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ABSTRACT. In the present article, some fixed point theorems are investigated for two pairs of weakly
compatible maps through (Ω,∆)-type weak contractive maps in the framework of fuzzy metric spaces. The
results studied in this workpiece are generalizations of some recent results existing in literature. Also, some
illustrative examples are presented in last section to check the authenticity of our results.
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1 INTRODUCTION

Contraction principle given by Banach (1922) is the most eminent result in the era of metrical
fixed point theory. Though this principle requires the continuity of the mapping, still it works
as the back-bone even for the recent results in different metric spaces. An open question on the
continuity of the mapping in Banach principle is answered by many authors. In 1968, Kannan
(1968) settled this problem in a robust way by introducing the following inequality:

d̂(T ρ,T σ)≤ β [d̂(ρ,T ρ)+ d̂(σ ,T σ)] for all ρ,σ ∈U and β ∈
(

0,
1
2

)
. (1)

Later on, Rakotch (1962), Boyd & Wong (1969) extended the contraction inequality due to
Banach (1922) by characterizing a control function stated below:

d̂(T ρ,T σ)≤ α(ρ,σ)d̂(ρ,σ) for all ρ,σ ∈U and α : [0,∞]→ [0,1]
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and

d̂(T ρ,T σ)≤ φ(d̂(ρ,σ)) for all ρ,σ ∈U,

where φ : [0,∞]→ [0,∞] is a non-decreasing continuous function such that φ(t) vanishes at t = 0.

On the other hand, Alber & Guerre-Delabriere (1997) introduced a modified contractive
condition in Hilbert spaces which was further elaborated by Rhoades (2001) as follows:

If a mapping T : U →U satisfies the following condition:

d̂(T ρ,T σ)≤ d̂(ρ,σ)−∆(d̂(ρ,σ)) for all ρ,σ ∈U,

then T possesses a fixed point.

Zhang & Song (2009) proved unique common fixed point results for hybrid generalized ∆-weak
contractive mappings in complete metric spaces whereas Doric (2009) established some related
theorems using control functions. This work was an extension to the results due to Zhang & Song
(2009). Then, Murthy et al. (2015) proved some results using weak contractive condition on two
pairs of discontinuous weakly compatible mappings.

In 1975, the concept of fuzzy metric space is initiated by Kramosil & Michalek (1975) with the
concept of t-norm. Later on, George & Veeramani (1994) extended the notion of fuzzy metric
space by defining the Hausdorff topology in this framework. After that, Mihet (2008) introduced
the fuzzy version of Banach’s result and introduced fuzzy ψ-contractive type mapping in non-
Archimedean fuzzy environment. A key distinction between a fuzzy metric and a classical metric
is that the latter contains a parameter in its definition. This concept has been used successfully in
engineering applications including colour picture filtering and perceived colour disparities. (For
details, one can refer to the study of Camarena et al. (2008), Camarena et al. (2010), Morillas
et al. (2009), Morillas et al. (2007), Morillas et al. (2005), Morillas et al. (2008a), Morillas et al.
(2008b)).

It has been demonstrated, in particular, that the class of topological spaces that are fuzzy metriz-
able matches with the class of topological spaces that may be metrized and then some traditional
metric completeness and compactness theorems have been modified for fuzzy metric spaces.
(See George & Veeramani (1995), Gregori & Romaguera (2000)). However, compared to the
traditional theories of metric completion, the theory of fuzzy metric completion is significantly
distinct. In actuality, some fuzzy metric spaces are non-completable (See Gregori (2002)). The
example below demonstrates the existence of a fuzzy metric space that forbids fuzzy metric
completion.

Example 1 (Gregori (2002)). The continuous t-norm defined on [0,1]× [0,1] is indicated by the
symbol ∗ and is defined as

l ∗m = max{0, l +m−1}

for each l,m ∈ [0,1].
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Now, let {um}∞
m=3 and {vm}∞

m=3 be two arbitrary sequences of non-identical points such that
U ∩V = φ , where U = {um : m ≥ 3} and V = {vm : m ≥ 3}.
Put W =U ∪V . Let M be a real-valued function defined on W ×W × (0,∞) as:

M(um,un, t) = M(vm,vn, t)

= 1−
[

1
m∧n

− 1
m∨n

]
M(um,vn, t) = M(vn,um, t) =

1
m
+

1
n
,

for every m,n ≥ 3.
We firstly claim that (M,∗) is a fuzzy metric on W.
Observe that the first four characteristics are nearly evident. (for m,n ≥ 3):

1. 0 < M(u,v, t)≤ 1 for all u,v ∈W, t > 0;

2. M(u,v, t) = 1 if and only if u = v;

3. M(u,v, t) = M(v,u, t) for all u,v ∈W, t > 0;

4. For every u,v ∈W; M(u,v, .) is a continuous function on (0,∞).

Also, a straightforward calculation reveals that, for every m,n, p ≥ 3 and s, t > 0;

M(um,un,s)∗M(un,up, t)≤ M(um,up,s+ t)

and
M(vm,vn,s)∗M(vn,vp, t)≤ M(vm,vp,s+ t).

