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Received July 23, 2021 / Accepted May 26, 2022

ABSTRACT. The vertex enumeration problem of a polyhedron P in ℜn, given by m inequalities, is
widely discussed in the literature. In this work it is introduced a new algorithm to solve it. The algorithm
is based on lexicographic pivoting and the worst-case time complexity is O

(
m(m+n)2×min{m,n}

)
, which

is O(mn |V (P)|) for the case of non-degenerate polyhedra, where |V (P)| is the number of vertices of P.
The proposed algorithm was coded in Matlab and numerical experiments performed for several randomly
generated problems show its efficiency.

Keywords: vertex enumeration, polyhedra, pivoting.

1 INTRODUCTION

There are two equivalent forms to represent a polyhedron P in ℜn: as the intersection of m
closed half-spaces or as the convex hull of its vertices added to the conic hull of its extreme rays.
The vertex enumeration problem of a polyhedron consists of computing its vertex representation
from its half-space representation.

This problem is a widely addressed issue in the literature. The formal study of polyhedra dates
back to Classical Antiquity, it is already found in The Elements of Euclid, around 300 BC (En-
cyclopædia Britannica, 2008), but it is only about 2000 years later, in the 1700s, that Euler
published a result relating the number of vertices, faces and edges of a three-dimensional poly-
hedron (Matheiss and Rubin, 1980). Regarding the vertex enumeration problem for the case of
non-degenerate polyhedra, there are algorithms that run in polynomial time (i.e., in running time
bounded by a polynomial function of input and output size) (Avis and Fukuda, 1982; Dyer, 1983).
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2 VERTEX ENUMERATION OF POLYHEDRA

But, a problem that remains open is the existence of an algorithm that enumerates the vertices
of a bounded polyhedron (a polytope) in polynomial time (Avis et al., 1997; Avis and Fukuda,
1992). In general, since there are polyhedra where the number of vertices grows exponentially
accoding to their representation, it is not possible to solve the problem in polynomial time in the
number of vertices for any unbounded polyhedron (Provan, 1994; Reimers and Stougie, 2016).

Fundamentally, there are two algorithmic approaches to address the vertex enumeration problem
of a polyhedron: those based on pivoting and those based on non-pivoting (Avis et al., 1997). In
the first approach, generally, a first search starts from a given vertex, through simplex pivoting.
There is a difficulty associated with determining whether a given vertex has already been found,
so the vertices are stored in a given tree. Several implementations of polynomial complexity,
in relation to the number of vertices, are found in the literature (cf. Dyer, 1983). The second
approach is based on the “double description” method by Motzkin et al. (1953), in which the
polyhedron is built sequentially, adding a constraint each time, where the new vertices produced
are in the hyperplane defined by the constraint which enters.

Many authors have worked on this problem. Matheiss and Rubin (1980) and Dyer (1983) present
well known surveys of it. Dyer (1983) introduces an implementation of pivoting algorithms that
takes O

(
mn2 |V (P)|

)
time for simple polytopes (where |V (P)| denotes the number of vertices).

On the other hand, Chand and Kapur (1970) discovered that the dual problem of vertex enumer-
ation problem is the facet enumeration problem and, lately, Avis and Jordan (2018) and Yang
(2021), working on a parallel vertex/facet enumeration code and on a facet enumeration algo-
rithm, respectively, introduced algorithms having similar complexity. Avis and Jordan (2018), as
mentioned by Yang (2021), is a good source to find related works. Avis and Fukuda (1982), how-
ever, presented a pivoting algorithm that finds all the |V (P)| vertices of a simple polytope (or
the |V (P)| faces corresponding to the convex hull of m points in ℜn, where each facet contains
exactly n given points) in time O(mn |V (P)|). Lately, Najt (2021), working on the complex-
ity of sampling vertices of a polytope, based on Reimers and Stougie (2016), uses a theoretical
approach of the vertex enumeration problem different from the two described in the previous
paragraph, taking a branch decomposition perspective to define a parameter of polytopes called
branchwidth, which, when bounded, allows solving the problem in polynomial time.

The aim of this paper is to present a new algorithm that solves the vertex enumeration problem of
a polyhedron, based on pivots. The main idea of the proposed algorithm is to work with an equiv-
alent maximization problem, where, given a vertex of the polyhedron, a maximization vertex is
defined and all the different directed paths from the first to the second vertex are found (composed
by edges and vertices of the original polyhedron). Since the proposal may include vertex degen-
eration, lexicographic pivoting is used. In general, for a general polyhedron, the computational
complexity of this algorithm is O

(
m(m+n)2×min{m,n}

)
; which, in the case of non-degenerate

polyhedra, as in Avis and Fukuda (1992), is O(mn |V (P)|), polynomial in mn |V (P)|.

This paper is organized as follows: Section 2 presents the main concepts for defining the problem.
Section 3 introduces a linear programming problem equivalent to the addressed problem and
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the generation of the paths vertices at the polyhedron is discussed. Section 4 defines a graph
associated with the generated vertices. Section 5 introduces the proposed algorithm. Section
6 establishes the computational complexity of the algorithm. Section 7 illustrates the proposal
with a numerical example. Section 8 presents some randomly generated numerical tests. At last,
Section 9 presents the final considerations.

