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Fernando Augusto Silva Marins, Rafael Florêncio da Silva Costa,
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ABSTRACT. Optimization methods combined with computer-based simulation have been utilized in a

wide range of manufacturing applications. However, in terms of current technology, these methods exhibit

low performance levels which are only able to manipulate a single decision variable at a time. Thus,

the objective of this article is to evaluate a proposed optimization method for discrete-event simulation

models based on genetic algorithms which exhibits more efficiency in relation to computational time when

compared to software packages on the market. It should be emphasized that the variable’s response quality

will not be altered; that is, the proposed method will maintain the solutions’ effectiveness. Thus, the study

draws a comparison between the proposed method and that of a simulation instrument already available

on the market and has been examined in academic literature. Conclusions are presented, confirming the

proposed optimization method’s efficiency.

Keywords: metaheuristics, simulation optimization, discrete-event simulation.

1 INTRODUCTION

Keskin, Melouk & Meyer (2010) assert that even though simulation models are capable of cap-
turing complex system behavior, they may require large amounts of development and running
time, which typically makes them inadequate for solving optimization problems. This situation
is remedied by simulation-optimization approaches which efficiently search for the best combi-
nation of problem parameters using smart search techniques.

Discrete-event simulation model optimization has become ever more common in recent decades.
Fu (2002) states that during the 1990s simulation and optimization were generally kept separate
in practice. Currently, their integration has grown substantially, principally demonstrated by the
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UNIFEI – Universidade Federal de Itajubá, IEPG – Instituto de Engenharia de Produção e Gestão, Itajubá, MG, Brazil.
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fact that many simulation software packages include optimization software. Additionally, Hao &
Shen (2008) assert that optimization combined with simulation has been utilized in a multitude of
productive systems applications, as optimization of these systems is in many cases too complex
to be resolved using mathematical modeling approaches alone.

For Banks et al. (2005), the existence of variability in input variable sampling often forces
optimization to possess robust and powerful heuristic searches. Many heuristics approaches have
been developed for optimization problems that, in spite of not guaranteeing to find the optimum
solution, show themselves to be efficient in complex, practical problems.

According to Fu (2002), the embedded optimization routines found in simulation programs are
mostly based in metaheuristics, and predominantly evolutionary algorithms, such as Genetic
Algorithms, which interact in a family of solutions instead of just one point. In fact, the use
of Genetic Algorithms for optimization is found in some current commercial packets, such as
ProModelr and AutoModr (Law & Kelton, 2000).

Nevertheless, one criticism often made of existing simulation optimization software is that these
packages operate at a very slow pace when manipulating more than one input variable (Harrel,
Ghosh & Bowden, 2000). Indeed, simulation optimization’s greatest limitation is the number of
variables, as performance falls dramatically when a model with a great number of variables is
optimized (April et al., 2003; Banks, 2001; Jia et al., 2007; Wu et al., 2009). Additionally, Tyni
& Ylinen (2006) assert that convergence time is the most significant restriction to reaching an
optimization algorithm’s computational efficiency.

With this problem in mind, this article’s objective is to develop a discrete-event simulation
model optimization method based on genetic algorithms which is able to attain results in less
computational time (greater speed), when compared to a commercial optimization tool. It should
be noted the proposed method will guarantee the same response quality as the commercial opti-
mization method.

This incremental investigation does not propose a completely new theory; however, its main
contribution is that it extends the practice and level of understanding of operational research to
an area which has seen little research: Simulation optimization via genetic algorithms.

This article is structured in the following form: Section 2 presents a bibliographic review of
computational simulation combined with optimization; Section 3 presents the proposed opti-
mization method for computational simulation models; Section 4 shows the methodology uti-
lized in simulation model optimization; Section 5 shows the four objects of study utilized in
this article; Section 6 presents a comparison between the proposed optimization method and the
commercial instrument (SimRunnerr) in optimization of the objects of study, and Section 7
presents research conclusions and contributions.