Finally, the relationships listed below are simple:

M(um,un,s)∗M(un,vp, t)≤ M(um,vp,s+ t)

Similarly,
M(um,vn,s)∗M(vn,vp, t)≤ M(um,vp,s+ t)

and
M(um,vn,s)∗M(vn,up, t)≤ M(um,up,s+ t)

Thus, for every u,v,w ∈W and s, t > 0, we have

M(u,v,s)∗M(v,w, t)≤ M(u,w,s+ t).

Hence, (M,∗) is a fuzzy metric on W.
Next, we assert that in the fuzzy metric space (W,M,∗); {um}∞

m=3 is a Cauchy sequence.
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For fixed ε ∈ (0,1) and s > 0, there exists m0 ≥ 3 such that | 1
m − 1

n |< ε for all m,n ≥ m0.
Let n ≥ m. Then,

M(um,un,s) = 1−
(

1
m
− 1

n

)
> 1− ε

for m,n ≥ m0. Thus, {um}∞
m=3 is a Cauchy sequence in (W,M,∗). Similarly, {vm}∞

m=3 is also a
Cauchy sequence in (W,M,∗).
Although, {um}∞

m=3 and {vm}∞
m=3 do not converge in W w.r.t. the topology ςM induced by (M,∗).

Actually, ςM is the discrete topology on W as for every m ≥ 3 and each s > 0, we have for
BM(u,ε,s) = {u ∈W : M(u,v,s) > 1− ε} (where BM is the base with family of open sets of the
form {BM(u,ε,s) : u ∈W,0 < ε < 1, t > 0})

BM

(
um,

1
m(m+1)

,s
)
= {um} and

BM

(
vm,

1
m(m+1)

,s
)
= {vm}.

To demonstrate the two prior equality claims, it is sufficient to observe that for m,n ≥ 3, with
m ̸= n, and s > 0, we have

M(um,un,s) = 1−
[

1
m∧n

− 1
m∨n

]
≤ 1−

[
1
m
− 1

m+1

]
= 1− 1

m(m+1)
.

Similarly,

M(vm,vn,s) = 1− 1
m(m+1)

and for m,n ≥ 3 and s > 0, we have

M(um,vn,s) =
1
m
+

1
n

≤ 1−
(

1
m
− 1

m+1

)
.

Similarly,

M(vm,un,s) = 1−
(

1
m
− 1

m+1

)
.

Hence, (W,M,∗) is not complete.

The main intent of our work is to extend and generalize (∆,Ω)-weak contraction due to Murthy
et al. (2015) to fuzzy metric spaces. The authenticity of the results is further verified with some
illustrative examples.
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Theorem 1. [Murthy et al. (2015)] Let (U,d) be a metric space equipped with completeness,
and C,D,E and T be the self mappings defined on U satisfying

Ω(d̂(Cρ,Dσ))≤ Ω(M(ρ,σ))−∆(N(ρ,σ))

for all ρ,σ ∈U, with ρ ̸= σ and

M(ρ,σ) = max
{

d̂(Eρ,T σ),
1
2
(d̂(Eρ,Cρ)+ d̂(T σ ,Dσ)),

1
2
(d̂(Eρ,Dσ)+ d̂(T σ ,Cρ))

}
and

N(ρ,σ) = min
{

d̂(Eρ,T σ),
1
2
(d̂(Eρ,Cρ)+ d̂(T σ ,Dσ)),

1
2
(d̂(Eρ,Dσ)+ d̂(T σ ,Cρ))

}
,

C(U)⊂ T (U) and D(U)⊂ E(U), (C,E) and (D,T ) are weakly compatible pairs.

∆ : [0,∞] → [0,∞) is such that ∆(t) > 0, which is lower semi-continuous for all t > 0 and ∆ is
discontinuous at t = 0 with ∆(0) = 0, Ω : (0,∞)→ [0,∞) is an altering distance. Then C,D,E
and T have a unique common fixed point in U .

2 PRELIMINARIES

Definition 1 (George & Veeramani (1994)). Let ∗ : [0,1]× [0,1]→ [0,1] be a binary operation.
∗ is a continuous t-norm if it satisfies the postulates stated below:

1. ∗ is commutative as well as associative;

2. ∗ is a continuous binary operation;

3. a∗1 = a ∀ a ∈ [0,1];

4. a∗b ≤ c∗d provided a ≤ c and b ≤ d ∀ a,b,c,d ∈ [0,1].

