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ABSTRACT. The irregular strip packing problem is a common variant of cutting and packing problems.

Only a few exact methods have been proposed to solve this problem in the literature. However, several

heuristics have been proposed to solve it. Despite the number of proposed heuristics, only a few methods

that combine exact and heuristic approaches to solve the problem can be found in the literature. In this

paper, a matheuristic is proposed to solve the irregular strip packing problem. The method has three phases

in which exact mixed integer programming models from the literature are used to solve the sub-problems.

The results show that the matheuristic is less dependent on the instance size and finds equal or better

solutions in 87,5% of the cases in shorter computational times compared with the results of other models in

the literature. Furthermore, the matheuristic is faster than other heuristics from the literature.

Keywords: matheuristics, irregular strip packing, mixed integer programming models.

1 INTRODUCTION

Irregular cutting and packing problems have been extensively studied over the last five decades.
The problem consists of cutting irregular pieces from a given object. Overlaps between pieces
must be avoided, and the pieces must be entirely inside the object. The irregular strip packing

problem is a common variant of this problem where the object is a rectangular board with fixed
width and a length that is to be minimized. This problem is found in several industries, such as
garment and shoe manufacturing, sheet metal cutting and furniture. From an economic point of

view, the solution to the problem reduces the amount of material necessary to produce the pieces,
decreasing the waste and hence the production costs.

The irregular strip packing problem is NP-complete (Fowler et al., 1981), and because of its
difficulty only a few exact approaches have been proposed to solve it. Carravilla et al. (2003)
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presented an approach based on implicit enumeration and constraint logic programming. The

first mixed integer programming model was presented by Fischetti & Luzzi (2009). Alvarez-
Valdes et al. (2013) improved this last model and proposed a branch and cut method to solve
it. The authors also described a mixed integer programming model based on the compaction

model presented by Gomes & Oliveira (2006). A new MIP model that represents the board by a
mesh of dots (grid) was introduced by Toledo et al. (2013). In this model, the pieces can only be
positioned at the dots of a grid, and consequently, the solution optimality is subject to the grid

used. Recently, Leão et al. (2016) proposed a model where the pieces can be placed continuously
along the x-axis and at discrete positions along the y-axis to combine the best characteristics of
the previous models.

In contrast to the number of exact approaches, many heuristics have been proposed to solve the

problem. These methods can be classified as constructive heuristics or improvement heuristics
(Bennell & Oliveira, 2009). Constructive heuristics aim to build a solution to the problem using
some particular strategy. “Bottom-left-fill” heuristic (Burke et al., 2006), “2-exchange heuristic”

(Gomes & Oliveira, 2002) and “TOPOS” (Oliveira et al., 2000) are examples of constructive
heuristics. Given a feasible solution, improvement heuristics search for better-quality solutions.
The fast neighborhood search developed by Egeblad et al. (2007) and the simulated annealing
heuristic proposed by Oliveira & Ferreira (1993) are examples of improvement heuristics. A

complete review of heuristics is presented in Bennell & Oliveira (2009).

Recently, rather complex and sophisticated heuristic methods have been developed. Umetani et
al. (2009) presented an overlap minimization algorithm based on translations of pieces along ver-
tical and horizontal directions. The algorithm is incorporated into a guided local search in order to

solve the strip packing problem. Imamichi et al. (2009) proposed an iterated local search heuris-
tic to solve the problem. The local search swaps the position of a pair of pieces in the solution,
and a non-linear programming separation algorithm ensures non-overlap between the pieces. An

extended local search heuristic to solve the problem was proposed by Leung et al. (2012). Two
neighborhoods are used to change piece positions during the local search. The feasibility of the
solution is reached by non-linear programming separation and compaction models. To solve the

problem, Sato et al. (2012) proposed two constructive heuristics using the concept of collision-
free regions and identifying pieces that fit well. These heuristics are combined with a simulated
annealing algorithm in order to obtain better solutions. A compaction model is used to reduce

the length of the solutions obtained in each iteration of the algorithm. Elkeran (2013) proposed a
heuristic where in the first step the pieces are clustered in pairs and then a guided cuckoo search
heuristic is used to pack the pieces into the board. This heuristic achieves the best results in the

literature for the irregular strip packing problem.

Exact and heuristic methods have been successfully combined to solve combinatorial optimiza-
tion problems (Maniezzo et al., 2009). In this paper, a model-based heuristic is proposed to solve
the irregular strip packing problem. The method has three phases: construction, improvement

and compaction. In the constructive phase, a heuristic inspired on the relax-and-fix approach
combined with the dotted board model (Toledo et al., 2013) is applied to build an initial solution

Pesquisa Operacional, Vol. 36(3), 2016
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to the problem. Following the constructive phase, the improvement phase is applied. This phase

also uses the dotted board model that is now combined with a Variable Neighborhood heuristic to
find better-quality solutions. Finally, in the compaction phase, a model based on the compaction
model presented in Gomes & Oliveira (2006) with additional constraints is solved in order to

compact the solution found in the improvement phase removing some gaps resulting from the
grid dependence of the dotted board model.

The contributions of this paper are the following: (1) a method that constructs a solution for
instances with several items using an iterative procedure based on a mixed integer programming

model; (2) new constraints are proposed for the Toledo et al. (2013) model in order to perform
local searches with different grids. (3) Using a model based on Gomes & Oliveira (2006), a new
compaction model is proposed, and (4) a model where the pieces are continuously placed on the

board is integrated with models that consider pieces placed on discrete points.

This paper is organized as follows: section 2 provides a problem definition and describes the
dotted board model that is used in the solution method. The model-based heuristic is presented
in section 3. Section 4 contains the computational experiments performed on instances from the

literature. Finally, section 5 provides conclusions and presents some highlights.

2 PROBLEM DEFINITION

The irregular strip packing problem consists of cutting irregular pieces from a rectangular board
of fixed width (W ) and infinite length. The objective is to minimize the board length (L) used.

Each piece is represented by a set of points corresponding to its vertices. One of these vertices is

chosen to be its reference point, which is used to allocate the piece on the board. Given a piece of
type t at rotation r, consider lle f t

tr (lright
tr ), the horizontal distance from the leftmost (rightmost)

piece vertex to the reference point, and wbot tom
tr (wtop

tr ), the vertical distance from the bottom

(top) piece vertex to the reference point. These distances are important for defining the feasible
region in the board where the piece can be allocated. Figure 1 illustrates these constants.

