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ABSTRACT. In this paper, we investigate the bi-objective multiperiod one-dimensional cutting stock prob-
lem that seeks to minimize the cost of production associated with the total length of cut objects (waste) and
the inventory costs related to objects and items. A mathematical model is presented and heuristically solved
by a column generation method. Computational tests were performed using the Weighted Sum method, the
ε-Constraint method and a variation of the Benson method. The Pearson correlation coefficient was cal-
culated in order to investigate the trade-off between the conflicting objectives of the problem. The results
confirmed a strong negative correlation between the objective functions of the problem. All the applied
scalar methods were able to find multiple efficient solutions for the problem in a reasonable computational
time; however, the ε-Constraint and the modified Benson methods performed better.

Keywords: cutting stock problem, bi-objective optimization, ε-constraint method, weighted sum method,
Benson method.

1 INTRODUCTION

In many manufacturing industries, such as paper, textile and furniture, large objects are cut into
smaller units to meet a given demand. In the optimization of these processes, there is the Cut-
ting Stock Problem (CSP). The CSP aims to determine how larger objects must be cut into
smaller items in order to meet the demanded items and satisfy some optimization criteria, such
as minimizing material waste, the number of cut objects or the number of cutting patterns.

The optimization of the cutting process is conditioned on the production of objects and their
availability to be cut. Therefore, the CSP can be considered as a fundamental subproblem of the
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2 A BI-OBJECTIVE MULTIPERIOD ONE-DIMENSIONAL CUTTING STOCK PROBLEM

Lot Sizing Problem (LSP), which consists of determining the number of objects to be produced
and how this production must occur optimizing production costs and meeting demanded objects.

One attribute that can be investigated in both problems is the multi-objective feature. The multi-
objective approach delineates the preference relationship in optimization. It makes available al-
ternative solutions that enable a more informed, comprehensible and safe choice by the decision-
maker. In the literature, there are many papers that deal with conflicting objectives in the LSP
and CSP, such as Rezaei & Davoodi (2011), Romeijn et al. (2014), Mehdizadeh et al. (2016),
Kolen & Spieksma (2000), Lopes (2009), Araujo et al. (2014), Aliano Filho et al. (2018). How-
ever, there is a lack of research in the literature that explores the Bi-objective Multiperiod Cutting
Stock Problem (BMCSP) that aims to minimize material waste and storage costs.

Among the studies that investigated the bi-objective CSP, there is Kolen & Spieksma (2000),
which explored the problem that seeks to minimize the waste in the cutting process and the num-
ber of different cutting patterns and proposed an exact solution method applicable for instances
with just a few items. Lopes (2009) studied the one-dimensional CSP that aims to minimize the
number of cut objects and the number of different cutting patterns by proposing three adaptations
of a heuristic method based on the concepts of multi-objective evolutionary algorithms. Araujo
et al. (2014) addressed the same problem and proposed a resolution method based on genetic
algorithms.

Aliano Filho et al. (2018) applied seven distinct scalarization techniques to the one-dimensional
CSP in order to minimize the sum of the frequencies of the cutting patterns and the number of
different cutting patterns to be used. Recently, Aliano Filho et al. (2021) proposed an scalariza-
tion method to solve bi-objective integer linear optimization problems and studied other three
solution methods by proposing extensions and adaptations. Among these techniques, there is the
Benson method, a scalarization technique which has been modified to improve its performance.

The bi-objective CSP has two conflicting objectives, and so there is no single solution that opti-
mizes both simultaneously. In this case, the solution of the problem is given by a set of solutions,
which are called efficient solutions, in which one objective cannot be improved without harm-
ing the other. The image of the efficient solutions set portrays a curve known as Pareto Front,
see Branke et al. (2008). In order to find the set of efficient solutions, scalar strategies can be
used, in which the multi-objective problem is transformed into a scalar problem that, when opti-
mized, generates an efficient solution. Two widely used scalarization techniques in this process
are known as Weighted Sum and ε-Constraint methods (Aliano Filho, 2016).