2 SIMULATION COMBINED WITH OPTIMIZATION TECHNIQUES

According to Harrel, Ghosh & Bowden (2000), computational simulation is the imitation of a
real or hypothetical system, modeled in a computer, in order to evaluate and improve a real
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system’s performance. Or rather, simulation is a vehicle used to import a real system into a con-
trolled environment where its behavior can be studied under diverse conditions without incurring
physical risks or high costs. Banks (2000) asserted that computational simulation involves the
creation of an abstraction of reality and, based on this artificial history, observations and infer-
ences into the real system’s characteristics are carried out.

Zeng & Yang (2009) assert many complex manufacturing systems are too complex to be analyt-
ically modeled. Discrete-event simulation has been a useful tool for evaluating the performance
of such systems. However, simulation can only evaluate a given design, and cannot provide
more optimization functions. Therefore, the integration of simulation and optimization is needed
(Banks et al., 2005; Fu et al., 2000; Fu, 2002; Law & McComas, 2002).

Banks et al. (2005) states that when sample input variables have stochastic characteristics, opti-
mization for simulation will need a robust heuristic search. According to the same author, many
heuristic searches have been developed for optimization problems that, in spite of not guarantee-
ing a global optimal solution, show themselves efficient for practical problems.

In other words, without integrating simulation and optimization, it is impossible to evaluate the
model’s results under a determined set of conditions. Therefore, in order to use simulation in pro-
cess performance evaluation and improvement, scenarios need to be constructed and then tested
so that each scenario’s simulation results may be analyzed (Optquest for Arena User’s Guide,
2002). Such a process, in spite of being capable of generating good results, can be tiring and
time consuming; furthermore, in most cases, it doesn’t even guarantee the best configurations.

Optimization and simulation techniques are used to resolve problems such as the ones mentioned
above. According to Keskin, Melouk & Meyer (2010) the main optimization approaches uti-
lized in simulation-optimization include random search, response surface methodology, gradient-
based procedures, ranking and selection, sample path optimization, and metaheuristics including
tabu search, genetic algorithms, and scatter search.

In terms of optimization routines based on metaheuristics, predominantely Evolutionary Algo-
rithms, such as Genetic Algorithms, stand out. As proof of this, some of today’s top simulation
packages, including ProModel’s SimRunnerr, Siemen’s WizardGAr, AutoMod’s AutoStater,
use Genetic Algorithms. Damaso & Garcia (2009) state the use of evolutionary techniques is
justified when optimization problems are combinatory in nature; this is the case with simulation
optimization, where input variable combinations are tested in order to find the most desirable
output results (Harrel, Ghosh & Bowden, 2004).

This investigation’s proposed optimization method utilized a genetic algorithm (GA). This im-
portant metaheuristic is made up of a family of random search techniques originally introduced
by Holland in the 1970s (Holland, 1992). Since then GAs have been used to successfully find
optimal (or almost optimal) solutions for a wide range of optimization problems (Gen & Cheng,
1997), and among those are simulation optimization problems (Fu, 2002). Golfeto, Moretti &
Salles Neto (2009) allege GAs utilize techniques inspired by evolutionary theory, such as natural
selection, where fitter parents tend to generate fitter offspring, as a problem solution paradigm.
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Simulation optimization is the process of determining the controllable input variables’ values in
order to optimize the values of the stochastic output variables (Keysa & Reesb, 2004). Fu (2002)
states that optimization should occur in a way which complements simulation, providing the
possible solution variables (inputs) for the simulation, and in turn providing responses (outputs)
for the proposed situation. The optimization routine is run until the algorithm arrives at a satis-
factory output.

3 PROPOSED METHOD OF SIMULATION OPTIMIZATION

The flowchart presented in Figure 1 shows the proposed optimization process for discrete-event
simulation models, as well as the adaptations made to the genetic algorithm. This optimization
method is the result of a PhD thesis.