2 PRELIMINARIES

In this paper, a polyhedron P is defined as the solution set of a system of m linear inequalities
in n non-negative variables. Thus,

P = {x∈ℜ
n : Ax≤b,x≥0} (1)

where A∈ℜm×n e b∈ℜm. Here, vectors are considered column matrices. For further discussion
of the definitions and proves introduced in this section, the reader can consult several texts on
Mathematical Programming (c.f., Blum and Oettli (1975) and Minoux (1986)).

A vertex of a polyhedron P is an element x∈P that satisfies, as equalities, a linearly independent
set of n of the m+n inequalities that define P. The polyhedron P is said to be simple if each
vertex is determined by a single set of n linearly independent inequalities. If a polyhedron is
not simple, it is said degenerated. Here, it is assumed that a vertex x∈P is known. When the
polyhedron is assumed to be bounded, it is called a polytope. For the algorithm proposed here,
under the assumption that P is a polytope or simple, as will be discussed in Section 6, the time
complexity is O(mn |V (P)|), where |V (P)| is the number of vertices.

As known, the set of solutions of the polyhedron P can be written as

[
A I

](x
s

)
= b

x≥0,s≥0

, (2)

where I∈ℜm×m denotes the identity matrix. There exists an equivalence between the solutions

y =

(
x
s

)
∈ℜn+m of system (2), obtained by zeroing n components, such that the square sys-

tem thus generated has a unique nonnegative solution, and the vertices x∈P. This way, by the
selection of a set of m independent columns of

[
A I

]
, to define a submatrix B, it is possible a

partition of matrix
[
A I

]
as
[
B N

]
, permuting the columns of

[
A I

]
properly, to have an

associated vertex, given by the x variables corresponding to the solution y =

(
yB

yN

)
=

(
B−1b

0

)
of (2). If yB = B−1b≥0, matrix B is called a feasible basis and the associated vertex x a feasible
vertex. The problem now is to find all the feasible vertices.
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4 VERTEX ENUMERATION OF POLYHEDRA

Note that, in terms of a feasible basis B and an appropriate partition of
[
A I

]
, system (2) can

be written as [
B11 0 N11 IN2

B21 IB2 N21 0

]
xB1

sB2

xN1

sN2

=

(
bB1

bB2

)

xB1≥0,xN1≥0,sN2≥0,sB2≥0

, (3)

where B =
[
B1 B2

]
=

[
B11 0
B21 IB2

]
, with B11 non-singular, N =

[
N1 N2

]
=

[
N11 IN2

N21 0

]
.

Thus, for yN =

(
xN1

sN2

)
= 0, the vector yB =

(
xB1

sB2

)
=

(
B−1

11 bB1

bB2 −B21B−1
11 bB1

)
solves the system:

[
B11 0
B21 IB2

](
xB1

sB2

)
=

(
bB1

bB2

)
,xB1≥0,sB2≥0. (4)

The vector yB =

(
xB1

sB2

)
=

(
B−1

11 bB1

bB2 −B21B−1
11 bB1

)
is called a feasible basic solution associated to

basis
[
B1 B2

]
=

[
B11 0
B21 IB2

]
and the vector x =

(
xB1

xN1

)
=

(
B−1

11 bB1

0

)
is the correspondent

vertex.

Other vertices of the polyhedron P can be found by finding other feasible bases of matrix[
A I

]
.

Proposition 1. Consider system (2) and B=
[
B1 B2

]
a feasible basis of matrix

[
A I

]
, where

B1 is submatrix of A and B2 submatriz of I. If

(
xB1

sB2

)
is the feasible basic solution associated

to basis B, then x =

(
xB1

xN1

)
=

(
xB1

0

)
is a vertex of the polyhedron P.

Proof. The proof is straightforward, from the definition of vertex of a polyhedron. �

3 VERTICES ENUMERATION

Associated to a given vertex x∈P and its associated basis B =

[
B11 0
B21 IB2

]
, relation (3) estab-

lishes that z = ∑i∈N1
xi +∑i∈N2

si = 0. For any other feasible basis of (3), B̃ =

[
B̃11 0
B̃21 IB̃2

]
, and
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the respective Ñ =

[
Ñ11 IÑ2

Ñ21 0

]
, it holds that z = ∑i∈Ñ1

xi +∑i∈Ñ2
si≥0. Thus, all the other ver-

tices of polyhedron P, as will be seen in Proposition 3, can be found by considering the feasible
basis associated to the next linear program (5):

maximizar z = ∑i∈N1
xi +∑i∈N2

si[
B11 N11 IN2 0
B21 N21 0 IB2

]
xB1

xN1

sN2

sB2

=

(
bB1

bB2

)

xB1≥0,xN1≥0,sN2≥0,sB2≥0

. (5)

The spirit of the algorithm to be proposed is to enumerate the vertices of P by finding alternative
directed paths, composed of vertices and edges of P, from the given initial vertex x (a minimum
of (5)), until a final vertex in the solution set (the set of maxima of (5)) or an extreme ray (if
P were unbounded); repeating the process as many times as necessary to find all those different
paths.