(0,0)

llefttr lrighttr

wbottom
tr

wtop
tr tr

Figure 1 – Defining the constants l
le f t
tr , wbot tom

tr , l
right
tr and w

top
tr .

Two necessary conditions must be satisfied to guarantee the solution feasibility. The first, that the
pieces must not overlap, is ensured using the nofit polygon (NFP) structure. The construction of

Pesquisa Operacional, Vol. 36(3), 2016
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the NFP is illustrated in Figure 2. Considering the pieces t at rotation r and u at rotation s as

in Figure 2a, the NFPtr
us is the polygon drawn by the reference point of u while u orbits around

t , always touching but not overlapping t , as illustrated in Figure 2b. The complete NFPtr
us is

presented in Figure 2c. With this structure, verifying if the pieces t at rotation r and u at rotation

s overlap is now reduced to analyzing the relative position between the reference point of piece
u and the polygon NFPtr

us .

us

tr

tr

us

us

us

NFP tr
us

(a) (b) (c)

Figure 2 – The nofit polygon structure. (a) presents the pieces used to build the NFP , which is built in (b).

In (c), the NFP is displayed.

The second condition is that the pieces must be entirely inside the board. This condition is en-
sured with the inner-fit polygon (IFP) structure of a piece with respect to the board. The inner-fit

polygon of a piece t at rotation r (IFPtr ) represents all the positions where the reference point
of piece t at rotation r can be placed keeping the piece entirely inside the board, as shown in
Figure 3. In the figure, the gray area defines the IFPtr . Note that as we have an upper bound for

the board length L , the IFP limits the placement of the pieces. More details on these geometric
structures can be found in Bennell & Oliveira (2008).

tr

tr tr

IFPtr

0 L

Figure 3 – The inner-fit polygon structure.

In order to make this text self-contained, the dotted board model proposed in Toledo et al. (2013)

is presented next. For this model, the piece reference points can only be positioned on dots from
a given set D that represents the board. The refinement of this grid is defined by the constants gx

for horizontal distances and gy for vertical distances.

Pesquisa Operacional, Vol. 36(3), 2016
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To define the positioning of the pieces on the board, consider T a set of piece types, i.e., types of

pieces with different shapes. Consider alsoRt , the set of rotations of piece t . The binary variable
δd

tr is 1 if the reference point of a piece of type t ∈ T at rotation r ∈ Rt is on dot d ∈ D and 0
otherwise. It is important to highlight that the grid D is defined using the distances gx and gy.

The number of variables δd
tr depends on these constants. The feasible placement positions for

each piece type t at rotation r are the dots d ∈D inside IFPtr , which define the DIFPtr set.

For each pair of piece types t at rotation r and u at rotation s, the points that overlap when
piece t is placed at dot d ∈ DIFPtr are represented by dots inside NFPtr

us
⋂

IFPus , that is,

d ∈DNFPd,tr
us .

The Dotted Board Model (DBM) is the following:

min.: L (1)

s.t.: (dx + lright
tr ) × δd

tr ≤ L , d ∈DIFPtr , t ∈ T , r ∈ Rt , (2)

δd ′
us + δd

tr ≤ 1, d ′ ∈ DNFPd,tr
us , d ∈ DIFPtr , t, u ∈ T , r ∈ Rt , s ∈ Ru , (3)

∑

d∈DIFPtr ,r∈Rt

δd
tr = qt , t ∈ T , r ∈ Rt , (4)

δd
tr ∈ {0, 1}, d ∈DIFPtr , t ∈ T , r ∈ Rt , (5)

L ≥ 0. (6)

where dx is the x-coordinate of dot d .

The objective function (1) together with constraints (2) minimizes the board length. Constraints

(3) guarantee that the pieces do not overlap. Constraints (4) ensure that the demand qt for each
piece type t is met. The domain of the variables is defined by constraints (5) and (6). Further
details on the dotted board model can be found in Toledo et al. (2013).

The Dotted Board Model, (1)-(6), is independent on the type of grid that is used. In the following,

instead of using regular grids as in Toledo et al. (2013), the grid of dots based on the piece
dimensions proposed by Cherri et al. (2016) is used, aiming to reduce the number of board dots.

For each piece of type t ∈ T at rotation r ∈ Rt , a grid Dtr is created based on the constants
gtr

x and gtr
y that define the distance between the dots along the horizontal and vertical axes re-

spectively. The value of gtr
x is given by the minimum horizontal distance between each pair of

vertices of piece of type t at rotation r, but limited by the minimum grid resolution gmin. The
constant gtr

y is obtained by the same procedure, but by using the minimum vertical distance be-

tween each pair of vertices of piece of type t at rotation r. The minimum grid resolution impacts
directly the solution quality. The grid for each piece type t at rotation r is generated using the
constants gtr

x and gtr
y .

Figure 4 represents an example of a grid by piece generated for the piece type in Figure 4(a).

For this piece, gtr
y = 6 and gtr

x = 4. Along the vertical axis, the horizontal lines are generated
in intervals of gtr

y units and two starting points are used, the lowest point of the board (Fig. 4(b))
and the highest point of the board (Fig. 4(c)). This strategy ensures that the pieces can always

Pesquisa Operacional, Vol. 36(3), 2016
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touch the boundaries of the board. Along the horizontal axis, the vertical lines are equally spaced

by gtr
x units, starting from the leftmost point of the board (Fig. 4(d)). The Dtr set comprises the

intersection points between the horizontal and vertical lines.

(0, 0)

(10, 6)

(4, 12)(0, 12)

Δx = 4.0
Δy = 6.0

. . .

. . .

(0, 0)

(0, 6)

(0, 20)

. . .

. . .

(0, 0)

(0, 2)

(0, 8)

. . .

. . .

(4, 0) (8, 0)

(a) (b) (c) (d)

Figure 4 – Building the mesh by piece for the piece in (a)

3 3-PHASE MATHEURISTIC (3PM)

The 3-Phase Matheuristic is based on two mathematical models, the Dotted Board Model of
(Toledo et al., 2013) and the compaction model of Gomes & Oliveira (2006). Our objective is

to obtain good-quality solutions in a short computational time. The proposed method has three
phases:

• Constructive Phase: finding an initial feasible solution using the Dotted Board Model;

• Improvement Phase: improving the initial solution using the Dotted Board Model;

• Compaction Phase: improving the best solution found so far using the linear compaction

model.