Definition 2 (George & Veeramani (1994)). (U,M,∗) is named a fuzzy metric space if U is
any non-empty set, M is a fuzzy set on U2 × [0,∞) and ‘∗’ is a continuous t-norm, satisfying the
following axioms ∀ σ1,σ2,σ3 ∈U and t,s > 0:

1. M(σ1,σ2, t) is positive;

2. M(σ1,σ2, t) = 1 ∀ t > 0 ⇔ σ1 = σ2;

3. M(σ1,σ2, t) = M(σ2,σ1, t);
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4. M(σ1,σ2, t)∗M(σ2,σ3,s)≤ M(σ1,σ3, t + s);

5. M(σ1,σ2, t, ·) : [0,∞)→ [0,1] is left continuous.

Here, M(σ1,σ2, t) signifies the degree of nearness between two elements σ1 and σ2 w.r.t. t. These
spaces are referred as GV-spaces.

Lemma 1 (George & Veeramani (1994)). if (U,M,∗) is a fuzzy metric space (FMS), then
M(ρ,σ , ·) is non-decreasing ∀ ρ,σ ∈U.

Definition 3 (George & Veeramani (1994)). Let (U,M,∗) be a FMS. Then,

1. any sequence {ρn} in U is convergent to a point ρ ∈U if ∀ t > 0, lim
n→∞

M(ρn,ρ, t) = 1.

2. any sequence {ρn} in U is named a Cauchy sequence if ∀ t > 0 and for each
ε ∈ ]0,1),∃n0 ∈ N such that M(ρn,ρm, t)> 1− ε ∀ n,m ≥ n0.

3. A fuzzy metric space in which every Cauchy sequence convergent in it, is named as
complete fuzzy metric space.

3 MAIN RESULTS

Theorem 2. Let (U,M,∗) be a complete fuzzy metric space, and let Θ, D, E and T : U →U be
four mappings satisfying

Ω(M(Θρ,Dσ , t))≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)) (2)

for all ρ,σ ∈U, with ρ ̸= σ and

κ1(ρ,σ , t) = min{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),

M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}

and

κ2(ρ,σ , t) = max{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),

M(Eρ,Dσ , t)∗M(Ty,Θρ, t)},
Θ(U)⊂ T (U) and D(U)⊂ E(U), (3)

(Θ,E) and (D,T ) are weakly compatible pairs, (4)

where

∆ : [0,1]→ [0,1] is an upper semi-continuous mapping and ∆(t) is less than 1 ∀ t < 1,

∆ is discontinuous at t = 1 with ∆(1) = 0, (5)

Ω : [0,1]→ [0,1] is a non-decreasing and continuous function with Ω(t) = 1 ⇔ t = 1. (6)

Then Θ,D,E and T possess a unique common fixed point.
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Proof. Let ρ0 be any arbitrary point in U . As Θ(U)⊂ T (U) and D(U)⊂ E(U), therefore, there
exists another point ρ1 ∈U for which Θρ0 = T ρ1, and in the similar manner, for the point ρ1 ∈U ,
there exists a point ρ2 ∈ U for which Dρ1 = Eρ2. Following the same pattern, we can set up a
sequence {σn} such that

σ2n+1 = Θρ2n = T ρ2n+1 ,

σ2n+2 = Dρ2n+1 = Eρ2n+2 , for n = 0,1,2, . . .

Let us suppose that for all n ∈ N ∪{0},

σ2n ̸= σ2n+1 . (7)

Now, we show that M(σ2n,σ2n+1, t)→ 1 as n tends to ∞ ∀ n ∈ N ∪{0}. Assume that ρ = ρ2n

and σ = σ2n+1 in (2).

Ω(M(Θρ2n,Dρ2n+1, t)) = Ω(M(σ2n+1,σ2n+2, t))

≥ Ω(κ1(ρ2n,ρ2n+1, t))+∆(κ2(ρ2n,ρ2n+1, t)), (8)

where

κ1(ρ2n,ρ2n+1, t) = min{M(σ2n,σ2n+1, t),M(σ2n,σ2n+1, t)∗M(σ2n+1,σ2n+2, t),

M(σ2n,σ2n+1, t)∗M(σ2n+1,σ2n+1, t)}

and

κ2(ρ2n,ρ2n+1, t) = max{M(σ2n,σ2n+1, t),M(σ2n,σ2n+1, t)∗M(σ2n+1,σ2n+2, t)),

M(σ2n,σ2n+2, t)∗M(σ2n+1,σ2n+1, t)}.