This way, the simplex tableau associated to basis

[
B11 0
B21 IB2

]
for linear program (5) is given,

permuting columns conveniently, by the matrix T :

T =
[
Ti j
]

0≤i≤m
0≤ j≤n+m

=


xB1 sB2 xN1 sN2

0 0T 0T −1. . .−1 −1. . .−1
B−1

11 bB1 IB1 0 B−1
11 N11 B−1

11
bB2 −B21B−1

11 bB1 0 IB2 N21−B21B−1
11 N11 −B21B−1

11

=


dT

0
dT

1
...

dT
m

 . (6)

At the top of (6), starting at the second column, it is shown the association of the columns of
T with the basic variables ( xB1 and sB2 ) and non-basic variables ( xN1 and sN2 ) corresponding
to x and s, respectively. The first column of T ( [Ti0]0≤i≤m) corresponds to the value of the
objective function of the linear program (5) ( T00 = z = 0) evaluated at the current solution(

x
s

)
and to the value of the basic variables ( [Ti0]i∈B1

= xB1 = B−1
11 bB1≥0 and [Ti0]i∈B2

=

sB2 = bB2 −B21B−1
11 bB1≥0), respectively. The entries of the first line of T , starting at the second

component (
[
T0 j
]

1≤ j≤n+m) correspond to the reduced costs, of the basic and non-basic variables,
associated with the current base of (5).

Note that tableau T is feasible, but not optimal for the linear program (5). Therefore, one can
try to improve the value of the objective function by changing adequately the current basis. Since
there may be degeneration in tableau T , the change of basis can be carried out by using rules
that ensure the finite termination of the Simplex Method, such as, for example, the lexicographic
criterion (cf. Blum and Oettli, 1975, Chapter 2) or the Bland’s Rule (Bland, 1977). Thus, the
generation of new feasible bases, starting from the T matrix, will determine new feasible vertices
of polyhedron P.
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6 VERTEX ENUMERATION OF POLYHEDRA

Both rules cited for the finite termination of the Simplex Method (lexicographic criteria and the
Bland rule) are used in the literature to treat degeneration, with advantages and disadvantages:
“Bland’s Rule . . . drawback is that your choice of incoming column may not be a very good
one”(Dantzig and Thapa, 1997, p. 160); “The first and widely used such tool [to ensure finite ter-
mination of simplex methods] is lexicographic simplex rule” (Terlaky, 2001); “Although [Bland’s
Rule] is much simpler than the lexicographic rule, it also usually takes a lot longer for the Sim-
plex algorithm to converge using this rule” (Lewis, 2008, p. 37). In this work the lexicographic
method will be used. For further discussion of the definitions and proofs set forth here, the reader
may search for Blum and Oettli, 1975 (Chapter 2).

Definition 1. Given d, f∈ℜn, it is said that

(i) d is lexicographically positive, denoted by d�0, if d 6=0 and its first component not zero
is positive.

(ii) d<0, if d�0∨d = 0.

(iii) d� f , if d− f�0.

Since
(

ℜn, <
)

is a totally ordered set, any finite set {di}i∈J⊂ℜn, with all its elements
different, has a single element dio , such that dio≺di,∀i∈J; dio is called lexicographic minimum
of {di}i∈J , and it is denoted by dio = minlex{di, i∈J}.

Note that rows of matrix T , from the second onwards, are lexicographically positive (i.e.,
dT

i �0,1≤i≤m).

Given the current basic variables, xB1 and sB2 , which in matrix T correspond to the vector
[Ti0]1≤i≤m, and the reduced costs of non-basic variables, xN1 and sN2 , which in matrix T corre-
spond to the vector

[
T0 j
]

m+1≤ j≤n+m = (−1, . . .,−1,−1, . . .,−1), the lexicographically pivoting
is given by:

(PivLex1) (Rule to determine the non-basic variable that enters the basis) Consider as non-
basic variable that enters the basis anyone corresponding to an index p, such that T0p≤0,m+

1≤p≤n+m.

(PivLex2) (Rule to determine the basic variable that leaves the basis) Leaves the basis the
variable corresponding to index q defined by the lexicographically pivoting, given by

dT
q

Tqp
= minlex

{
dT

i
Tip

: Tip > 0,1≤i≤m
}
. (7)

If the leaving variable q, (7), cannot be defined (because Tip≤0,∀i), then an extreme ray of the
feasible set was found.

Thus, a new matrix T is generated, which differs only in a single basic variable of the matrix T .
Denoting the set of basic indices associated with matrix T by B, we have that B =B1∪B2 =
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B∪{p}{q}, where B1 corresponds to columns of A and B2 to columns of I at the basis.
The simplex method by applying, successively, the rules of lexicographic pivoting is finite (even
in the case of degeneration) (Blum and Oettli, 1975, Chapter 2).

The tableau

T =
[
T ij
]

0≤i≤m
0≤ j≤n+m

=


d

T
0

d
T
1
...
d

T
m

 , (8)

obtained from tableau T , has the following format:

d
T
i = dT

i −
Tip
Tqp

dT
q , i6=q

d
T
q = 1

Tqp
dT

q
. (9)

Note that, as in matrix T , d
T
i �0,1≤i≤m; i.e., T is also a feasible tableau for linear program

(5) and the associated vertex of polyhedron P is x =

(
xB1

xN1

)
=

(
[Ti0]i∈B1

0

)
, with z = d00≥0.

Note that after applied (9), a suitable reordering of the columns of T must be done to keep the
first m columns basic, as in (6). From here on, it is assumed that the tables obtained from relation
(9) are reordered in the sense indicated.