In the subsections (3.1)-(3.3), the three phases of 3PM are described in detail.

3.1 3PM – Constructive Phase

The objective of the constructive phase is to build an initial feasible solution for the problem.
The grid used is a grid by piece with a minimum resolution gmin, large enough to ensure a good

trade-off between the computational time and solution quality. The value of gmin was defined
using preliminary computational experiments.

This phase is based on the relax-and-fix strategy. Consider the decision variables δd
tr , which are 1

(one) if a piece of type t at rotation r is assigned to dot d and 0 (zero) otherwise. These variables

are split into four sets:

�) set of variables associated with pieces that are already fixed on the board;

Pesquisa Operacional, Vol. 36(3), 2016
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�) set of variables associated with pieces that are positioned on the board, but can still perform

some movements;

�) set of variables associated with pieces that can be freely positioned on the board;

�) set of variables associated with waiting pieces, that are not considered in the resolution
step.

Initially, sets �, � and � are empty, set � includes all the pieces, and the parameters μ and μ′,
the limits in the x-axis for the sets � and �, are set to zero.

In each step of the constructive phase a small number of pieces belonging to the set � is assigned
to �, the sets � and � are redefined based on the parameters μ′ and μ, i.e. the pieces with the
reference point positioned in the interval [0, μ′) define set �, the pieces with the reference point

positioned in the interval [μ′, μ] define set �, and the sub-problem defined by the sets �, � and
� is solved. In the final step, set � is empty and a feasible solution to the complete problem is
obtained by solving the associated sub-problem.

Figure 5 illustrates the steps of the constructive phase based on an example with seven piece

types and a total of 29 pieces. The pieces associated with sets � and � are represented in black
and dark gray, respectively. The pieces in set � are represented in white above the board and
the number of repetitions is written below each piece. The pieces in light gray, at the right-hand

side of the board, represent set �. In Figure 5(a) sets �, � and � are empty. In Figure 5(b),
some pieces from the set � are selected to form set �. Figure 5(c) represents the solution for the
problem in Figure 5(b), the set � and the new set �.

Figure 5(d) shows the solution of sub-problem in 5(c) where the pieces with reference point in the

interval [0, μ) are fixed and new pieces are positioned on the board. The solution of the complete
problem is presented in Figure 5(e).

In each step, a subset of elements from set � is selected for set �. The size of these subsets is
σ , a number small enough to provide a fast solution and big enough for the pieces to fit well.

Furthermore, the size is calculated so as to reduce the difference between the sizes of the subsets,
and details are provided in Section 4.1. To form each set �, the pieces are included one by one
in the subset. The piece type selected is the one with the largest rate:

number of pieces of type t in the set �

number of pieces of type t in the instance (qt )
, ∀t ∈ T .

This criterion was used in order to homogeneously distribute the different piece types in the
solution.

To define each sub-problem model, consider subsets M ⊂ D and W ⊂ D containing the board
dots in the intervals [0, μ′) and [μ′, μ], respectively. The previous step solution is defined by

δd
tr , d ∈ D, t ∈ T , r ∈ Rt . Note that � = {(d, t, r), δd

tr = 1, d ∈ M, t ∈ T , r ∈ Rt } and
� = {(d, t, r), δd

tr = 1, d ∈ W , t ∈ T , r ∈ Rt }. The partial demand is represented by qt ,
t ∈ T , that is, the number of pieces of type t in the sets �, � and �. Finally, αt is the number of

Pesquisa Operacional, Vol. 36(3), 2016
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Step 1

x5 x4 x4 x4 x4 x4 x4

(a)

Step 2

x3 x2 x2 x3 x3 x3 x3

(b)

Step 3

x2 x1 x1 x1 x1 x1 x2

μμ′

allocated
pieces

(c)

Step 4

x0 x0 x0 x0 x0 x0 x0

μ′ μ

fixed
pieces

allocated
pieces

(d)

Last step

feasible solution

(e)

Fixed pieces (Γ) Allocated pieces (Δ) Free pieces (Θ) Waiting pieces (Ω)

Figure 5 – Steps of the Constructive Phase.

pieces of type t with the reference point in subsetW . The constructive phase model (3PM–CPM)

is given by (7)-(10):

min.: L (7)

s. t.: (2), (3), (5), (6),
∑

d∈IFPtr ,r∈Rt

δd
tr = qt , t ∈ T , (8)

∑

δ̄d
tr =1,d∈W

(1 − δd
tr ) +

∑

δ̄d
tr =0,d∈W

δd
tr ≤ αt , t ∈ T , r ∈Rt , (9)

δd
tr = 1, (d, t, r) ∈ �. (10)

In the model (7)-(10), constraints (8) ensure that the partial demand will be met. Constraints
(9) restrict the movements over the variables of set W . Specifically, one move is counted when
a piece previously allocated in set W is moved outside set W or when a piece from set � is

allocated into set W . Two moves are counted when a piece previously allocated in set W is
moved into set W . The upper bound for the moves is αt . Constraints (10) fix to the board the
pieces types with the reference point positioned on a dot from the setM. Algorithm 1 summarizes

the constructive phase.

Pesquisa Operacional, Vol. 36(3), 2016
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Algorithm 1 Constructive phase
Input: Sets D, T and �;
Output: A feasible solution δ = {(d, t, r)|δd

tr = 1};
Initialize:

Calculate σ (number of pieces to form �);
Do δ = 0, μ′ = μ = 0;

Constructive phase:
While (� �= ∅)

Define the subsetsM and W ;

Do � = ∅;
Remove min{σ, |�|} pieces from the set � and insert them into the set �;
Solve the sub-problem (CPM) obtaining the solution δ with value L;

Do μ′ = μ and μ = L ;
Return δ as the solution.

3.2 3PM – Improvement Phase

The Improvement Phase starts with the solution of the Constructive Phase and it is also performed
in steps. In the first step, gmin is equal to that used in the constructive phase, and after each step,

gmin is divided by two. Note that, as stated in Section 2, gmin is only a lower bound of the
grid resolution value. At the end of each step, the dots that contain reference points of pieces
allocated are included into the grid of the next step. This ensures that the best solution found so

far is feasible for the next step and leads to a good initial solution for the search. The search ends
when gmin is smaller than a threshold mr. In each step, a variable neighborhood descent heuristic
(VND) is applied to improve the quality of the best solution found so far.