The proposed simulation optimization method proposed here presupposes discrete-event model
simulation optimization in which decision variables meet the conditions outlined for this article
(discrete variables, integers and deterministic).

Upon starting a new generation, it should be verified that it is, indeed, the first generation. If the
response to this question is affirmative, the calculation of the individual population size is made;
or rather, the number of bits necessary for each individual that will be utilized in the genetic
algorithm (Mitchell, 1996).

Population size is represented by a set of individuals. In turn, an individual of the population
is a representation of one possible solution in binary form {0, 1}. Thus, considering the condi-
tions outlined for this research, it was necessary to first determine the quantity of bit in order to
represent each possible optimization problem solution.

Mitchell’s (1996) proposed equation was used, where the quantity of bits necessary to represent
a determined individual is given in the following equation (1).

k = log2

(
upperi − loweri

precision
+ 1

)
(1)

where:

• k – number of bits (size of individual);

• precision – desired precision to represent the solution;

• loweri , upperi – lower and upper bounds for operational range (variation).

By considering a discrete, deterministic and integer variable with a variation between [1, 10]
with a precision of 1, it is possible to calculate the quantity of bits necessary for the individual,
or rather, the individual size.

k = log2

(
upperi − loweri

precision
+ 1

)
= log2

(
10 − 1

1
+ 1

)
= 3,32 ≈ 4bits (2)
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 - Proposed Simulation Optimization Method Flowchart 
Figure 1 – Proposed simulation optimization method flowchart.

Four bits are necessary for the established conditions according to the individual size. It can be
seen that the individual size needed to meet the proposed conditions will always be smaller if it
isn’t an integer. Table 1 proves this affirmation. It can be noted that even with greater variation
between the inferior and superior, when considering integer variables, the individual size will
always be small.

It should be highlighted here that the number of necessary bits for the individual size will be
small for the discrete-event simulation optimization model problems that have more than one
input variable. Even if the bit number has to consider the necessities related to variation between
its upper and lower bounds for each variable, the number of bits will still remain small.
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Table 1 – Individual size in relation to the upper and lower bounds.

Variation between Number of bits necessary

upper and lower bounds (individual size)

5 3

10 3

20 5

30 5

40 6

50 6

In the sequence, the size of the initial population is calculated according to Goldberg (1989),
shown in equation (3). Note that this equation establishes a relationship between the population
and individual size:

Population size = 1.65 × 20.21.k (3)

where:

• k is the number of bits necessary for each individual (individual size).

Equation 3 shows how population size increases exponentially in relation to the individual size’s
growth. Table 2 shows this growth.

Table 2 – Relation between individual size and population size.

Individual size Population size

4 3

5 4

10 8

15 15

20 31

30 131

40 558

50 2390

It can be seen that for small individual sizes, the population size will also be relatively small.

Next an initial population of the Genetic Algorithm (GA) is generated. This population represents
the simulation model input variables, such as: quantity of operators, quantity of machines, etc.

If a population already exists, or rather, if it isn’t the first generation, the parameter population
size is increased by 50% using an adaptive technique for the population size (Gong et al., 2007;
Kaveh & Shahrouzi, 2007; Ma & Zhang, 2008). This percentage is justified by that fact that the
proposed method will always initiate with a small population value when compared to values
commonly found in the literature for this parameter. Thus, for each generation of the genetic
algorithm, a different population size is utilized. The intention here is to reduce the processing
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time in search of an optimal solution while at the same time avoiding the premature convergence
of the algorithm. These new individuals will be randomly generated and inserted in the ongoing
problem’s population.

The assessment of each individual is carried out using a discrete-event simulator. In doing so,
the method sends each population individual to the simulator separately; this returns a simu-
lation model response for the individuals based on the defined objective function. After the
assessment of all the individual population, it is verified if there were improvements from the
current generation to the previous. If significant improvements haven’t occurred, the method’s
stoppage condition is considered to be satisfied (Al-Aomar & Al-Okaily, 2006; Goldberg, 1989).
The model’s simulation optimization results are then presented, and the method is concluded.
In the case that the stopping criterion isn’t satisfactory, the individuals for reproduction are se-
lected using the roulette-wheel algorithm, one of the most commonly used selection techniques
(Goldberg, 1989; Yang, 2009).