Then by triangle inequality, we have

κ1(ρ2n,ρ2n+1, t)≥ min
{

M(σ2n,σ2n+1, t),M(σ2n,σ2n+1, t)∗M(σ2n+1,σ2n+2, t)

M
(

σ2n,σ2n+1,
t
2

)
∗M

(
σ2n+1,σ2n+2,

t
2

)
∗1
}

and

κ2(ρ2n,ρ2n+1, t) = max{M(σ2n,σ2n+1, t),M(σ2n,σ2n+1, t)∗M(σ2n+1,σ2n+2, t)),

M(σ2n,σ2n+2, t)∗M(σ2n+1,σ2n+1, t)}.

If

M(σ2n,σ2n+1, t)≥ M(σ2n+1,σ2n+2, t), (9)

then we obtain

κ1(ρ2n,ρ2n+1, t)≥ M(σ2n+1,σ2n+2, t) (10)

Pesquisa Operacional, Vol. 43, 2023: e272982
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and (8) implies

Ω(M(σ2n+1,σ2n+2, t))≥ Ω(κ1(ρ2n,ρ2n+1, t))+∆(κ2(ρ2n,ρ2n+1, t)),

and so,

Ω(M(σ2n+1,σ2n+2, t))≥ Ω(κ1(ρ2n,ρ2n+1, t)).

Using monotonically increasing property of ∆ and Ω functions, we have

M(σ2n+1,σ2n+2, t)≥ κ1(ρ2n,ρ2n+1, t). (11)

From (10) and (11), we get

κ1(ρ2n,ρ2n+1, t) = M(σ2n+2,σ2n+1, t). (12)

Since

1 ≥ (M
(

σ2n+1,σ2n+2,
t
2

)
∗M

(
σ2n,σ2n+1,

t
2

)
)

≥ M(σ2n+2,σ2n, t), (13)

we have, κ2(ρ2n,ρ2n+1, t) < 1, then from (8), (12) and the properties of ∆ and Ω functions, one
can get,

Ω(M(σ2n+1,σ2n+2, t))≥ Ω(M(σ2n+1,σ2n+2, t)+∆(κ2(ρ2n,ρ2n+1, t)

> Ω(M(σ2n+1,σ2n+2, t)),

this is a contradiction, thus we have

M(σ2n+1,σ2n+2, t)≥ M(σ2n,σ2n+1, t). (14)

So, we obtain the following

κ1(ρ2n,ρ2n+1, t) = M(σ2n,σ2n+1, t), (15)

κ2(ρ2n,ρ2n+1, t) = M(σ2n,σ2n+2, t). (16)

Now putting (15) and (16) in (8), we have

Ω(M(σ2n+1,σ2n+2, t))≥ Ω(M(σ2n,σ2n+1, t))+∆(M(σ2n,σ2n+2, t)), (17)

≥ Ω(M(σ2n,σ2n+1, t)), (18)

As Ω is a non-decreasing function, therefore, we get,

M(σ2n+1,σ2n+2, t)≥ M(σ2n,σ2n+1, t).

This shows that M(σ2n,σ2n+1, t) is a non-decreasing sequence, so there exists r > 0 such that

lim
n→∞

M(σ2n,σ2n+1, t) = r . (19)
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By (7) and (13), it follows that κ2(ρ2n,ρ2n+1, t)< 1.

Taking limit n tends to ∞ in (18) and using (19), we get

lim
n→∞

Ω(M(σ2n+1,σ2n+2, t))≥ lim
n→∞

Ω(M(σ2n,σ2n+1, t)

+ lim
n→∞

∆(κ2(ρ2n,ρ2n+1, t)),

which gives,

Ω(r)≥ Ω(r)+ lim
n→∞

∆(κ2(ρ2n,ρ2n+1, t)).

This is impossible with ∆ function, therefore

lim
n→∞

M(σ2n,σ2n+1, t) = 1.

Thus, ∀ n ∈ N ∪{0}, we have

lim
n→∞

M(σ2n+1,σ2n+2, t) = 1,

that is,

lim
n→∞

M(σn,σn+1, t) = 1. (20)

Next, we claim that the sequence {σn} is Cauchy.

For this, it is sufficient to prove that the sub-sequence {σ2n} of the sequence {σn} is Cauchy. Let
us assume in a contrary manner that {σ2n} is not a Cauchy sequence. Consider the sequences
{2n(k)} and {2m(k)} such that 2n(k)> 2m(k)> 2k for k ∈ N and

M(σ2m(k),σ2n(k), t)≤ 1− ε. (21)

Choose 2n(k) to be the smallest index in such a way that (21) holds true.