The bi-objective problem considered by Aliano Filho et al. (2018) aims to minimize the fre-
quency of cutting patterns to meet the demand for items and the number of different cutting
patterns to be used. Diversely, in this paper, we study the BMCSP that seeks to minimize the
production costs associated with the cut objects and the inventory costs of objects and items. The
objective of this research is to investigate the trade-off between the different objectives of the
BMCSP by applying the Weighted Sum, the ε-Constraint and the Benson methods. Although,
the BMCSP has already been studied in the literature, the trade-off between the conflicting objec-
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tives considered in this paper has not been investigated before. Given the importance of finding in
practice alternative solutions for the BMCSP in a reasonable time, it is also analyzed the number
of efficient solution found and the computational time spent by each method.

The present paper is organized as follows: Section 2 introduces the studied CSP. Section 3 de-
scribes some concepts of the bi-objective problem. The Weighted Sum, the ε-Constraint and the
Benson methods are described in Section 4 as well as the Column Generation method. The com-
putational tests and the adopted methodology to solve the problems are discussed in Section 6,
and then the performed computational tests are reported in Section 7. Finally, in Section 8 some
final considerations are presented.

2 FORMULATION

The CSP consists of optimizing the process of cutting larger objects into a smaller set of items
in order to meet the demand and satisfy some optimization criteria such as minimizing the total
cost of cut objects, the number of used cutting patterns or the inventory costs. The different ways
in which larger objects can be cut are called cutting patterns.

By seeking to minimize waste and improve the cutting process, the studies involving CSP have
great value for the industry and have attracted the attention of several researchers. Among these
papers addressing the CSP are Gilmore & Gomory (1961), Haessler (1975), Dyckhoff (1990),
Vanderbeck (2000), Wang & Wäscher (2002), Umetani et al. (2003), Oliveira & Wäscher (2007),
among others.

The CSP can be classified in different ways. For more details, Wäscher et al. (2007), Morabito
et al. (2009), Song & Bennell (2014), Gomes et al. (2013) and Delorme et al. (2016) are recom-
mended. In this paper, we study the one-dimensional multiperiod CSP, that is, we consider only
one dimension of the object that will be cut and multiple periods in the planning horizon. How-
ever, the studied formulation also addresses the cutting of objects with more than one dimension,
which is determined according to the way that the cutting patterns are generated. Consider the
following notation:

Indices:

i : item type;

t : period;

m : object type;

j : cutting pattern.

Parameters:

N : total number of item types;

T : total number of periods;
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M : total number of object types;

Nm : total number of cutting patterns for the object type m;

cmt : production cost per centimeter of an object type m in period t;

Lm : length (cm) of object of type m;

gt : inventory cost for each object at the end of period t;

hit : inventory cost for final item type i at the end of period t;

ai jm : number of items type i cut according to cutting pattern j from the object of length Lm;

dit : demand of final item type i in period t;

Emt : number of objects of type m available in period t.

Decision variables:

y j
mt : number of objects type m in period t which are cut according to cutting pattern j;

sit : number of final items type i held at the end of period t;

wmt : number of objects type m stored at the end of period t.

Thus, a mathematical model for the BMCSP can be written as:

min
(

f1 =
M

∑
m=1

T

∑
t=1

Nm

∑
j=1

cmtLmy j
mt , f2 =

N

∑
i=1

T

∑
t=1

hitsit +
M

∑
m=1

T

∑
t=1

gtwmt

)
(1)

s.t.:
M

∑
m=1

Nm

∑
j=1

ai jmy j
mt − sit + si,t−1 = dit , i = 1, . . . ,N; t = 1, . . . ,T (2)

Nm

∑
j=1

y j
mt +wmt −wm,t−1 = Emt , m = 1, . . . ,M; t = 1, . . . ,T (3)

wm0 = 0,siT = 0,si0 = 0, m = 1, . . . ,M; i = 1, . . . ,N (4)

y j
mt ,wmt ,sit ∈ Z+, i = 1, . . . ,N; m = 1, . . . ,M; t = 1, . . . ,T. (5)

The BMCSP model (1)-(5) takes into account the production cost of the cut objects ( f1) and the
inventory cost of objects and items ( f2). The constraints (2) are the item inventory balancing
constraints, i.e., they describe that, in each period and for each item, the total amount of each
cut item less the stock of items in the current period plus the number of stored items from the
previous period must be equal to the demand of items. The constraints (3) are the object inventory
balancing constraints they ensure that the total amount of each cut objects in each period plus
the stock of the previous period less the stock of the current period must be equal to the available
amount of objects. Without losing generality, the constraints (4) state that initial object inventory
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and initial and final item inventory are null. The constraints (5) refer to the non-negativity and
integrality of the decision variables.