4 THE VERTICES OF THE LINEAR PROGRAM (5) FEASIBLE SET AND AN
ASSOCIATED DIRECTED GRAPH

Consider a directed graph whose vertices are feasible solutions associated with feasible bases of
the linear program (5), where two vertices are adjacent if the corresponding bases differ only in a
single index and the direction of the edges is determined in the sense that the objective function
is not decreasing. Thus, if the bases H and F differ in a single index, the associated vertices
are adjacent. If the values of the objective function at the bases H and F are zH and zF ,
respectively, and zH < zF , the edge is directed from the corresponding vertex of H to that of
F . Similarly, if zH = zF , the edge is undirected (or bidirectional).

Remark 1. If ΩH and ΩF denote the sets of vertices obtained by changing of basis with a
non-decreasing objective function, from bases H and F , it is clear that ΩH ⊃ΩF .

Consider a feasible tableau T (r;k,s), where (r;k,s) means that degeneration will occur by a
change of basis, where the non-basic variable r enters and it is removed either basic variable
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8 VERTEX ENUMERATION OF POLYHEDRA

k or s. Matrix (10) shows the format of T (r;k,s), where basic columns k and s and non-basic
column r are stand out.

T (r;k,s) =



k r s

T (r;k,s)
00 · · · 0· · · T (r;k,s)

0r · · · 0· · ·
...

...
...

...
T (r;k,s)

0k · · · 1· · · T (r;k,s)
kr 0· · ·

...
...

...
...

T (r;k,s)
0s · · · 0· · · T (r;k,s)

sr · · · 1· · ·
...

...
...

...


(10)

If T (r;k,s)
kr > 0 and T (r;k,s)

sr > 0, simple computations show that by introducing the non-basic
variable r into the basis and removing variables k and s from the basis, respectively, in table
T (r;k,s), the degenerate feasible tableaus T (k;r,s) and T (s;k,r) are generated. In addition, it is
possible to generate, from T (k;r,s), the tableau T (s;k,r) and vice versa. Therefore, any of the three
tableaus can be obtained from any other. Note that in all cases the value of the objective function
is the same.

As consequence, the vertex sets of the polyhedron P, obtained from the tableaux T (k;r,s) and
T (s;k,r) are the same. Therefore, to determine the vertices of the polyhedron P, it is sufficient to
consider, in the associated graph, only one of the sequences T (r;k,s) and T (k;r,s) or T (r;k,s) and
T (s;k,r).

The following proposition establishes that if a vertex is obtained from another one by lexico-
graphical change of basis associated to linear program (5), then, analogously, that vertex can be
obtained from this one by considering minimization instead of maximization in (5).

Proposition 2. If tableau T , given in (6), generates tableau T , from the linear maximization
program (5), by the lexicographic pivot rules and by the relations (8) and (9), then T can be
generated from T , from the linear program (5), substituting the maximization process by the
minimization process, by lexicographic pivot rules and by relations (8) and (9).

Proof. Consider that T is obtained from T by changing the entering non-basic variable s
by the leaving basic variable r. Thus, T is generated from T by replacing the respective
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columns corresponding to variables s and r by the respective transformed columns defined by
lexicographic pivot rules and by relations (8) and (9); i.e.,

[
T ir
]

0≤i≤m =



T 0r

T 1r
...

T rr
...

T mr


=



0
0
...
1
...
0


and

[
T is
]

0≤i≤m =



T 0s

T 1s
...

T rs
...

T ms


=



−T0s/Trs

−T1s/Trs
...

1/Trs
...

−Tms/Trs


. (11)

Note that, by the transformations rules, T0s≤0, dT
r

Trs
=minlex

{
dT

i
Tis

: Tis > 0,1≤i≤m
}

, d
T
r = 1

Trs
dT

r

e d
T
i = dT

i −
Tis
Trs

dT
r , i6=r. Additionally, note that column

[
T ir
]

0≤i≤m corresponds to the basic
variable s and that column

[
T is
]

0≤i≤m corresponds to the non-basic variable r.

Consider, now, the linear program (5) as a minimization problem. Note that tableau T is not
optimal for this program, because T 0s = −T0s/Trs≥0. Thus, the non-basic variable r, corre-
sponding to the column

[
T is
]

0≤i≤m, can enter the basis, eventually reducing the value of the
objective function.

On the other hand, once the variable that enters the basis is defined, the variable that leaves the
basis must be determined by the lexicographic pivot rules; i.e., the variable that leaves the basis

corresponds to the one given by minlex
{

dT
i

T is
: T is > 0,1≤i≤m

}
.

Thus, for i 6=r and T is =−Tis/Trs > 0, dT
i

T is
= 1
−Tis/Trs

(
dT

i −
Tis
Trs

dT
r

)
, we have dT

i
T is

=−Trs
Tis

dT
i +dT

r .

Then, since −Trs
Tis

> 0, results that dT
i

T is
�dT

r . On the other hand, since dT
r

T rs
=

1
Trs dT

r
1/Trs

= dT
r , we have

dT
r

T rs
= minlex

{
dT

i
T is

: T is > 0,1≤i≤m
}

.