Then,

M(σ2m(k)−1,σ2n(k)−1, t)> 1− ε for all k ∈ N. (22)

Putting ρ = ρ2m(k)−1 and σ = ρ2n(k)−1 in (2),

Ω(M(σ2m(k),σ2n(k), t))≥ Ω(κ1(ρ2m(k)−1,ρ2n(k)−1, t))

+∆(κ2(ρ2m(k)−1,ρ2n(k)−1, t)), (23)

where

M(ρ2m(k)−1,ρ2n(k)−1, t) = min{M(σ2m(k)−1,σ2n(k)−1, t),M(σ2m(k)−1,σ2m(k), t)

∗M(σ2n(k)−1,σ2n(k), t),M(σ2m(k)−1,σ2n(k), t)

∗M(σ2n(k)−1,σ2m(k), t)}.
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By triangle inequality, we obtain,

M(σ2m(k),σ2n(k), t)≥ M
(

σ2m(k),σ2n(k)−1,
t
2

)
∗M

(
σ2n(k)−1,σ2n(k),

t
2

)
,

taking k → ∞, we get

lim
k→∞

M(σ2m(k),σ2n(k), t) = 1− ε. (24)

Now, for every k, we have

M(σ2m(k)−1,σ2n(k)−1, t)≥ M
(

σ2m(k),σ2m(k)−1,
t
3

)
∗M

(
σ2m(k),σ2n(k),

t
3

)
∗M

(
σ2n(k)−1,σ2n(k),

t
3

)
,

M(σ2m(k),σ2n(k), t)≥ M
(

σ2m(k),σ2m(k)−1,
t
3

)
∗M

(
σ2m(k)−1,σ2n(k)−1,

t
3

)
∗M

(
σ2n(k)−1,σ2n(k),

t
3

)
.

Letting limit k → ∞ and using (20)-(24), we get

lim
k→∞

M(σ2m(k)−1,σ2n(k)−1, t) = 1− ε. (25)

Also, for each positive value of k, we get

M(σ2m(k)−1,σ2n(k), t)≥ M
(

σ2m(k)−1,σ2m(k),
t
2

)
∗M

(
σ2m(k),σ2n(k),

t
2

)
,

M(σ2m(k),σ2n(k), t)≥ M
(

σ2m(k),σ2m(k)−1,
t
2

)
∗M

(
σ2m(k)−1,σ2n(k),

t
2

)
.

Taking k → ∞ and using (20)-(25), we get

lim
k→∞

M(σ2m(k)−1,σ2n(k), t) = 1− ε. (26)

Again, for each positive value of k, we get

M(σ2n(k)−1,σ2m(k), t)≥ M
(

σ2n(k)−1,σ2n(k),
t
2

)
∗M

(
σ2n(k),σ2m(k),

t
2

)
,

M(σ2n(k),σ2m(k), t)≥ M
(

σ2n(k),σ2n(k)−1,
t
2

)
∗M

(
σ2n(k)−1,σ2m(k),

t
2

)
.

Taking limit k → ∞ and using (20)-(26), we get

lim
k→∞

M(σ2n(k)−1,σ2m(k), t) = 1− ε. (27)

From (23)-(27), one obtains

lim
k→∞

M(ρ2m(k)−1,ρ2n(k)−1, t) = 1− ε (28)

and

lim
k→∞

κ2(ρ2m(k)−1,ρ2n(k)−1, t) = 1.
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Taking k → ∞ in (23), we get

Ω(1− ε)≥ Ω(1− ε)+ lim
k→∞

∆(κ2(ρ2m(k)−1,ρ2n(k)−1, t)). (29)

As ∆ is discontinuous at t = 1 where ∆(t) = 0 and ∆(t) < 1 ∀ t < 1, the last term in (29)
vanishes, which eventually lead to a contradiction.

Thus, {σn} is a Cauchy sequence. By the property of completeness, this sequence converges to
some point ζ (say) in U . Consequently, its sub-sequences also converges to ζ in U i.e.

Θρ2n → ζ , T ρ2n+1 → ζ ,Dρ2n+1 → ζ ,Eρ2n → ζ .

Since D(U)⊂ E(U), there exists h̄ ∈V such that ζ = Eh̄.

Let M(ζ ,Θh̄, t) ̸= 1 putting ρ = h̄ and y = ρ2n+1 in (2), we get

Ω(M(Θh̄,Dρ2n+1, t))≥ Ω(κ1(h̄,ρ2n+1, t))+∆(κ2(h̄,ρ2n+1, t)), (30)

where

κ1(h̄,ρ2n+1, t) = min{M(Eh̄,T ρ2n+1, t),M(Eh̄,Θh̄, t)∗M(T ρ2n+1,Dρ2n+1, t),

M(Eh̄,Dρ2n+1, t)∗M(T ρ2n+1,Θh̄, t)}

and

κ2(h̄,ρ2n+1, t) = max{M(Eh̄,T ρ2n+1, t),M(Eh̄,Θh̄, t)∗M(T ρ2n+1,Dρ2n+1, t),

M(Eh̄,Dρ2n+1, t)∗M(T ρ2n+1,Θh̄, t)}.