Observe that the number of available objects, Emt , is given as a parameter in the model. This
choice was made in order to preserve the CSP characteristics of the problem since, if Emt were
considered as variable, the model would become an integrated LSP and CSP model. Therefore,
the model (1)-(5) addresses practical situations in which the production of the standard objects
and cutting optimization processes are independently considered. For a multi-objective approach
regarding the integrated problem, Campello et al. (2020) is recommended.

Note that the CSP consists of determining the best way to cut the M types of objects available
from different cutting patterns. Thus, for the resolution of the BMCSP, it is necessary to define
the cutting patterns previously. In view of the difficulties encountered in solving the CSP due to
the presence of integrality constraints and a large number of variables associated with the number
of cutting patterns, we considered the model (1)-(5) with the relaxed integrality constraints and
applied the Column Generation method to solve the model.

3 THE BI-OBJECTIVE PROBLEM

In order to simplify the notation, let us consider the Bi-objective Optimization Problem (BOP)
as follows:

min f (x) = ( f1(x), f2(x)) (6)

s.t.: x ∈ X , (7)

where f1(x) and f2(x) are the objective functions to be minimized, x is the problem variable and
X is the set of feasible solutions. Following, we introduce concepts of multi-objective problems
based on Ehrgott (2005).

Definition 1 (Pareto optimal solution) A feasible solution x∗ is said to be an efficient solution
or Pareto optimal solution of the BOP if there does not exist another solution x ∈ X such that
f (x)≤ f (x∗).

Definition 2 (Ideal vector) The vector f− = ( f−1 , f−2 ) is the ideal vector of the BOP if its ith

component is f−i = min{ fi(x) | x ∈ X} for i = 1,2.

Definition 3 (Nadir vector) The vector f+ = ( f+1 , f+2 ) is the nadir vector of the BOP if its ith

component is f+i = max{ fi(x) | x ∈ X} for i = 1,2. When the problem is bi-objective, the nadir
solution of f1(x) is the ideal solution of f2(x) and vice versa.
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4 SOLUTION METHODS

4.1 The Weighted Sum method

The Weighted Sum method scales the set of objective functions of the original multi-objective
problem and converts it into a single weighted objective. The method considers a convex com-
bination of each objective function that, when varied, allows the generation of different efficient
solutions.

It is important to measure the weights for each objective because the more (less) important that
criterion in the problem is, the higher (lower) the value of the weight associated with that objec-
tive should be. The assignment of these weights requires an additional task so that the magnitude
of each objective function does not affect the generation of efficient solutions. If the difference
in the order of magnitude of these objective functions is very large, it is necessary to normalize
them. One way to normalize fi(x) is by determining:

f̄i(x) =
fi(x)− f−i
f+i − f−i

,

where f̄i(x) is the ith normalized objective function, f−i is the ideal solution of fi and f+i is the
nadir solution. In this way, f̄i(x) will assume values between 0 and 1.

Considering the problem (6)-(7), in which two objectives must be minimized, with the normal-
ization of the objective functions, the resulting problem of the Weighted Sum method can be
described as:

min α1 f̄1(x)+α2 f̄2(x) (8)

s.t.: x ∈ X , (9)

where α1,α2 ≥ 0 and α1 +α1 = 1. The solution of the scalar problem (8)-(9) is efficient, and
the Weighted Sum method is able to find all the efficient solutions for convex problems if α is
suitably varied. According to Aliano Filho et al. (2018), there are no clear rules of how to make
this variation, nor the uniqueness of this vector weight for each efficient solution found.