In the sequence, the crossover and mutation operators of the previously selected individuals are
applied again. According to Mitchell (1996), the crossover rate is the probability of executing
the crossing of two population individuals. Similarly, the mutation rate determines whether
will undergo mutation. The utilized crossover operator was the One-point Crossover and the
utilized mutation operator was Simple Binary Mutation. Rates of 80% and 10% are used for
crossover and mutation, respectively. Following the application of these operators in the selected
individuals, a new generation can be formed, thus initiating the entire process all over again.

4 METHODOLOGY FOR SIMULATION OPTIMIZATION

Generally simulation optimization methodologies come from an already existent and valid
model. The first step is defining decision variables; or rather, the variables which affect the
problem’s objective function. Once the objective function is defined in order to be maximized
or minimized, its result will be evaluated in search of an optimum value. The next step is defin-
ing the problem’s constraints through the parameter configuration, such as the number of repli-
cations, precision and stopping criterion. Harrel, Ghosh & Bowden (2000) proposed a spe-
cific methodology for the use of simulation optimization in SimRunnerr. Their steps are listed
as follows:

1. Define decision variables that will affect the model’s responses and be tested via the opti-
mization algorithm. These are the variables that will have altered values in each run.

2. Define variable type (real or integer) and its lower and upper bounds. During the search,
the optimization algorithm will generate solutions by varying the decision variables values
while respecting its upper and lower bounds. The number of decision variables and the
range of possible values affect the search space, which may increase the difficulty and the
time consumed in identifying the optimal solution.

3. Define the objective function to evaluate the solutions tested by the algorithm. The objec-
tive function already should have been established during the simulation study’s designing
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phase. Relevant questions for optimization include: parts (entities), equipment (locations),
employees (resources) among others, searching to minimize, maximize or make use of
both in different variables, including giving different weights to compose the objective
function.

4. Select the Evolutionary Algorithm’s population size. In the case of SimRunnerr, the
evolutionary algorithm utilized is a Genetic Algorithm. The population size affects its
reliability and the time required to conduct the search; thus, one must balance between
finding the optimum response, on the one hand, and the time available to conduct the
search, on the other. In this phase, it is also important to define other parameters, such as:
required precision, the significance level and the number of replications.

5. After the search’s conclusion, an analyst should study the solutions seeing as beyond the
optimum solution, the algorithm finds various other competitive solutions. It is good prac-
tice to compare the solutions, using the objective function as a basis for comparison.

5 OBJECTS OF STUDY

Four objects were selected for this study. The first and second objects are companies in the
automotive sector. The third and fourth objects of study concern the high technology sector. It
should be highlighted here that the conceptual and computational models of each of the objects
utilized in this article were already verified and validated in previous studies.

The first study object is a production line from a company in the automotive sector, which pro-
duces electronic components. The conceptual and computational model verification and valida-
tion can be found in Montevechi et al. (2007). The second study object concerns a manufacturing
cell from an automotive components company. The verification and validation of the conceptual
and computational models can be found in Montevechi et al. (2008). The third and fourth objects
of study refer to a Brazilian high technology company which focuses on fiber optic communica-
tion equipment fabrication and development. Conceptual and computational models verification
and validation for these can be found in Montevechi et al. (2008).

6 OPTIMIZATION OF THE OBJECTS OF STUDY

The following section presents the 5 steps necessary to execute the optimization methodology
proposed by Harrel, Ghosh & Bowden (2000), shown previously in Section 4, for computational
simulation models.