Taking n → ∞ and using ζ = Eh̄, we have

M(h̄,ζ , t) = max{M(Eh̄,ζ , t),M(Eh̄,Θh̄, t)∗M(ζ ,ζ , t),M(Eh̄,ζ , t)∗M(ζ ,Θh̄, t)}
= M(ζ ,Θh̄, t).

Also, we have

Ω(M(Θh̄,ζ , t))≥ Ω(M(ζ ,Θh̄, t))+ lim
n→∞

∆(κ2(h̄,ρ2n+1, t)).

As ∆ is discontinuous at t = 1 and ∆(t) = 0, we notice that

Ω(M(Θh̄,ζ , t))≥ Ω(M(ζ ,Θh̄, t)).

Consequently, we reach a contradiction with Ω function. Thus,

M(ζ ,Θh̄, t) = 1

⇒ Θh̄ = ζ

⇒ Θh̄ = ζ = Eh̄.
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As (Θ,E) is a weakly compatible pair, it commutes at its coincidence point h̄, i.e. ΘEh̄ = EΘh̄ ⇒
Θζ = Eζ .

Next, we claim that Θζ = Eζ = ζ .

For this, putting ρ = ζ and σ = ρ2n+1 in (2), we get

Ω(M(Θζ ,Dρ2n+1, t))≥ Ω(κ1(ζ ,ρ2n+1, t))+∆(κ2(ζ ,ρ2n+1, t)), (31)

where

κ1(ζ ,ρ2n+1, t) = min{M(Eζ ,T ρ2n+1, t),M(Eζ ,Θζ , t)∗M(T ρ2n+1,Dρ2n+1, t),

M(Eζ ,Dρ2n+1, t)∗M(T ρ2n+1,Θζ , t)}

and

κ2(ζ ,ρ2n+1, t) = max{M(Eζ ,T ρ2n+1, t),M(Eζ ,Θζ , t)∗M(T ρ2n+1,Dρ2n+1, t)

∗M(Eζ ,Dρ2n+1, t)∗M(T ρ2n+1,Θζ , t).

Taking n → ∞ and using Θζ = Eζ , we get

κ1(ζ ,ζ , t) = M(Eζ ,ζ , t).

Now, (30) implies that

Ω(M(Eζ ,ζ , t))≥ Ω(M(Eζ ,ζ , t))+ lim
n→∞

∆(κ(ζ ,ρ2n+1, t)).

As ∆ is discontinuous at t = 1, we get ∆(t) = 0, which implies

Ω(M(Eζ ,ζ , t))> Ω(M(Eζ ,ζ , t)),

but it is a contradiction. Therefore M(Eζ ,ζ , t) = 1, implies

Eζ = ζ ⇒ Eζ = Θζ = ζ .

Likewise, we can demonstrate that T ζ = Dζ = ζ .

Hence, Eζ = Θζ = T ζ = Dζ = ζ .

We now assert that ζ is the unique common fixed point of Θ, D, E and T . To show this, let w be
another fixed point of Θ, D, E and T .

Now put ρ = ζ and σ = w in (2), we obtain

Ω(M(ζ ,w, t))≥ Ω(M(ζ ,w, t))+∆(M(ζ ,w, t)),

which contradicts itself. Thus, M(ζ ,w, t) = 1 ⇒ ζ = w.

Hence Θ, D, E and T possess an unrepeated common fixed point in U . □
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Assuming E = T = I (identity map), we deduce the following result:

Theorem 3. Let (U,M,∗) be a fuzzy metric space equipped with completeness. Let Θ, D : U →U
be two self-mappings which satisfy the following inequality:

Ω(M(Θρ,Dσ , t)≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)), (32)

where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)}
and

κ2(ρ,σ , t) = max{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)};

and

1. ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0.

2. Ω : [0,1]→ [0,1] is an altering distance function.

Then Θ and D possess a unique fixed point in U.

The result below is obtained by taking Ω = I(identity function):

Corollary 1. Let (U,M,∗) be a fuzzy metric space equipped with completeness property. Let Θ,
D, E and T : U →U be self-mappings holding following inequality:

M(Θρ,Dσ , t)≥ κ1(ρ,σ , t)+∆(κ2(ρ,σ , t)), (33)

where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}

and

κ2(ρ,σ , t) = max{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)};

1. Θ(U)⊂ T (U) and D(U)⊂ E(U),

2. (Θ,E) and (D,T ) are weakly compatible pairs,

3. ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0.

Then Θ, D, E and T possess a unique common fixed point in U.

Corollary 2. Let (U,M,∗) be a fuzzy metric space equipped with completeness property. Let Θ

and D : U →U be self-mappings satisfying the following inequality:

M(Θρ,Dσ , t)≥ κ1(ρ,σ , t)+∆(κ2(ρ,σ , t)), (34)
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where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)}
and

κ2(ρ,σ , t) = max{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)};

∆ : [0,1]→ [0,1] with ∆(t)< 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is discontinuous
at the point t = 1 with ∆(t) = 0.
Then Θ and D possess a unique fixed point in U.