The VND heuristic is defined by applying successive local search procedures over K different

neighborhoods. The choice of a neighborhood is performed in a deterministic way. A final so-
lution is a local optimum with respect to all K neighborhoods. The neighborhoods are defined
allowing the pieces to move in the dots that are inside a small board region around the solution of

the previous step, δ = {(d, t, r) | δ
d
tr = 1}. The shape of these regions defines the neighborhood

that will be explored during the search. The first neighborhood is a small square with its center
in the dot where the piece was positioned. The second neighborhood is a rectangle with the same
height as the width of the board. The width of the rectangle is chosen so that the number of dots

in the region is limited by md . Finally, the third neighborhood is a rectangle with the length of
the board. The height of the rectangle is also chosen so that the number of dots in the region is
limited by md . Figure 6 illustrates these three neighborhoods, where the dot represents the piece

reference point and the highlighted rectangle the region where this reference point can move.

These three neighborhoods were chosen in order to explore a diversified set of dots and then find
better solutions. The first neighborhood is small and hence results in a fast search. The second

Pesquisa Operacional, Vol. 36(3), 2016
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Figure 6 – Representation of the neighborhoods for a piece reference point.

neighborhood is created to allow the pieces to move vertically. Finally, the third neighborhood
aims to change the piece’s position over the layout length.

The sequence of the neighborhoods starts by the first neighborhood to restrict the feasible piece
placement and then solve the problem. If the solution is not better than the best solution found
so far, then the second neighborhood structure is applied. If the search over the second neigh-

borhood structure does not improve the solution quality, then the third neighborhood structure is
applied. If the third neighborhood does not improve the solution quality, then the step is termi-
nated. During the process, if any of the three neighborhoods yields a solution better than the best
solution found so far, then the search process restarts with the first neighborhood.

Each neighborhood can be represented by a model. Consider 	d
tr as the set of dots belonging to

one neighborhood of dot d where the reference point of piece t at rotation r was allocated in the
previous iteration. The improvement phase model (3PM-IPM) is given as follows.

min.: L (11)

s.t.: (2), (3), (4), (5), (6),

δd ′
t ′r ′ = 0, (d ′, t ′, r ′) ∈ {D \ 	d

tr }, t ∈ T , r ∈ Rt , d ∈D. (12)

Constraints (12) limit the search domain to move each piece within the chosen neighborhood.
Given a feasible solution δ, the best solution of the model (11)-(12) is its best neighbor.

When there are no more neighborhoods to explore in VND, the grid is refined. With more dots

to represent the board, there is a new range of feasible placement positions for each piece. The
VND heuristic is performed again to improve the solution further. Algorithm 2 summarizes the
improvement phase.

3.3 3PM – Compaction Phase

As the solution obtained in the Improvement Phase has the piece reference points positioned on

specific dots, gaps may appear between pieces. Taking this into account, a compaction of this
solution is essential to move the pieces as close as possible to each other. To compact a solution,
we use the mixed integer linear model based on Gomes & Oliveira (2006) with some additional

constraints. In this model, the positioning of each piece reference point is represented by a pair
of continuous variables (xi , yi). To avoid overlaps between pieces i and j , the authors consider
the set Ei j with all the lines that contain an edge of NFPi j ; then, an integer variable vi je is used

Pesquisa Operacional, Vol. 36(3), 2016



�

�

“main” — 2017/1/2 — 16:44 — page 457 — #11
�

�

�

�

�

�
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Algorithm 2 Improvement phase

Input: Set T ; initial resolution gmin; threshold mr; a solution δ and its value L;
Output: Improved solution δ;
Initialize:

Choose the first neighborhood, Neigh = 1;
Improvement phase:

While (gmin > mr)

Define D using gmin;
Add the dots of δ to D;
While (Neigh ≤ 3)

Find δ′ the best neighbor solution of δ using the neighbourhood Neigh;

If (L ′ ≥ L), Do Neigh = Neigh + 1;
else, Do Neigh = 1; δ = δ′; L = L ′;

Do gmin = gmin/2;

Return solution δ;

to ensure that the pieces are on different sides of at least one of the lines e ∈ Ei j . More details on
this model can be found in Gomes & Oliveira (2006) and Alvarez-Valdes et al. (2013). In order
to define the additional constraints to be added to the Gomes & Oliveira (2006) model, consider

the pieces individually, i.e., each piece is mapped according to its type and rotation by an unique
integer. The total number of pieces is given byN = ∑

t∈T ,r∈Rt
dtr . All the pieces can be found

on the interval [1,N ]. In addition, consider xi (yi ), i = 1, . . . ,N , the position on the x-axis

(y-axis) for each δ
d
t = 1, ∀d ∈ D. The new constraints imposed in Gomes & Oliveira (2006)

model ensure that the pieces can move only over a small region of the board. These regions are
defined as squares around the points where each piece is positioned. The side λi of each square
is given based on the size of the bounding box of each piece i and the number of pieces allocated

and is defined in Section 4.1.

The Compaction Phase Model (3PM-CPM) is given as (13)-(19):

min.: L (13)

s.t.: lle f t
i ≤ xi ≤ L − lright

i , i = 1, . . . ,N , (14)

w
top
i ≤ yi ≤ W − wbot tom

i , i = 1, . . . ,N , (15)

αi je(x j − xi) + βi je(y j − yi )

≤ γi je + Big M(1 − vi je), 1 ≤ i < j ≤ N , ∀e ∈ Ei j , (16)
∑

e∈Ei j

vi je ≥ 1, 1 ≤ i < j ≤ N , (17)

xi − λi ≤ xi ≤ xi + λi , i = 1, . . . ,N , (18)

yi − λi ≤ yi ≤ yi + λi , i = 1, . . . ,N , (19)

vi je ∈ {0, 1}, ∀i, j = 1, . . . ,N , ∀e ∈ Ei j , (20)
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xi , yi ≥ 0, i = 1, . . . ,N , (21)

L ≥ 0. (22)

where αi je, βi je and γi je are the coefficients of the line e associated with an edge of NFPi j and
Big M is large enough to make the constraint (16) a dummy constraint if vi je = 0.

Constraints (14) associated with (13) define the objective function. Constraints (14) and (15)

ensure that the piece is entirely inside the board, and constraints (16) and (17) guarantee that
the pieces do not overlap. Constraints (18) and (19) allow the piece to move only within a given
square. Finally, the variable domains are given by (20), (21) and (22).