4.2 The ε-Constraint method

Proposed by Haimes et al. (1971), this method scales a Multiobjective Optimization Problem
(MOP) by taking the objective function with only one objective and restricting the others with
upper bounds. As these upper bounds are varied, efficient solutions can be obtained. Consider
the problem given by (6)-(7). The constrained problem is given by:

min f1(x) (10)

s.t.: f2(x)≤ ε, (11)

x ∈ X , (12)

where (11) ensures that the second objective function is bounded from above by ε .
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With this technique, restricting the value of the constraints, the feasible region of the problem
is restricted. Therefore, depending on the value assigned to ε , the problem may be infeasible. A
highly used lower and upper bound for ε is the ideal and nadir solution, respectively.

In order to ensure that the solution produced by the ε-Constraint method is efficient, it is nec-
essary to guarantee its uniqueness. In general, it is difficult to know if the subproblem solution
is unique. However, multiple solutions can be avoided if the objective function of the restricted
problem is modified by:

min f1(x)+ρ f2(x),

where ρ shall be a small number (Aliano Filho et al., 2018).

4.3 The modified Benson method

Originally proposed by Benson (1978), this scalarization technique can find efficient solutions
by setting different feasible solutions and solving the associated scalar problems. Let x0 be a
feasible solution for the problem (6)-(7) and f 0 = ( f 0

1 , f 0
2 ) be its image. The scalar problem of

Benson method is given by:
max l1 + l2 (13)

s.t.: f 0
1 − f1(x) = l1, (14)

f 0
2 − f2(x) = l2, (15)

x ∈ X . (16)

Recently, in 2021, Aliano Filho et al. (2021) proposed a modification on the scalar problem
which can improve its performance. The author replaces the objective function by maximizing
l1 in order to avoid the generation of equal efficient solutions when varying the feasible solution.
Additionally, Aliano Filho (2016) proposed the addition of ρ · l2, where ρ is a real number close
to zero, in the objective function to avoid multiple optimal solutions and so prejudice the search
for efficient solutions. Therefore, the modified scalar problem is given by:

max l1 +ρ · l2 (17)

s.t.: (14)− (16). (18)

It has been proved by Aliano Filho (2016) that if the modified scalar problem has optimal solution
and the set feasible solution satisfies f−2 ≤ f 0

2 ≤ f+2 , then the optimal solution is an efficient
solution for the MOP.
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4.4 The Column Generation method

In 1961, Gilmore & Gomory (1961) proposed a method for solving the relaxed problem that
consists of starting its solution with only a subset of cutting patterns. In order to apply the col-
umn generation method to determine a solution for the problem (1)-(5), the constraints (5) are
relaxed, i.e, the values of the variables are real and non-negative, resulting in a Linear Program-
ming problem. Then, at each iteration, cutting patterns that may potentially improve the current
solution are generated, until the optimal solution is obtained. To generate these cutting patterns,
at each iteration, a subproblem must be solved.

Observe that a column associated to the cutting pattern j of the constraint matrix of the model (1)-
(5) is given by aT

jm = (a1 jm,a2 jm, ...,aN jm ,0, ...,1,0, ...,0), where each variable ai jm represents
the number of items type i cut according to cutting pattern j from the object of length Lm and
there is 1 in the position N +m due to the constraints of stock limitation (3).

Let π be the vector of dual variables associated with constraints (2) and (3). Let `i be the length
of item type i, Lm the length of object type m, m = 1, ...,M, and N the quantity of item types.
Consider Cmt = cmtLm, the production cost of a cut object type m in period t. Thus, the reduced
cost associated to the cutting pattern a jm is given by:

Cmt −
N
∑

i=1
πiai jm−πN+m.

Therefore, for the one-dimensional BMCSP, for each object type m and period t, the subproblem
is given by:

min Cmt −
N

∑
i=1

πiai jm−πN+m (19)

s.t.:
N

∑
i=1

`iai jm ≤ Lm, (20)

ai jm ∈ Z+, i = 1, ...,N. (21)

The objective function (19) seeks for the variable, that is, the cutting pattern, with the minimum
reduced cost, which may provide a better solution when entering the base of the problem. Con-
straints (20) and (21), which characterize a knapsack problem, ensure that the sum of the length
of the items that compose the cutting pattern does not exceed the object size to be cut and that
the quantities of cut items are non-negative.