Therefore, the variable that leaves the basis is variable r and the new basis corresponds to
tableau T . �

Remark 2. Proposition 2 establishes that if vertex vT , (corresponding to tableau T , in the maxi-
mization process) is obtained from the vertex vT (corresponding to the table T), by changing the
non-basic variable s for the basic variable r, then, reciprocally, the vertex vT can be obtained
from the vertex vT , changing the maximization by minimization, considering (in table T ) as non-
basic variable that enters the variable r and using the lexicographic pivot rules. In this sense,
Proposition 2 establishes that a vertex, different from the initial one, belongs to the graph if, and
only if, it has a predecessor that belongs to the graph.
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10 VERTEX ENUMERATION OF POLYHEDRA

5 PROPOSED ALGORITHM FOR VERTEX ENUMERATION

The proposed algorithm for vertex enumeration of a polyhedron P = {x∈ℜn : Ax≤b,x≥0} is
described in this section. It is considered the linear program (5) and it is assumed to be known

an initial vertex x =

(
xB1

xN1

)
=

(
B−1

11 bB1

0

)
, where

[
B11 0
B21 IB2

]
is an associated basis of matrix

[
A I

]
and

(
x
s

)
, with s =

(
sN2

sB2

)
=

(
0

bB2 −B21B−1
11 bB1

)
, is a feasible solution of (5). In the

following, matrix T is given by (6).

Algorithm 1. Algorithm for vertex enumeration of a polyhedron P.

Step 0. Set

k := 1 (Current number of found vertices); xk := x (Current vertex); Vertices := {xk} (Current
set of found vertices);

B := B1∪B2 :={Initial basic indexes associated to variables x an s, respectively};

ℵ := N1∪N2 := {Initial non-basic indexes associated to variables x an s, respectively};

T := Tableau associated to vertex xk, given by (6);

B̂1 := B1, B̂2 := B2, B̂ := B̂1∪B̂2 (Current basic indexes); ̂̂ℵ := ℵ; Bases := {B̂} (Current
set of found bases);

EntraBase := 0; M := /0 (list to control the found vertices which may possess undiscovered
neighbours in the graph); MEntraBase = /0.

Step 1. (Determination of the non-basic variable p that enters the basis)

If ̂̂ℵ = /0, STOP. Otherwise, choose p∈ ̂̂ℵ as the index that enters the basis. Set k := k+1 and̂̂
ℵ := ̂̂

ℵ\{p}. Continue.

Step 2. (Determination of the basic variable q that leaves the basis - Determination of a new
vertex or an extreme ray as edge of P)

Apply the lexicographic pivot rules (PivLex2) to find the variable q that leaves the basis. If q
cannot be found (because Tip≤0,∀i∈B̂), go to Step 3 (an extreme ray was found as edge of P).
Otherwise, set B̂ := B̂∪{p}{q} and actualize B̂1 and B̂2, set of basic indexes corresponding
to x an s, respectively, so that B̂ := B̂1∪B̂2. If basis B̂∈Bases, go to Step 3. Otherwise, set
Bases := Bases∪B̂, compute tableau T and vertex y associated to basis B̂.

If y/∈V értices, set k := k+1, xk := y and Vertices :=Vertices∪{xk}. Generate ℵ̂ (non-basic
indexes associated to basis B̂) and ℵ̂− := { j∈ℵ̂ : T 0 j≤0}. If

∣∣∣ℵ̂−∣∣∣≥2, set EntraBase :=

EntraBase+1, MEntraBase := {B̂,ℵ̂,ℵ̂−}, M := M∪MEntraBase and continue.
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Step 3. If M = /0, go to Step 4. Otherwise, for MEntraBase := {B̂,ℵ̂,ℵ̂−}, if ℵ̂− = /0, set
MEntraBase := /0 and EntraBase :=EntraBase−1. Otherwise, choose p∈ℵ̂−, set ℵ̂− := ℵ̂−{p}
and MEntraBase := {B̂,ℵ̂,ℵ̂−}. Go to Step 2.

Step 4. If k = 2, find, if they exist, all the corresponding optimal vertices of the linear program
(5) and save them in the set Vertices. Otherwise, go to Step 1.

Proposition 3. Algorithm 1 is finite and find all the vertices of polyhedron P.

Proof. Algorithm 1 determines for each non-basic variable that enters the basis, at Step 1, a
sequence of feasible vertices that ends in a solution of (5), a vertex already found in a previous
sequence of vertices or an extreme ray as an edge of P. Thus, since ℵ := N1∪N2, the initial set
of non-basic indexes, at Step 0, is finite, we have that Algorithm 1 is finite.

On the other hand, to prove that all the vertices of polyhedron P are found, suppose that there
exists one vertex v0 of polyhedron which was not found by Algorithm 1. Then, because of the
Proposition 2 and the Remark 2, there exists a sequence of vertices initiating at v0 and ending
at the initial vertex, which is not found by the Algorithm 1. This is a contradiction with the fact
that, from the initial vertex, it is possible only to exit through vertices that Algorithm 1 finds.
Therefore, all the vertices of polyhedron P are found. �

Algorithm 1, as illustrated in Fig. 2, finds a set of paths from the initial vertex to a final vertex,
running through all the vertices of the polyhedron P.

6 COMPLEXITY

Here it is discussed the complexity of Algorithm 1. It is considered a polyhedron as given by
P = {x∈ℜn : Ax≤b,x≥0}, where A∈ℜm×n and b∈ℜm. It is not assumed that P is bounded.
To begin, note that Algorithm 1 does not work with the ordinary simplex tableau, but a simplex
tableau ordered by format T , given in (6). It is possible to get format T , from an ordinary simplex
tableau, in O

(
m2
)

complexity time. Later tables with format T are obtained, after lexicographic
pivoting, with two simple attributions.