The compaction phase is an iterative process, i.e., if an improved solution is found at the end of

the compaction, the compaction is run again, starting from this improved solution. Algorithm 3
presents an outline of the compaction phase.

Algorithm 3 Compaction phase

Input: A feasible solution δ;

Output: Compacted solution (x, y) and L ;
Initialize:

Obtain x, y and L from δ;

Define λi ;
Compaction phase:

Do

Solve the C P M model obtaining the solution x′, y′ and length L ′;
If (L ′ < L)

Do x = x′, y = y′, L = L ′ and L ′ = 0
Until (L ′ ≥ L)

Return (x, y) and L as the solution.

4 COMPUTATIONAL RESULTS

The computational experiments were performed on an Intel(R) Xeon(R) E5-2620 2.00GHz pro-
cessor with 64 GB of memory running an Ubuntu 12.04 operating system. The methods were

implemented in the C/C++ programming language, and the mathematical models were solved
using IBM ILOG CPLEX 12.5. To perform the tests, instances from the literature, presented in
Table 1, were used. The first column presents the instance name. Columns two and three present

the number of piece types and the TOTAL number of pieces, respectively. The available rotations
for the pieces and the height of the board are, respectively, presented in columns four and five.
Finally, column six presents the reference in the literature of the instance.

The following subsection presents the parameters used to run the matheuristic. An analysis of the

proposed matheuristic showing the influence of each phase in the solution method is presented

Pesquisa Operacional, Vol. 36(3), 2016
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Table 1 – Instances used in the benchmark.

Name
Piece Pieces

Rotations
Board

Reference
types quantity height

Albano 25 25 0,90,180,270 4900 Albano & Sapuppo (1980)
Mao 9 20 0,90,180,270 2550 Bounsaythip & Maouche (1997)

Marques 8 24 0,90,180,270 104 Marques et al. (1991)
Trousers 17 64 0,180 79 Oliveira & Ferreira (1993)

Jakobs1 25 25 0,90,180,270 40 Jakobs (1996)

Jakobs2 25 25 0,90,180,270 70 Jakobs (1996)
Fu 12 12 0,90,180,270 38 Fujita et al. (1981)

Poly1a0 15 15 0 40 Hopper (2000)
Shapes0 4 43 0 40 Oliveira et al. (2000)

Shapes1 4 43 0,180 40 Oliveira et al. (2000)
Shapes2 7 28 0,180 15 Oliveira et al. (2000)

Blaze<i> 7 7× < i > 0 15 Toledo et al. (2013)
Shapes T< i > 4 8 0 40 Toledo et al. (2013)

RCO< i > 7 < i > 0 15 Toledo et al. (2013)
Shapes AV4 4 4 0 20 Alvarez-Valdes et al. (2013)

Shapes AV8 4 8 0 13 Alvarez-Valdes et al. (2013)
Fu< i > < i > < i > 0 38 Alvarez-Valdes et al. (2013)

threep< i >w< j > 3 3× < i > 0 < j > Alvarez-Valdes et al. (2013)

in Subsection 4.2. The proposed matheuristic performance is compared with exact models and
heuristic methods in Subsections 4.3 and 4.4, respectively.

4.1 Defining parameters and sets

In this section, the parameters used in the matheuristic are defined. These parameters were chosen

based on preliminary computational experiments and on the features of each instance.

The initial value of gmin is two in order to generate a grid with a limited number of dots. The idea
is to lead the constructive phase to quickly obtain a solution. This parameter can generate some
gaps among the pieces, but these gaps should be reduced in the improvement phase.

In each step of the constructive phase, σ elements of � must be selected to form �. The idea is

to define σ such that the subsets � of each iteration have a similar number of elements. After
preliminary tests, we verified that problems with five pieces (in absolute number) or less are
solved very fast using the model while problems with more than 12 pieces are difficult to solve

within a time span adequate for a constructive phase. The value of sigma is defined as stated in
Algorithm 4, where a mod b is the remainder of the division of a by b.

In Algorithm 4, if the instance has less than five pieces, only one set with all the pieces is created.
Otherwise, the subset size is given by the largest integer number σ ∈ [5, min(12,

∑
t ∈ T qt −1)]

so that the remainder of
∑

t∈T qt/σ is zero. If the remainder is not zero, σ is chosen such that

Pesquisa Operacional, Vol. 36(3), 2016
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Algorithm 4 Defining sigma
Input: Set �, demand qt , t ∈ T ;
Output: σ ;

If (|�| ≤ 5)
Return (|�|);

Else
Do σ = 5; sq = ∑

t∈T qt ;
Do s = min{12, sq};
While (s ≥ 6) do

If (sq mod s = 0)
Do σ = s;

Return (σ );
Else if (sq mod s ≥ sq mod σ )

Do σ = s;

Do s = s − 1;
Return (σ );

the remainder is the largest possible, ensuring that the number of pieces in the final step will be
the largest possible.

After the constructive phase, the improvement phase runs while gmin ≥ mr, where mr = 0.5 to
make the pieces closer to each other. The number of dots in each neighborhood of the improve-
ment phase must not be larger than the parameter md . In the initial tests, md = 3000, which
results in the improvement model performing a fast local search.

Several preliminary tests were run to determine the value of λi for each piece of type i, where λi

is a parameter of the compaction phase model (CPM). Depending on the position of the pieces
and on the size of the region where these pieces can move, a pair of pieces could even change
their relative positions.

These values are based on i) the number of pieces in the instance and ii) the size of the piece
bounding box.

• For instances with less than 13 pieces the square around the reference point of piece i has
a side equal to λi = max(lle f t

i + lright
i , wbot tom

i + wtom
i );

• For instances with 13 to 20 pieces the square around the reference point of piece i has a
side equal to λi = max(lle f t

i + lright
i , wbot tom

i + w
top
i )/2;

• For instances with more than 20 pieces the square around the reference point of piece i has
a side equal to λi = min(lle f t

i + lright
i , wbot tom

i + w
top
i )/2.

Pesquisa Operacional, Vol. 36(3), 2016
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4.2 Analysing the phases of 3PM

To demonstrate the importance of each phase of the 3PM, in Table 2, we summarize the results of
each phase. The instance name is in the first column. In columns two and three, the constructive
phase solution and time are shown. Columns four and five show the improvement phase solu-
tion and its time, respectively. The improvement rate, the time increase and the percentage by
which the computational time increases from the constructive phase to the improvement phase
are depicted in columns six, seven and eight. In columns nine and ten, the solution value and
its computational time are presented. Columns eleven, twelve and thirteen describe the improve-
ment rate, the additional time and the percentage that the computational time increases compared
with the constructive plus improvement phases.