Although, the scalar problems generated by the ε-Constraint and modified Benson methods have
additional constraints that restrict the feasible region, the generation of new cutting patterns does
not affect these additional constraints since cutting patterns have null coefficients in these con-
straints. Therefore, the subproblem (19)-(21) generates valid columns to the scalar problems
associated with each of the three scalarization methods.

Theoretically, null cutting patterns can be advantageous when the scalar problems focus on min-
imizing the inventory costs, since the remained objects could be cut using null cutting patterns
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in order to avoid objects and also items inventory costs. Considering that and the uselessness
in practical of cutting patterns with no items, the constraint below (22) was added to all the
subproblems of the column generation in order to avoid the generation of these cutting patterns.

N

∑
i=1

aim ≥ 1. (22)

Observe that the column generation, in the way that it was exposed, is applied to generate only
new cutting patterns a jm and the associated variables y j

mt at each iteration. Therefore, all the
other variables and their associated columns are considered in the model since the beginning of
the column generation process.

5 METHODOLOGY

Firstly, in order to find the ideal and nadir solutions of each objective function, the model (1)-(5)
minimizing only f1 was solved by applying the Column Generation method and, then, the gen-
erated cutting patterns were used in the model resolution minimizing only f2. The same set of
cutting patterns was used as the set of initial cutting patterns in the scalar problems’ resolution.
To start the Column Generation method, homogeneous patterns were used for each type of ob-
ject. The scalar problems associated with each of the three applied methods were solved by the
Column Generation method in order to guarantee the optimal solution.

The objective functions were normalized during the application of the Weighted Sum method
and, therefore, the objective function of the subproblem in the column generation was
modified by:

min α1
Cmt

f+1 − f−1
−

N

∑
i=1

πiai jm−πN+m. (23)

Note that the Column Generation method is applied to the BMCSP with the integrality constraints
relaxed. In order to find an integer solution, a number of rounding heuristic techniques proposed
in the literature can be used (Hinxman, 1980; Wäscher & Gau, 1996; Belov & Scheithauer, 2002;
Poldi & Arenales, 2009; Poldi & Araujo, 2016). However, for multi-objective integer problems,
in order to avoid excessive computational effort required by the integer problems’ resolution. A
suitable strategy is to determine integer solutions just around the region that is attractive to the
decision-maker, and it can be done by heuristic procedures (Poldi & Arenales, 2009).

The Weighted Sum, ε−Constraint and the modified Benson methods were applied to the problem
in order to solve 50 distinct problems, that is, to find up to 50 different efficient solutions. In
the Weighted Sum method, at iteration k, αk

1 = 0.01+ 0.02(k− 1) and αk
2 = 1−αk

1 . In the ε-

Constraint method, the second objective function was restricted and εk = f−2 +
f+2 − f−2

51 k. In the

modified Benson method, the feasible solution at iteration k was considered f 0(k)
1 = f+1 −

f+1 − f−1
51 k

and f 0(k)
2 = f−2 +

f+2 − f−2
51 k. We considered ρ = 10−4 for both the ε-Constraint and the modified

Benson methods.
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10 A BI-OBJECTIVE MULTIPERIOD ONE-DIMENSIONAL CUTTING STOCK PROBLEM

6 COMPUTATIONAL EXPERIMENTS

The models were coded in OPL/CPLEX.12.10 and the computational tests were performed on
an Intel Core i7 computer with 3.60 GHz and 16 Gbytes of memory. Six classes were analyzed,
with 10 randomly generated instances in each class. The set of instances is available at https://
github.com/LiviaPierini/Data set3. Table 1 presents the characteristics of each class of instances,
where N represents the number of item types and T , the number of periods.

Table 1 – Number of type de items, periods and type of objects considered in each class of instances.