6.1 Definition of decision variables (Step 1)

For the first study object, the optimization problem’s decision variables are defined as being the
quantities of kanbans necessary for pieces P1 and P2. For the second study object, the decision
variables are the quantities of operators for each of the cell’s existing operations: operation A,
operation B and operation C. For the third study object, the decision variables are: the quantity
of operators in the cell, the number of workbenches with set up, the number of workbenches
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without set up and the existence of raw material organization strategy throughout the production
process. For the fourth study object, the decision variables are: the number of workbenches with
equipment, the number of workbenches without equipment, the quantity of operators in a cell,
and existence there is raw material organization throughout the production process and whether
there are projects to update process design.

6.2 Definition of variable type and superior and inferior limits (Step 2)

For the first study object, the optimization decision variables were defined as the number of
kanbans necessary for the production cell (P1 and P2). In doing so, the variables were integers
with an upper bound of 10 and a lower bound of 1.

For the second study object, the decision variables represent the quantities of operators; thus,
these variables should be integers, with a lower bound equal to 1 and an upper bound equal
to 10.

As for the third object of the study, the first three decision variables selected are integers, with a
lower bound of 1 and an upper bound of 10. The fourth decision variable (the existence of raw
material organization) is binary, with a lower bound equal to 0 (no organization) and an upper
bound equal to 1 (organization).

Similarly for the fourth study object, the first three decision variables selected are integers, with
a lower bound equal to 1 and an upper bound equal to 10. The fourth decision variable (the
existence of raw material organization) is binary, with a lower bound equal to 0 (doesn’t exist)
and an upper bound equal to 1 (exists). The fifth decision variable (the existence of process
design activity update) is also binary, with a lower bound equal to 0 (no activity update) and an
upper bound equal to 1 (activity update).

6.3 Definition of the objective function (Step 3)

For the first study object, an objective function considering weekly production, the number of
kanbans and the work in progress is elaborated. The objective is to find the minimum number of
kanbans, for both of the analyzed pieces, which will guarantee to satisfy the company’s weekly
demand, maintain the minimum intermediary stock between productive stages while also maxi-
mizing the objective function. As such, it should be highlighted here that the objective function
in this case was linear. There are many mathematical models which propose kanban calculations
in order to dimension lean production system operation. On the other hand, there are also in-
dications that these quantities simply ensure the number of kanbans will enable the system to
function, rather than accurately calculating the minimum quantity of kanbans which meet sys-
tem demand while also ensuring that intermediate inventory is simultaneously maintained low
(Tubino, 1999).

For the second study object, an objective function for a contribution margin is generated, con-
sidering the revenue generated through weekly production and the cost of each of the utilized
operators. The objective is to find the minimum quantity of operators in order to maximize the
total number of pieces produced in a week of production for each of the operations A, B and C,
thus maximizing the contribution margin.
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For the third study object, an objective function for a contribution margin is elaborated, con-
sidering the revenue generated through weekly production and the cost of each of the obtained
decisions via the input variables. The objective is to find the minimum quantity of operators;
workbenches with and without set up, and verify whether it is worth the effort to organize the
process’s raw material in order to maximize the contribution margin.

Finally for the fourth study object, an objective function for contribution margin is elaborated,
assessing the revenue generated through weekly production and the cost of each of the obtained
decisions via the input variables. The study objective is to find the minimum quantity of operators
and workbenches with and without equipment, and also to verify if it is worth the effort to
organize the process’s raw material and carry out process design updates; all of these decisions
are evaluated in order to maximize the objective function’s contribution margin.

6.4 Definition of simulation parameters (Step 4)

SimRunnerr presents three optimization profiles: cautious, moderate and aggressive. Thus, the
processing times will be analyzed according to each of these profiles, along with the quality of
the solution found by the simulator. For each of these completed experiments, three replications
will be applied.