As expected, the constructive phase obtained a solution with poor quality but in a short computa-
tional time. Applying the improvement phase to the constructive phase solution on average leads
to 19% improvement in the solution quality. The computational time increases by 171.8 seconds
on average, varying from 0.1 to 2301 seconds depending on the instance.

On average, the solutions found by the complete matheuristic are 9.7% better when compared
to the solutions found by the improved constructive phase. Furthermore, the computational time
increases by 200 seconds on average, varying from 0.1 to 1294 seconds depending on the in-
stance. Specifically, the compaction phase leads on average to 9.7% improvement in the solution
quality; however, the computational time doubles.

Based on the results, it can be concluded that the compaction phase obtains better solutions.
However, if a fast solution that has good quality is needed and less computational time is avail-
able, the construction phase followed by the improvement phase should be used. If a more
accurate solution is desired and using more computational time is not a problem, the complete
solution method should be applied to the problem.

A variation of this matheuristic composed of only the construction and compaction phases was
studied. The quality of the solutions obtained by thus variation was always worse than that of the
complete matheuristic.

4.3 Performance of the matheuristic compared with mixed integer models

In this section, we analyzed the quality of the matheuristic solutions compared with the ex-
act branch and cut method applied to three models from the literature. Table 3 presents the
results for solving instances using the HS2 model from Alvarez-Valdes et al. (2013), the semi-
continuous model (SCM) from Leão et al. (2016), the dotted board model (DBM) from Toledo
et al. (2013) with the grid by pieces and by the proposed matheuristic. The results of HS2 and
SCM were taken from Alvarez-Valdes et al. (2013) and Leão et al. (2016), respectively. The
specifications of their processor are better than the one used to solve the DBM and the proposed
matheuristic3. Consequently, a comparison of the results is not unfair from the computational
perspective. Moreover, each exact method was run for one hour.

3verified in www.cpubenchmark.net/
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Table 2 – Evolution of solution values and time for the different phases of the 3PM.

Constructive Constructive +

Instance phase improvement Add. Time 3PM Add. Time

Sol. Time Sol. Time Impr. time inc.(%) Sol. Time Impr. time inc.(%)