It is convenient to begin by estimating the complexicity associated to the set Bases, the bases
found by the algorithm. This set is composed by not repited m-vectors, which requires saving
them as ordered and compared m-vectors. In that sense, it is only necessary to sort the first
basis, because the following ones are obtained by changing one single index (they are, basically,
sorted). Thus, the comparison of two basis is obtained in O(m). Since, the cardinality of the
Bases is |Bases|, the total number of comparisons is obtained in O(m|Bases|2).

To compute the complexity associated with the other steps of Algorithm 1, note that it consists
of the (main) loop, starting at Step 1 and ending at Step 4 (Step 1-Step 4 loop), in which all
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the vertices of the polyhedron P are found. At Step 2, lexicographic pivots are performed to
compute tableau T from tableau T , under the following considerations:

(i) Determination of index p∈N, which enters the basis. Since |N|= n, the complexity of the
determination of all these indices is O(n).

(ii) Given p∈N, it is defined index q∈B, which leaves the basis, according to (9),
dT

q
Tqp

=

minlex
{

dT
i

Tip
: Tip > 0,1≤i≤m

}
. In the worst case, when all Tip > 0, it should be computed

all the vectors dT
i

Tip
, to find the lexicographic minimum. In this case m comparisons (

Tip > 0 are necessary, each one involving the computation of the vector dT
i

Tip
, which involves

(n+ 1) operations. Thus, this computation involves m(n+1) operations. Additionally,
since the final computation of minlex could involve, in the worst case, the lexicographic

comparison of pairs of vectors in the set
{

dT
i

Tip

}m

i=1
, up to (m−1) times, and each compari-

son can take 2n operations, that final computation can demand up to 2n(m−1) operations.
Thus, the maximum number of operations to perform a lexicographic pivoting results:

m(n+1)︸ ︷︷ ︸
computation of dT

j /Tjp,1≤ j≤m

+2n(m−1)︸ ︷︷ ︸
comparisons

∈O(mn).

This way, each time a lexicographic pivoting is performed, it takes a computational complexity
O(mn) .

The Step 1-Step 4 loop, in addition to the lexicographic pivot carried out in Step 2, involves,
on the one hand, assignments and updates of sets with changes of two indices and, on the other
hand, comparisons of sets. Note that comparisons are dominant, in terms of the number of op-
erations, in relation to assignments and updates. So that, the complexity associated with these
operations is determined by the comparisons made in Step2: “If basis B∈Bases, go to Step 3”,
“If xk /∈V értices, set Vertices :=Vertices∪{xk}”

Thus, denoting the set of vertices of polyhedron P by V (P), we have

|V (P)|≤|Bases|≤

(
m+n

m

)
, where Bases, defined at Step 0 of Algorithm 1, is the set of

feasible basis of linear program (5) found by the algorithm. Note that |V (P)| may be much

less than |Bases| and |Bases| much less than

(
m+n

m

)
(in the non-degenarate case

|V (P)|= |Bases|).

Therefore, the number of bases found by Step 1-Step 4 loop is at most a multiple
of |Bases| and each basis found involves a lexicographic pivoting, totaling around

mn |Bases|∈O

(
mn

(
m+n

m

))
operations, where |Bases| = |V (P)| for the non-degenerate

case.
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Finally, the number of operations associated with Algorithm 1 corresponds to the number of op-
erations associated with lexicographic pivotings plus the complexity associated to the set Bases
( m|Bases|2). This way, the number of operations associated with Algorithm 1 can be estimated
by

mn |Bases|+m|Bases|2≤mn

(
m+n

m

)
+m

(
m+n

m

)2

.

Since

(
m+n

m

)
= (m+n)!

m!n! ∈O((m+n)), then

mn

(
m+n

m

)
+m

(
m+n

m

)2

∈O
(

m(m+n)2×min{m,n}
)
.

This way, the computational complexity associated with Algorithm 1 for a polyhedron P is
O
(

m(m+n)2×min{m,n}
)

.

Note, on the other hand, that for the case of non-degenerate polytope P, the number of com-
parisons to define the set Bases is O(|V (P)|), because if the Algorithm 1 generates L dif-
ferent directed paths initiating at initial vertex x1, each one of cardinality Ki, i = 1, . . .L, then
∑

L
i=1 KL∼= |V (P)|; thus, for the first sequence, no comparisons are needed; and, for each one of

the other sequences are needed |V (P)|− (K1 + . . .+Ki−1) , i = 2, . . .,L, comparisons. Therefore,
the total number of comparisons is ∑

L−1
i=1

(
|V (P)|−

(
∑

i
j=1 K j

))
∈O(|V (P)|) and, since each

vector is ordered in m comparisons, Bases is generated in O(m |V (P)|). Thus, in the case
of non-degenerate polytope P, the computational complexity associated with Algorithm 1 is
O(mn |V (P)|).