If the aforementioned condition

κ2(ρ,σ , t) = max{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)}

is changed to

κ2(ρ,σ , t) = max{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t)};

another result will be deduced as follows:

Theorem 4. Let (U,M,∗) be a fuzzy metric space equipped with completeness. Let Θ,D,E and
T be self-mappings defined on U such that they satisfy the following inequality:

Ω(M(Θρ,Dσ , t)≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)), (35)

where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}

and

κ2(ρ,σ , t) = max{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t)};

1. Θ(U)⊂ T (U) and D(U)⊂ E(U),

2. (Θ,E) and (D,T ) are weakly compatible pairs,

3. ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0.

4. Ω : [0,1]→ [0,1] is a strictly monotonically increasing altering distance function.

Then Θ,D,E and T possess a unique common fixed point in U.

On the same lines, the above theorem is easily demonstrable as Theorem 3.1.

Theorem 5. Let (U,M,∗) be a fuzzy metric space equipped with completeness. Let Θ and D be
self-mappings defined on U such that they satisfy the following inequality:

Ω(M(Θρ,Dσ , t)≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)), (36)
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where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t),M(ρ,Dσ , t)∗M(σ ,Θρ, t)}
and

κ2(ρ,σ , t) = max{M(ρ,σ , t),M(ρ,Θρ, t)∗M(σ ,Dσ , t)};

1. ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0,

2. Ω : [0,1]→ [0,1] is a strictly monotonically increasing altering distance function.

Then Θ, D possess a unique common fixed point in U.

Following are a few corollaries that arise from the results stated above:

Corollary 3. Let (U,M,∗) be a fuzzy metric space equipped with completeness. Let Θ,D,E and
T be self-mappings defined on U such that they satisfy the following inequality:

M(Θρ,Dσ , t)≥ κ1(ρ,σ , t)+∆(κ2(ρ,σ , t)), (37)

where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}
and

κ2(ρ,σ , t) = max{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t)};

1. Θ(U)⊂ T (U) and D(U)⊂ E(U),

2. (Θ,E) and (D,T ) are weakly compatible pairs,

3. ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0.

Then Θ,D,E and T possess a unique common fixed point in U.

Corollary 4. Let (U,M,∗) be a fuzzy metric space equipped with completeness. Let Θ and D be
self-mappings defined on U such that they satisfy the following inequality:

M(Θρ,Dσ , t)≥ κ1(ρ,σ , t)+∆(κ2(ρ,σ , t)), (38)

where ρ,σ ∈U, ρ ̸= σ ,

κ1(ρ,σ , t) = min{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}
and

κ2(ρ,σ , t) = max{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t)};

Pesquisa Operacional, Vol. 43, 2023: e272982



16 SOME NOVEL FIXED POINT RESULTS FOR (Ω,∆)-WEAK CONTRACTION CONDITION

Here, ∆ : [0,1] → [0,1] with ∆(t) < 1 is upper semi-continuous for each t ∈ (0,1) and ∆ is
discontinuous at the point t = 1 with ∆(t) = 0.

Then Θ, D possess a unique common fixed point in U.

Example 2. Let U = [0,2] be equipped with the (usual) metric d̂(ρ,σ) = |ρ −σ | and (U,M,∗)
be a fuzzy metric space. Let Θ, D, E and T be self mappings defined on U as

Θ(ρ) =

{
0 if ρ = 0
ρ

7 +1 otherwise
E(ρ) =

{
0 if ρ = 0
3ρ

7 +1 otherwise

D(ρ) =

{
0 if ρ = 0
2ρ

7 +1 otherwise
T (ρ) =

{
0 if ρ = 0
4ρ

7 +1 otherwise
,

where ρ,σ ∈U, Θ(U) =
[
0, 8

7

]
, E(U) =

[
0, 9

7

]
, D(U) =

[
0, 10

7

]
, T (U) =

[
0, 11

7

]
.

Here, Θ(U) ⊂ T (U) and D(U) ⊂ E(U), and (Θ,E) and (D,T ) are weakly compatible maps at
ρ = 0.

Let Ω(t) = t and ∆(t) =

{
t
2 , if t ̸= 1

0, t = 1
.

Now, we examine Theorem 3.1’s inequality in several cases.

Case I. If ρ = 0 and σ = 0

Ω(M(Θρ,Dσ , t)) = Ω

(
t

t + |Θρ −Dσ |

)
= Ω(1) = 1

κ1(ρ,σ , t) = 1 ⇒ Ω(κ1(ρ,σ , t)) = 1

κ2(ρ,σ , t) = 1 ⇒ ∆(κ2(ρ,σ , t)) = 0.