Blaze1 18.0 0.1 12.0 1.9 33.3% 1.8 94.7% 7.4 23.3 38.3% 21.5 92.3%

Blaze2 16.0 1.0 14.0 8.7 12.5% 7.7 88.5% 14.0 68.9 0.0% 60.2 87.4%

Blaze3 24.0 1.6 21.0 38.8 12.5% 37.2 95.9% 20.5 340.2 2.6% 301.4 88.6%

Blaze4 32.0 2.2 29.0 35.0 9.4% 32.7 93.4% 27.9 517.6 3.9% 482.6 93.2%

Blaze5 40.0 2.7 34.0 153.5 15.0% 150.8 98.2% 34.0 395.2 0.1% 241.7 61.2%

Shapes T2 30.0 1.2 16.0 7.0 46.7% 5.8 82.9% 14.0 8.1 12.5% 1.1 13.6%

Shapes T4 30.0 4.1 30.0 10.4 0.0% 6.3 60.6% 26.0 201.5 13.3% 191.1 94.8%

Shapes T5 36.0 7.5 31.0 45.6 13.9% 38.1 83.6% 31.0 106.0 0.0% 60.4 57.0%

Shapes T7 60.0 9.9 42.0 116.1 30.0% 106.2 91.5% 42.0 176.3 0.0% 60.3 34.2%

Shapes T9 71.0 10.2 48.0 170.6 32.4% 160.3 94.0% 48.0 292.3 0.0% 121.7 41.6%

RCO1 14.0 0.1 8.0 4.2 42.9% 4.1 97.6% 8.0 44.4 0.0% 40.3 90.8%

RCO2 16.0 0.5 16.0 2.1 0.0% 1.6 76.2% 15.0 254.5 6.3% 252.5 99.2%

RCO3 24.0 1.2 24.0 4.6 0.0% 3.4 73.9% 22.0 264.7 8.3% 260.1 98.3%

RCO4 32.0 2.1 30.0 33.0 6.3% 30.9 93.6% 29.0 83.1 3.3% 50.1 60.3%

RCO5 40.0 4.7 37.0 29.8 7.5% 25.0 83.9% 36.7 210.2 0.9% 180.5 85.9%

Shapes AV4 24.0 0.6 24.0 2.1 0.0% 1.6 76.2% 24.0 2.2 0.0% 0.1 4.5%

Shapes AV8 41.0 0.8 30.0 5.5 26.8% 4.7 85.5% 26.0 186.9 13.3% 181.4 97.1%

Fu5 20.0 0.1 20.0 0.3 0.0% 0.2 66.7% 17.9 1.0 10.6% 0.7 70.0%

Fu6 56.0 0.1 28.0 30.5 50.0% 30.4 99.7% 23.0 31.7 17.9% 1.2 3.8%

Fu7 70.0 0.1 28.0 3.9 60.0% 3.9 100.0% 24.0 5.0 14.3% 1.1 22.0%

Fu8 49.0 0.1 28.0 19.5 42.9% 19.4 99.5% 24.0 20.9 14.3% 1.4 6.7%

Fu9 56.0 0.1 30.0 26.7 46.4% 26.5 99.3% 25.0 52.3 16.7% 25.7 49.1%

Fu10 42.0 0.2 30.0 25.7 28.6% 25.5 99.2% 28.7 265.9 4.4% 240.3 90.4%

Fu12 45.0 0.4 42.0 2.1 6.7% 1.7 81.0% 33.5 186.7 20.4% 184.6 98.9%

threep1w7 6.5 0.6 6.5 1.4 0.0% 0.8 57.1% 6.0 2.5 7.7% 1.0 40.0%

threep2w7 13.5 0.3 11.5 2.4 14.8% 2.1 87.5% 9.3 12.4 18.9% 10.1 81.5%

threep3w7 20.0 0.3 17.0 1.1 15.0% 0.8 72.7% 13.5 183.1 20.4% 182.0 99.4%

threep2w9 12.0 0.1 10.0 0.6 16.7% 0.6 100.0% 8.0 36.2 20.0% 35.5 98.1%

threep3w9 18.0 0.3 13.0 1.9 27.8% 1.6 84.2% 11.0 191.2 15.4% 189.4 99.1%

Shapes0 68.0 33.9 60.0 178.6 11.8% 144.7 81.0% 60.0 239.1 0.0% 60.5 25.3%

Shapes1 62.0 424.4 58.0 1011.6 6.5% 587.2 58.0% 58.0 1132.7 0.0% 121.1 10.7%

Shapes2 31.0 7.2 28.0 130.1 9.7% 122.8 94.4% 27.6 310.7 1.5% 180.6 58.1%

Fu 40.0 5.6 40.0 9.6 0.0% 4.0 41.7% 32.0 252.3 20.0% 242.7 96.2%

Poly1a0 33.0 17.4 18.0 732.9 45.5% 715.5 97.6% 15.8 1048.8 12.2% 315.9 30.1%

Jakobs1 25.0 21.7 15.0 184.0 40.0% 162.4 88.3% 12.0 612.9 20.0% 428.8 70.0%

Jakobs2 36.0 34.1 30.0 645.2 16.7% 611.2 94.7% 26.0 1939.0 13.3% 1293.8 66.7%

Albano 12168.0 14.2 12168.0 342.1 0.0% 328.0 95.9% 10608.0 1614.1 12.8% 1272.0 78.8%

Mao 2315.0 21.0 2294.0 2321.8 0.9% 2300.9 99.1% 1927.2 2621.8 16.0% 300.0 11.4%

Marques 85.0 100.1 85.0 273.2 0.0% 173.1 63.4% 80.0 527.9 5.9% 254.7 48.2%

Trousers 439.0 229.9 296.0 1222.1 32.6% 992.2 81.2% 286.0 1403.7 3.4% 181.7 12.9%

Average 19.0% 171.8 85.3% 9.7% 200.8 61.7%
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In Table 3, the first column presents the instance names. The second and third (fourth and
fifth) columns present, respectively, the solution and time to prove the solution optimality of
the Alvarez-Valdes et al. (2013) model (Leão et al. (2016) model). Similarly, columns six and
eight show the solution and time to prove the optimality of the dotted board model. Column seven
depicts the time that this model took to find the best solution of the search. Finally, in columns
seven and eight, the solution obtained by the proposed matheuristic method and its computational
time are shown.

The proposed matheuristic obtained better or equal solutions in 34 out of 40 instances when
compared with the best solutions of the other three methods. In the table, the best solution values
are highlighted. Compared only with the dotted board model, the proposed matheuristic yielded
better results for 27 out of 40 instances. For the majority of the instances, the compaction phase
makes a difference by removing some gaps from the grid dependence of the dotted board model,
resulting in better-quality solutions.

The computational time of the matheuristic is less than that of the HS2 model and SCM model
only in the larger instances. In fact, this occurs because for small instances, the exact method
can quickly find and prove the optimality of a solution while the matheuristic method needs to
accomplish all three phases. Comparing the computational time of the dotted board model and
the matheuristic, it can be observed that the exact method spends less time on small instances.
The reason for this is the same as that for the HS2 and SCM model. It is important to highlight
that in several cases, the matheuristic obtained better solutions than the dotted board model as
the model depends on the grid used. Its improvement in terms of the solution quality is more
distinguishable for the large instances.

The advantage of the 3-Phase Matheuristic is that in comparison with the exact approaches, the
time to achieve the objective is less biased by the instance size.

As the constructive and improvement phases are based on the dotted board model, instances with
many different piece types and/or huge boards such as Albano, Mao and Jakobs2 can lead to
longer solution times in these phases of the solution method. Moreover, in the compaction phase,
the model used does not take advantage of pieces of the same type, making instances as Trousers,
Shapes1 and Shapes0 more difficult to solve in this phase.

On the other hand, the additional constraints included in the models of each phase attempt to
overcome the problem, reducing the computational times. Additionally, the interactions between
the approaches aim to benefit the solution quality.

4.4 Performance of the matheuristic compared with those of other heuristics

In this section, the computational experiments comparing the proposed matheuristic and the
heuristics of Leung et al. (2012) and Elkeran (2013) are presented. The results presented by
heuristics from Umetani et al. (2009), Imamichi et al. (2009) and Sato et al. (2012) are available
in Appendix A.
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Table 3 – Comparison of the results of the exact methods with the 3-Phase Matheuristic (3PM).