7 NUMERICAL EXAMPLES

As illustration, in this section, Algorithm 1 is applied to two polyhedra, P0⊂ℜ3 and P00⊂ℜ3

(adapted from Campêlo and Scheimberg, 2005). The original example constraints are given by
the first eight inequalities of relation (12). P0 is given by relations (12) and P00 is given by
relations (12) without the ninth constraint ( x1−2x2+20x3≤8). Figure 1 illustrates the polyhedra
P0 and P00. Figure 2 shows the sequence of vertices found by the algorithm for P0, starting
from the known vertex I = (1,1,0.45).
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14 VERTEX ENUMERATION OF POLYHEDRA

x1 + x2 + x3≤3 ← BCGF
x1 + x2− x3≥1 ← ADHK
−x1 + x2 + x3≤1 ← ABFK
x1− x2 + x3≤1 ← DCGH

16x1−6x2 +60x3≤37 ← FIG
6x1−16x2 +60x3≤17 ← KIH
6x1−6x2 +60x3≤27 ← KIF

16x1−16x2 +60x3≤27 ← GIH
x1−2x2 +20x3≤8 ← EFIJ

x1≥0,x2≥0,x3≥0

(12)

To apply Algorithm 1 to P0, consider (12) as a set of equalities with nonnegative variables
(adding the respective slack variables). This way, P0 is given by a set of 9 equations and 12
nonnegative variables, where the first 3 variables are x1, x2 and x3 and the last 9 ones are the
slack variables associated to the respective inequalities ( s1, . . .,s9), corresponding to x4, . . .,x12.

To illustrate how Algorithm 1 travels the vertices of the polyhedron, from vertex I, Figure 3
shows non-basic variables, the vertices of P0 which corresponds to the respective bases and the
value of the objective function of linear program (5) at the considered vertex. For example, I0 :

Figure 1 – Illustration of polyhedra P0 and P00 , defined from (12) (P00 includes the pyramid EFIJK, but
P0 does not).
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Figure 2 – Illustration of polyhedron P0, showing the known initial vertex I and the sequence of vertices
found by the Algorithm 1 (in order: red, blue, green).

Figure 3 – The sequences of vertices found by Algorithm 1 are shown, starting at vertex I. Red, blue and
green show the sequences generated when the non-basic variables 9, 11 and 12 enter the basis, respectively.
The new vertices found in each sequence are shown in bold. The underlined correspond to the final vertices

of the respective sequences (because they are a maximum of (5) or correspond to bases already found).
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{9,11,12} means that, in the non-basic variables {9,11,12} (which define the basic variables
{1,2,3,4,5,6,7,8,10}), the corresponding vertex is I and that z = ∑i∈N1

xi +∑i∈N2
si = 0.

From now on, I0 : {9,11,12} and the others analogous notation will be called, indistinctly, as
the defined vertex I and the respective defined vertices.

From the non-basic variables, the lexicographic simplex algorithm is applied to perform basis
changes, changing the vertex (or not, if it is degenerate).

Figure 3 shows the mapping performed by the algorithm. The first vertex is the known vertex
I ( I0 : {9,11,12}). Since any one of the 3 non-basic variables can enter the basis, there are 3
different paths: the first one, when variable 9 enters the basis (shown in red in Figure 3); the
second one, when variable 11 enters the basis (shown in blue in Figure 3); and the third one,
when variable 12 enters the basis (shown in green in Figure 3). A path eventually complements
the vertices found by the other paths, as shown in Figure 3.

Algorithm 1 identifies the changes of basis, performing the respective pivotings. Note that the top
rectangle in Figure 3 corresponds to I0 : {9,11,12}, considering that non-basic variable 9 enter
the basis, the red path is initiated, going sequentially to vertex I0 : {8,11,12}, F10 : {4,6,12},
F10 : {4,8,12} and B97 : {3,4,6} (the optimal point of linear program (5)). The blue and green
paths are generated when, from the initial vertex I0 : {9,11,12}, enters the basis the non-basic
variables 11 and 12, respectively.

The found vertices, in the order they were found, are: I = (1,1,0.45), F = (1,1.5,0.5),
B = (1,2,0), G = (1.75,1,0.25), C = (2,1,0), J = (0.5833,0.8750,0,4583), E =

(0.4762,1,0.4762), A = (0,1,0), H = (1,0.25,0.25), D = (1,0,0) (results are shown at Table
1, corresponding to Problem P0).

As already mentioned, eliminating the ninth constraint at (12), ( x1−2x2+20x3≤8), it is obtained
the polyhedron P00 (see Figure 1). The application of Algorithm 1 to polyhedron P00 generates
the sequence of vertices: I = (1,1,0.45), K = (0.5,1,0.5), A = (0,1,0), H = (1,0.25,0.25),
D = (1,0,0) , F = (1,1.5,0.5), G = (1.75,1,0.25), C = (2,1,0), B = (1,2,0) (results are
shown in Table 1, corresponding to Problem P00).

8 COMPUTATIONAL TESTS

Algorithm 1 was coded in Matlab and run for different examples on a desktop with an i5-2400
CPU@3.10GHz processor, 4.00GB RAM (using a single core). Table 1 shows the results cor-
responding to computational tests run with 55 polyhedra of different sizes, where the number
of constraints, m, varies between 8 and 80 and the number of variables, n, between 3 and 30.
Except for the first two polyhedra, P0 and P00, which correspond to polyhedron (12) and a
modification of it, respectively (see Section 7), for the other 53 polyhedra the coefficient matrices,
A∈ℜm×n, and the right side vectors, b∈ℜm, were randomly generated, with integer coefficients
between 1 and 100, in such a way that 0∈ℜn is always a vertex of the generated polyhedron. In
all those tests, the density of matrix A is near 1. As expected, Table 1 shows that the number of
vertices increases as m and n increase.
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Table 1 – Results of computational tests corresponding to randomly generated polyhedra: m, number of
linear inequalities; n, number of non-negative variables; density of matrix A∼=1.