Additionally, in its configurations, SimRunnerr doesn’t permit definitions concerning the ge-
netic algorithm’s parameters. On the other hand, the proposed optimization method allows the
configurations of these parameters. As such, the following options were selected: crossover rate:
80%; mutation rate: 10%; number of replications: 3. It can be noted that the definitions for the
number of replications were the same as those applied to SimRunnerr, since the intention of
this article is to compare both optimization procedures.

It should be noted that these parameters were utilized in each of the four objects of the study
shown in this article.

6.5 Analysis of the solution (Step 5)

Figure 2 shows the comparison between the necessary processing times, considering one deci-
sion variable, for the optimization of each of the objects analyzed by the study. For each decision
variable, it can be noted that the proposed method of optimization was always the slowest, when
compared with the optimization profiles of SimRunnerr. Thus, it can be affirmed that the pro-
posed optimization method isn’t adequate for the manipulation of a lone decision variable.

Figure 3 shows a comparison between the necessary processing times, considering two decision
variables, for the optimization of each of the objects analyzed in the study. It can be noted that,
for two decision variables, the proposed optimization method was faster or similar to the pro-
cessing times of the moderate and cautious profiles of SimRunnerr. Thus, it can be asserted
that the proposed optimization method shows itself to be adequate for the simultaneous manipu-
lation of two decision variables. The proposed method was slower than the aggressive profile of
SimRunnerr.
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Figure 2 – Graphic with optimization processing times for one decision variable.

Figure 3 – Graphic with optimization processing times for two decision variables.

Similarly, Figure 4 shows a comparison between the necessary processing times considering
three decision variables, for the optimization of the second, third and fourth objects of study. It
can be noted that, for three decision variables, the proposed optimization method was faster or
similar to the processing times of the moderate and cautious profiles of SimRunnerr. Thus, it can
be asserted that the proposed optimization method is adequate for the simultaneous manipulation
of three decision variables. Thus, as in the prior case, the proposed method was slower than the
commercial optimizer’s aggressive profile.

Figure 5 shows the comparison between the necessary processing times considering four decision
variables, for the optimization of the third and fourth objects of study. It can be noted that for
four decision variables, the proposed optimization method was faster than the processing times
of the moderate and cautious profiles of SimRunnerr. Thus, it can be asserted that the proposed
optimization method is adequate for the simultaneous manipulation of four decision variables.
Thus, as in the prior case, the proposed method continued to be slower than the commercial
optimizer’s aggressive profile.
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Figure 4 – Graphic with optimization processing times for three decision variables.

Figure 5 – Graphic with optimization processing times for four decision variables.

Figure 6 shows the comparison between the necessary processing times considering five decision
variables, for the optimization of the fourth analyzed study object. It can be noted that, for five
decision variables, the proposed optimization method was faster than the processing times of
the moderate and cautious profiles of SimRunnerr. Thus, it can be asserted that the proposed
method of optimization is adequate for the simultaneous manipulation of five decision variables.
In relation to the aggressive profile, the proposed method remained slower, despite the difference
between the two having fallen.

Now that the proposed method’s behavior has been compared to the commercial optimization
software profiles in terms of convergence time, the results attained are presented in Table 3.
The results are grouped, and each study object’s optimization results are presented, considering
optimization with the proposed method and the three SimRunnerr (Aggressive, Moderate and
Cautious). In Table 3, the value found using simulation optimization (objective function value)
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Figure 6 – Graphic with optimization processing times for five decision variables.

and the values found for each decision variable are shown for each study object and the number
of decision variables in each analysis.

The optimization profile reflects the number of possible solutions that SimRunnerr will exam-
ine. The cautious profile considers the greatest number of solutions and is the most complete
in its search for optimal solutions. The aggressive profile works with small populations, thus
permitting a faster convergence while in turn, sacrificing response quality. Finally, the moderate
profile presents a balance between the Cautious and Aggressive profiles (SimRunner User Guide,
2002).