Instance
HS21 SCM2 DBM 3PM

Solution Time Solution Time Solution Time (find) Time Solution Time

Blaze1 – – 7.5 4.9 7.5 12.0 23.3 7.4 23.3

Blaze2 – – 13.8 TL 14.0 15.1 15.2 14.0 68.9

Blaze3 – – 20.7 TL 21.0 80.3 674.0 20.5 340.2

Blaze4 – – 29.0 TL 27.0 1068.0 1239.2 27.9 517.6

Blaze5 – – 37.7 TL 34.0 540.5 TL 34.0 395.2

Shapes T2 – – 14.0 6.6 16.0 0.5 1.7 14.0 8.1

Shapes T4 – – 28.0 TL 26.0 58.4 89.1 26.0 201.5

Shapes T5 – – 34.0 TL 30.0 340.6 365.0 31.0 106.0

Shapes T7 – – 52.0 TL 42.0 2901.0 TL 42.0 176.3

Shapes T9 – – 57.0 TL 49.0 3482.6 TL 48.0 292.3

RCO1 – – 8.0 5.8 8.0 0.6 0.7 8.0 44.4

RCO2 – – 15.0 TL 15.0 1.2 1.3 15.0 254.5

RCO3 – – 23.0 TL 22.0 10.7 13.2 22.0 264.7

RCO4 – – 32.3 TL 29.0 16.7 394.0 29.0 83.1

RCO5 – – 38.0 TL 36.0 164.6 936.2 36.7 210.2

Albano – – – – 11088.0 592.4 592.4 10608.0 1614.1

Fu – – – – 35.0 53.1 53.1 32.0 252.3

Jakobs1 – – – – 18.0 3285.3 TL 12.0 612.9

Jakobs2 – – – – 30.0 596.2 TL 26.0 1939.0

Mao – – – – 2452.0 99.7 TL 1927.2 2621.8

Marques – – – – 88.0 1827.9 TL 85.0 527.9

Shapes0 – – 78.0 TL 64.0 3590.5 TL 60.0 239.1

Shapes1 – – – – 80.0 98.9 TL 58.0 1132.7

Shapes2 – – – – 27.0 900.4 TL 27.6 310.7

Trousers – – – – 495.0 218.4 TL 286.0 1403.7

Poly1a0 16.6 TL 16.7 TL 17.0 3586.2 TL 15.8 1048.8

Shapes AV4 24.0 0.0 – – 24.0 1.7 1.7 24.0 2.2

Shapes AV8 26.0 272.0 – – 28.0 18.5 21.5 26.0 186.9

Fu5 17.9 0.1 17.9 76.3 20.5 2.8 3.4 17.9 1.0

Fu6 23.0 0.5 23.0 442.9 24.0 6.0 10.4 23.0 31.7

Fu7 24.0 1.0 24.0 TL 28.0 0.1 0.2 24.0 5.0

Fu8 24.0 1.3 24.0 TL 28.0 0.2 1.0 24.0 20.9

Fu9 25.0 70.0 25.0 TL 28.0 0.4 0.4 25.0 52.3

Fu10 28.7 3064.0 30.0 TL 30.0 0.8 0.9 28.7 265.9

Fu12 31.2 TL 34.4 TL 40.0 1.0 1.0 32.0 186.7

threep1w7 6.0 0.8 6.0 0.3 6.5 0.3 0.3 6.0 2.5

threep2w7 9.3 3.9 9.7 1.0 11.0 0.7 0.8 9.3 12.4

threep3w7 13.5 3394.0 14.0 852.7 14.5 1.3 1.3 13.5 183.1

threep2w9 8.0 8.5 8.0 3.1 8.5 1.4 1.6 8.0 36.2

threep3w9 11.0 TL 11.3 TL 13.0 0.2 0.2 11.0 191.2

TL: Time limit.
– instances not addressed by Alvarez-Valdes et al. (2013).
1Results taken from Alvarez-Valdes et al. (2013).
2Results taken from Leão et al. (2016).
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The heuristics from the literature were run within different frameworks. The authors presented
the best solution and the average solution found by their methods in several runs for each in-
stance.

Table 4 presents the results obtained by 3PM and the results obtained by the two most recent
heuristics from the literature. In the table, the first column displays the instance name. Columns
two and three respectively present the solution found by 3PM and the computational time to
obtain this solution. Columns four and five (six and seven) present analogous information for
Leung et al. (2012) (Sato et al. (2012)) heuristic.

Table 4 – Comparison of the results of the exact methods with the 3-Phase Matheuristic (3PM).

Instance
3PM Leung et al. (2012) Elkeran (2013)

Solution Time Solution Time Solution Time

Shapes0 60.0 239.1 59.7 10 × 1207.0 59.32 10 × 600.0
Shapes1 58.0 1132.7 53.7 10 × 1212.0 54.07 10 × 600.0
Shapes2 27.6 310.7 26.2 10 × 1205.0 26.21 10 × 600.0

Fu 32.0 252.3 31.7 10 × 600.0 31.46 10 × 600.0
Jakobs1 12.0 612.9 11.1 10 × 603.0 11.02 10 × 600.0
Jakobs2 26.0 1939.0 23.8 10 × 602.0 23.79 10 × 600.0
Albano 10608.0 1614.1 9969.5 10 × 1203.0 9959.24 10 × 600.0

Mao 1927.2 2621.8 1785.1 10 × 1204.0 1796.86 10 × 600.0
Marques 80.0 527.9 78.3 10 × 1204.0 77.37 10 × 600.0
Trousers 286.0 1403.7 246.7 10 × 1237.0 244.67 10 × 600.0

As 3PM is a deterministic procedure, it is run just once for each instance. In contrast, the heuris-
tics proposed in Leung et al. (2012) and Elkeran (2013) are non-deterministic procedures that
usually are run many times to ensure the quality of solution. The authors ran their heuristics 10
times that in the best case used 600 seconds for each time. Therefore, the proposed matheuristic
is substantially faster and yields solutions in average six times faster than these heuristics.

On average, the solutions found by the matheuristic are 6.3% worse than the results obtained by
Elkeran (2013) and Leung et al. (2012), which are the most recent heuristics in the literature.

5 CONCLUSIONS

A new matheuristic to solve the irregular strip packing problem combining mixed integer pro-
gramming models from the literature is presented. The matheuristic is composed of three phases
that use a model to solve each sub-problem. Combining different models, the proposed method
takes advantage of the speed of the integer placement model and the solution quality of the linear
placement model.

The outcomes of the proposed method show that it can produce solutions with better quality
in shorter computational time in most cases when compared with the models. In addition, the
performance of the matheuristic is not highly dependent on the instance dimensions, indicating
that it is a good approach for tackling large instances.
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Comparing 3PM with heuristics form the literature, 3PM found solutions in smaller computa-
tional times. Also, the quality of these solutions generally are near to the quality of the best
solutions found in the literature.

APPENDIX A

The results obtained for the heuristics presented in Umetani et al. (2009), Imamichi et al. (2009)
and Sato et al. (2012) are shown in Table 5. This table has the same type of content of Table 4.

Table 5 – Comparison of the results of the exact methods with the 3-Phase Matheuristic (3PM).

Instance
Sato et al. (2012) Umetani et al. (2009) Imamichi et al. (2009)

Solution Time Solution Time Solution Time

Shapes0 61.1 7 × 21600.0 60.3 10 × 1200.0 60.2 10 × 1200.0

Shapes1 55.6 7 × 908175.0 55.0 10 × 1200.0 54.8 10 × 1200.0
Shapes2 26.7 7 × 5400.0 26.7 10 × 1200.0 26.4 10 × 1200.0

Fu 31.8 4 × 600.0 31.6 10 × 1200.0 32.6 10 × 600.0
Jakobs1 11.0 4 × 1800.0 11.0 10 × 1200.0 11.6 10 × 600.0

Jakobs2 22.8 7 × 5400.0 24.0 10 × 1200.0 24.0 10 × 600.0
Albano 10086.5 7 × 21600.0 9980.9 10 × 1200.0 9990.2 10 × 1200.0

Mao 1816.6 7 × 21600.0 1780.4 10 × 1200.0 1813.4 10 × 1200.0
Marques 78.9 7 × 5400.0 77.9 10 × 1200.0 79.7 10 × 1200.0

Trousers 248.3 7 × 86400.0 245.3 10 × 1200.0 245.6 10 × 1200.0
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