Hence,

Ω(M(Θρ,Dσ , t)) = Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)).

Case II. If ρ = 0 and σ ̸= 0,

Ω(M(Θρ,Dσ , t)) = Ω

(
t

t + |Θρ −Dσ |

)
= Ω

(
t

t + |0− ( 2σ

7 +1)|

)
=

t
t + |1+ 2σ

7 |
.
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Now,

{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}

=

{
t

t + |Eρ −T σ |
,

t
t + |Eρ −Θρ|

∗ t
t + |T σ −Dσ |

,
t

t + |Eρ −Dσ |
∗ t

t + |T σ −Θρ|

}
=

{
t

t + | 4σ

7 +1|
,1∗ t

t + | 4σ

7 +1−1− 2σ

7 |
,

t
t + |0− ( 2σ

7 +1)|
∗ t

t + | 4σ

7 +1−0|

}

=

{
t

t + | 4σ

7 +1|
,

t
t + | 2σ

7 |
,

t
t + |1+ 2σ

7 |
∗ t

t + | 4σ

7 +1|

}
,

implies,

κ1(ρ,σ , t) =
t

t + | 4σ

7 +1|

κ2(ρ,σ , t) =
t

t + | 2σ

7 |
.

Therefore,

Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)) = Ω

(
t

t + | 4σ

7 +1|

)
+∆

(
t

t + | 2σ

7 |

)

=
t

t + | 4σ

7 +1|
+

1
20

(
t

t + | 2σ

7 |

)
≤ t

t + | 2σ

7 +1|
= Ω(M(Θρ,Dσ , t)).

Hence,

Ω(M(Θρ,Dσ , t))≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)).

Case III. If ρ ̸= 0 and σ = 0.

Ω(M(Θρ,Dσ , t)) = Ω

(
t

t + |Θρ −Dσ |

)
= Ω

(
t

t + |ρ

7 +1|

)
=

t
t + |ρ

7 +1|
.

Now,

{M(Eρ,T σ , t),M(Eρ,Θρ, t)∗M(T σ ,Dσ , t),M(Eρ,Dσ , t)∗M(T σ ,Θρ, t)}

=

{
t

t + | 3ρ

7 +1|
,

t

t + | 3ρ

7 +1− ρ

7 −1|
∗1,

t

t + | 3ρ

7 +1|
∗ t

t + |ρ

7 +1|

}

=

{
t

t + | 3ρ

7 +1|
,

t

t + | 2ρ

7 |
,

t

t + | 3ρ

7 +1|
∗ t

t + |ρ

7 +1|

}
,
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By definition of κ1 and κ2 in Theorem 2, we get

κ1(ρ,σ , t) =
t

t + | 3ρ

7 +1|
,

κ2(ρ,σ , t) =
t

t + | 2ρ

7 |
,

Ω(κ1(ρ,σ , t))+Ω(κ2(ρ,σ , t)) =
t

t + | 3ρ

7 +1|
+

1
20

(
t

t + | 2ρ

7 |

)
≤ t

t + |ρ

7 +1|
.

Hence,

Ω(M(Θρ,Dσ , t))≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)).

Case IV. If ρ ̸= 0 and σ ̸= 0.

Ω(M(Θρ,Dσ , t)) = Ω

(
t

t + |Θρ −Dσ |

)
= Ω

(
t

t + |ρ

7 +1− 2u
7 −1|

)

= Ω

(
t

t + ρ

7

)
.

Now, {
t

t + |Eρ −T σ |
,

t
t + |Eρ −Θρ|

∗ t
t + |T σ −Dσ |

,
t

t + |Eρ −Dσ |
∗ t

t + |T σ −Θρ|

}
=

{
t

t + ρ

7
,

t

(t + 2ρ

7 )
∗ t
(t + 2σ

7 )
,

t

t + | 3ρ

7 − 2σ

7 |
∗ t

t + | 4σ

7 − ρ

7 |

}
,

and

κ1(ρ,σ , t) =


t

t+ 2ρ

7
, σ < 2ρ

7

t
t+ 2σ

7
, σ > 2ρ

7

κ2(ρ, t,σ) =
t

t + | 3ρ

7 − 2σ

7 |
,

this implies,

Ω(Θρ,Dσ , t)≥ Ω(κ1(ρ,σ , t))+∆(κ2(ρ,σ , t)).

The inequality is therefore true in each instance. As a result, Theorem 3.1’s criteria are all
fulfilled and therefore Θ, D, E and T possess a unique common fixed point. Here, ρ = 0 is
the unique common fixed point in U.
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4 CONCLUSION

In this work, control functions are well used to locate fixed point for pairs of discontinuous maps
in the setting of fuzzy environment. This is a fruitful strategy to broaden and generalize the
literature’s findings in the direction of fuzzy metric space.
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