Table 3 shows that, in every case, the proposed method attained results with equal response
quality than those attained by the commercial software. Beyond that, the proposed method found
these results with less computational force (convergence time) when compared to the cautious
and moderate profiles. The only cases in which the commercial optimizer was faster than the
proposed method was with the Aggressive Profile, although in this case the response found by
SimRunnerr was always worse than the proposed method.

Thus, the proposed method is able to reach the same level of efficiency as the optimization
software SimRunnerr and its profiles Cautious and Moderate, while reaching responses of equal
quality or better than the Aggressive Profile. The proposed method is also more efficient than
the commercial software in terms of convergence time, with the exception of models with only
one response variable.

In reference to the profiles of SimRunnerr, response quality improved from the aggressive to
cautious profiles. It can be verified that the improvement seen in the SimRunnerr profiles is
directly related to the time necessary to arrive at the result. However, the best response was
found using the proposed optimization method.
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Table 3 – Optimization results with the proposed method and SimRunnerr.

Study
Number of

Proposed
SimRunnerr

object
decision

method Aggressive Moderate Cautious
variables

1st
1

9514 9511 9514 9514

x1 = 4 x1 = 5 x1 = 4 x1 = 4

2
9517 9513 9517 9517

x1 = 5, x2 = 3 x1 = 5, x2 = 5 x1 = 5, x2 = 3 x1 = 5, x2 = 3

2nd

1
421 421 421 421

x1 = 5 x1 = 5 x1 = 5 x1 = 5

2
433 433 433 433

x1 = 5, x2 = 4 x1 = 5, x2 = 4 x1 = 5, x2 = 4 x1 = 5, x2 = 4

3

453 421 442 453

x1 = 3, x2 = 4, x1 = 5, x2 = 5, x1 = 4, x2 = 4, x1 = 3, x2 = 4,

x3 = 3 x3 = 4 x3 = 4 x3 = 3

3rd

1
50,5 43,6 50,5 50,5

x1 = 3 x1 = 5 x1 = 3 x1 = 3

2
82,5 60,3 80,2 82,5

x1 = 3, x2 = 3 x1 = 6, x2 = 5 x1 = 4, x2 = 4 x1 = 3, x2 = 3

3

290,1 52,6 268,7 290,1

x1 = 3, x2 = 4, x1 = 7, x2 = 6, x1 = 4, x2 = 4, x1 = 3, x2 = 4,

x3 = 4 x3 = 5 x3 = 5 x3 = 4

4

290,1 290 290,1 290,1

x1 = 4, x2 = 4, x1 = 4, x2 = 4, x1 = 4, x2 = 4, x1 = 4, x2 = 4,

x3 = 3, x4 = 1 x3 = 4, x4 = 0 x3 = 3, x4 = 1 x3 = 3, x4 = 1

4th

1
169 169 169 169

x1 = 6 x1 = 6 x1 = 6 x1 = 6

2
172 170 172 172

x1 = 5, x2 = 6 x1 = 6, x2 = 6 x1 = 5, x2 = 6 x1 = 5, x2 = 6

3

740 720 730 740

x1 = 5, x2 = 5, x1 = 6, x2 = 6, x1 = 6, x2 = 6, x1 = 5, x2 = 5,

x3 = 3 x3 = 4 x3 = 6 x3 = 3

4

740 730 740 740

x1 = 5, x2 = 5, x1 = 5, x2 = 6, x1 = 5, x2 = 5, x1 = 5, x2 = 5,

x3 = 3, x4 = 1 x3 = 5, x4 = 1 x3 = 3, x4 = 1 x3 = 3, x4 = 1

5

740 730 740 740

x1 = 5, x2 = 5, x1 = 5, x2 = 6, x1 = 5, x2 = 5, x1 = 5, x2 = 5,

x3 = 3, x4 = 1, x3 = 5, x4 = 1, x3 = 3, x4 = 1, x3 = 3, x4 = 1,

x5 = 1 x5 = 0 x5 = 1 x5 = 1

7 CONCLUSION AND CONTRIBUTIONS FROM THE STUDY

This article’s contribution was to evaluate the proposed optimization method for discrete-event
simulation models, applied to manufacturing systems, and its capability in reaching the results
in the fastest form and with the same quality, when compared with commercial optimization
software.
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Despite the proposed method being based in metaheuristics (genetic algorithms), and therefore
not being able to assert that the result found is the global optimum, the method did show itself
to be as efficient as the commercial software (SimRunnerr) used as a basis for this study, while
also achieving this results much faster in the majority of cases.