Problem and
size Problem:

(m, n)

Run time
(seconds)

|Bases| |Vertices| Problem and
size Problem:

(m, n)

Run time
(seconds)

|Bases| |Vertices|

P0: (9,3) * 0.161 20 10 P27: (55,20) 892.589 872 860
P00: (8,3) * 0.144 20 9 P28: (55,20) 241.063 444 430
P1: (10,3) 0.175 24 14 P29: (55,20) 2279.671 1410 1410
P2: (20,3) 0.126 14 14 P30: (60,10) 1.426 35 35
P3: (20,3) 0.077 5 5 P31: (60,10) 0.716 20 20
P4: (30,3) 0.081 4 4 P32: (60,15) 0.778 16 16
P5: (40,3) 0.102 6 6 P33: (60,15) 25.085 156 156
P6: (50,3) 0.087 4 4 P34: (60,15) 4.869 60 60
P7: (8,5) 0.261 24 24 P35: (60,15) 33.989 186 186
P8: (8,5) 0.355 30 30 P36: (60,20) 1.522 21 21
P9: (10,6) 0.395 28 28 P37: (60,20) 8.773 72 72

P10: (10,6) 0.177 16 16 P38: (60,20) 1.510 21 21
P11: (20,6) 0.146 13 13 P39: (60,20) 1.533 21 21

P12: (50,10) 1.283 36 36 P40: (70, 10) 3.227 56 56
P13: (50,10) 0.597 20 20 P41: (70, 10) 1.712 36 36
P14: (50,10) 25.216 200 200 P42: (70, 15) 24.622 134 134
P15: (50,10) 1.772 45 45 P43: (70, 15) 3.303 42 42
P16: (50,15) 163.308 416 416 P44: (70, 20) 244.404 420 420
P17: (50,15) 136.704 390 390 P45: (70, 20) 6394.456 2286 2286
P18: (50,15) 76.230 290 290 P46: (70, 20) 19.378 108 108
P19: (55,15) 52.234 234 234 P47: (70, 30) 15000.444 2724 2724
P20: (55,20) 782.577 792 792 P48: (70, 30) 70364.359** 6842 6482
P21: (55,20) 10.058 76 76 P49: (70, 30) 137.446 168 168
P22: (55,20) 411.810 596 592 P50: (70, 30) 4404.743 1272 1272
P23: (50,20) 1457.964 1087 1087 P51: (80,30) 52692.922** 5993 5993
P24: (50,20) 761.823 800 800 P52: (80,30) 3786.238 1220 1220
P25: (50,20) 1686.378 1195 1195 P53: (80,30) 371.640 310 310
P26: (50,20) 284.356 483 483

(*) Non-random polyhedra, described at the end of Section 7. (**) Computational process interrupted at the indicated time.

Table 2 shows the results corresponding to computational tests run with 45 polyhedra of equal
sizes ( m = 50,n = 10), randomly generated, where the density ( δ ) of matrix A varies between
0 and 1. The data corresponds to 5 polyhedra for each one of the indicated density. Note that,
except for δ = 1, the mean of bases do not appear to be correlated with the density of the matrix
A. For all these cases, the number of bases found ranges between 216 and 736, for δ = 0.40 and
δ = 0.70, respectively, with a large standard deviation.

The authors tested some popular algorithms to generate a polyhedron from a set of vertices, in
different dimensions. Unfortunately, rounding errors and/or processing time did not allow using
them for the tests in Table 1. Anyway, all the generated vertices of Table 1 and Table 2 were
tested to be vertices of the respective given polyhedron, resulting true.
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Table 2 – Means and standard deviations (std) results of computational tests corresponding to randomly
generated polyhedra: m = 50, number of linear inequalities; n = 10, number of non-negative variables; δ ,

density of matrix A.

Size problem
and density
(m, n), δ

Mean / std Run
time (seconds)

Mean / std |Bases| Mean / std |Vertices|

(50,10), 1 19.586 / 29.597 90 / 89.922 88 / 91.712
(50,10), 0.90 285.645 / 392.269 369.800 / 293.841 369.800 / 293.841
(50,10), 0.80 199.153 / 144.075 344.400 / 191.187 344.400 / 191.187
(50,10), 0.70 1046.700 / 1403.300 736.200 / 575.057 736.200 / 575.057
(50,10), 0.60 114.511 / 142.723 246 / 187.717 246 / 187.717
(50,10), 0.50 515.670 / 626.282 494.400 / 432.004 494.400 / 432.004
(50,10), 0.40 86.925 / 141.656 216.800 / 199.799 216.800 / 199.799
(50,10), 0.30 678.527 / 629.801 629.400 / 337.804 629.400 / 337.804
(50,10), 0.25 149.765 / 133.060 316 / 147.838 175.6 / 167.490

9 CONCLUSIONS

In this paper it is introduced an algorithm to enumeration of the vertices of a polyhedron
P = {x∈ℜn : Ax≤b,x≥0}, with A∈ℜm×n and b∈ℜm. The proposed algorithm is based on
pivoting and works in any polyhedron, but the polynomial time complexity with respect to the
number of vertices is only guaranteed for polytopes. The time complexity for the case of a simple
polyhedron is O(mn |V (P)|), where |V (P)| is the number of vertices, and for the case of a gen-
eral polyhedron the time complexity is O

(
m(m+n)2×min{m,n}

)
. The proposed algorithm was

coded in Matlab and tested for several different size random examples (see Table 1), showing
good performance.
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