained by MASNPL are also more crowded than those obtained by NSGA-II.

However, for the remaining 3 tests, the solutions of rank 1 obtained by NSGA-II dominate those
obtained by MASNPL.

In terms of CPU time, for all tests, MASNPL is faster than NSGA-II.

According to these results, we can conclude that the MASNPL algorithm performs significantly
better than NSGA-II.

5 CONCLUSION

In this paper, we detailed the model for the Multi-objective Stochastic Quadratic Knapsack Prob-
lem with simple recourse and random weights. As the objective functions are not differentiable,
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we approximate their gradients by the approximation by the convolution method. We apply a
greedy heuristic for MO-SQKP to obtain an initial population. Then we use the Non-dominated
Sort Algorithm to sort the population into different non-domination levels. After that, we deter-
mine the crowding distance value of a solution by applying the Crowding-Distance Computation
Algorithm. We obtain a population sorted by non-domination levels and the crowding distance
for each individual. We then apply a series of mutations, crossovers, and local searches to this
population to generate an offspring population. To improve the offspring population, we apply
the Selection Neighborhood Pareto Local Search SNPLS algorithm based on the comparison
between a current solution (offspring), and a new solution obtained by the gradient algorithm.
Then, the Non-dominated Sort Algorithm and the Crowding-Distance Computation Algorithm
are applied to the improved offspring to select our first final best individuals of the population.
Finally, the experimental results for the comparison between MASNPL and NSGA-II show that
using the gradient algorithm with NSGA-II performs significantly better and more efficiently
than NSGA-II.

Our study may open new research perspectives for the stochastic quadratic multi-objective knap-
sack problem. The methodology we adopted can easily be adapted to two-stage or multi-stage
problems where the weight or reward is not known in advance. Moreover, the efficiency of our
method shows that hybridization allows gains both in terms of quality of the obtained solutions
and in execution time. Other ideas could be inserted in the algorithm to improve it further.
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