Four objects of study were utilized in the application of the proposed optimization method. The
results found were compared with the commercially available optimization instrument, known as
SimRunnerr, through the optimization methodology for discrete-event simulation models pro-
posed by Harrel, Ghosh & Bowden (2000). In relation to the quality of the results, the proposed
optimization method showed itself to be as effective as SimRunnerr.

For a single decision variable, the proposed optimization method shows itself to be less efficient.
For two decision variables analyzed simultaneously, the method presented greater or equal ef-
ficiency. However, for three or more decision variables analyzed simultaneously, the proposed
method of optimization is always more efficient.

When compared to the cautious profile of SimRunnerr, the proposed optimization method for
the first object of the study, considering two decision variables, was around 46% faster. In relation
to the second study object, considering three decision variables, the method was around 51%
faster. For the third study object, considering four decision variables, the method was around
59% faster. Finally, for the fourth study object, considering five decision variables, the method
was around 80% faster.

Likewise, when compared to the moderate profile of SimRunnerr, the proposed optimization
method for the first study object, considering two decision variables, was around 38% faster. In
relation to the second study object, considering three decision variables, the method was around
24% faster. For the third study object, considering four decision variables, the method was
around 23% faster. Finally, for the fourth study object, considering five decision variables, the
method was around 50% faster.

The proposed method shows itself to be valid for the outlined conditions established for this
study, which consist in the manipulation of discrete, deterministic and integer decision variables.

It should be mentioned here that, in spite of the method not bringing an altogether new contribu-
tion to operational research, it does present an alternative to the existing optimization technique
available on the market, which is capable of quickly optimizing simulation models while still
offering high-quality solutions.

ACKNOWLEDGMENTS

The authors would like to thank the Federal University of Itajuba (UNIFEI), Sao Paulo State
University (UNESP) and Padtec Optical Components and Systems. Thanks are also due to the
Brazilian Federal Research Funding Agencies CAPES, CNPq and FAPEMIG.

Pesquisa Operacional, Vol. 32(3), 2012



“main” — 2012/12/4 — 15:08 — page 558 — #16

558 EVALUATION OF A PROPOSED OPTIMIZATION METHOD FOR DISCRETE-EVENT SIMULATION MODELS

REFERENCES

[1] AL-AOMAR R & AL-OKAILY A. 2006. A GA-based parameter design for single machine turning

process with high-volume production. Computers & Industrial Engineering, 50: 317–337.

[2] APRIL J, GLOVER F, KELLY JP & LAGUNA M. 2003. Practical introduction to simulation optimiza-

tion. In: Proceedings of the Winter Simulation Conference, New Orleans, LA, USA.

[3] BANKS J, CARSON JS, NELSON BL & NICOL DM. 2005. Discrete-event Simulation. 4th ed. Upper

Saddle River: Prentice-Hall.

[4] BANKS J. 2000. Introduction to Simulation. In: Proceedings of the Winter Simulation Conference,

Orlando, FL, USA.

[5] BANKS J. 2001. Panel Session: The Future of Simulation. In: Proceedings of the Winter Simulation

Conference, Arlington, VA, USA.

[6] DAMASO VC & GARCIA PAA. 2009. Testing and preventive maintenance scheduling optimization

for aging systems modeled by generalized renewal process. Pesquisa Operacional, 29: 563–576.

[7] FU MC. 2002. Optimization for Simulation: Theory vs. Practice. Informs Journal On Computing,

14: 199–247.
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