Class Items (N) Periods (T ) Objects (M)
1 5 8 2
2 10 8 2
3 20 8 2
4 5 12 2
5 10 12 2
6 20 12 2

The lengths of the objects were considered L1 = 540 cm and L2 = 460 cm and the length of

each item i was determined by `i ∈ [0.1, 0.3]×
M
∑

m=1

Lm
M . The production costs cmt were randomly

generated in the interval ∈ [0.030×Lm, 0.050×Lm]. The inventory costs for objects and items
were generated as gt ∈ [0.0000075, 0.0000125] (per object unit) and hit = 0.5× git (per item
unit) in all periods, respectively. The demands of final items were determined by dit ∈ [0, 300].
If dit ≤ 50, then dit = 0. Finally, the number of available objects were considered Emt ∈ [0, 600],

where 1.1×
N
∑

i=1

T
∑

t=1
dit`i ≤

M
∑

m=1

T
∑

t=1
EmtLm.

7 COMPUTATIONAL RESULTS

With the obtained results by applying the scalarization methods in the BMCSP, the negative
correlation between the two different objectives of the problem was proved. Below, in Fig. 1, the
Pareto Fronts of the instance 5 of Class 1 found, by applying the ε-Constraint (a) and Weighted
Sum (b) methods, are presented. The modified Benson and the ε-Constraint methods found a
similar Pareto front.

In Fig. 1, it is possible to note the trade-off between the different objectives of the BMCSP, that
is, the decreasing of one objective function value while the value of the other one increases. In
order to analyze the degree of correlation between the objective functions, the Pearson correlation
coefficient was calculated for each studied instance. Table 2 presents the values of the Pearson
correlation coefficient of the objective functions related to the results found by the ε-Constraint
method. In each column, the result of the instances of each class is presented.
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Figure 1 – Pareto Front found by the ε-Constraint method (a) and by the Weighted Sum method (b)
in the instance 5 of the Class 1.

Table 2 – Pearson correlation coefficient of the objective functions found by the ε-Constraint method.

Instances
Class

1 2 3 4 5 6
1 -0.99957 -0.99880 -0.99233 -0.99965 -0.99593 -0.99745
2 -0.99656 -0.99828 -0.99206 -0.98776 -0.99450 -0.99981
3 -0.99656 -0.99828 -0.99206 -0.98776 -0.99450 -0.99981
4 -0.99630 -0.99845 -0.99739 -0.99999 -0.99860 -0.98629
5 -0.97490 -0.99703 -0.99985 -0.98151 -0.99972 -0.99961
6 -0.99884 -0.99739 -0.99924 -0.99986 -0.99681 -0.99719
7 -0.99792 -0.99961 -0.99983 -1.00000 -0.99663 -0.99941
8 -0.98504 -0.99420 -1.00000 -0.99541 -0.99987 -0.99811
9 -0.99089 -0.99737 -0.99719 -0.99792 -0.99981 -0.99974
10 -0.99831 -0.99880 -0.99912 -0.98580 -0.99753 -0.99945

Average -0.99349 -0.99782 -0.99691 -0.99357 -0.99739 -0.99769

The closer to −1 is the Pearson correlation coefficient, the stronger the negative correlation be-
tween the two objective functions. In Table 2, it is possible to note that the values of the correla-
tion coefficients of the objective functions found by the ε-Constraint method for all the instances
studied were less than−0.97. The correlation coefficients of the objective functions found by the
modified Benson method were very similar to the ε-Constraint method, differing only in the third
decimal place. It verifies the strong negative correlation between the different objective functions
of the BMCSP. Table 3 presents the values of the Pearson correlation coefficient related to the
results found by the Weighted Sum method, following the same arrangement as the Table 2.
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Table 3 – Pearson correlation coefficient of the results found by the Weighted Sum method.

Instances
Class

1 2 3 4 5 6
1 -0.98424 -0.98013 -0.99078 -0.98667 -0.99358 -0.98875
2 -0.99291 -0.98901 -0.96467 -0.99067 -0.99762 -0.99902
3 -0.97251 -0.99540 -0.98907 -0.99175 -0.99436 -0.94412
4 -0.99916 -0.98953 -0.97096 -0.99890 -0.99931 -0.97764
5 -0.96127 -0.98554 -0.99879 -0.98933 -0.99995 -0.98996
6 -0.98191 -0.98475 -0.96764 -0.99859 -0.99542 -0.98148
7 -0.97907 -0.96559 -0.98584 -0.98291 -0.99502 -0.97071
8 -0.96555 -0.97456 -0.97610 -0.98619 -0.96437 -0.95723
9 -0.96744 -0.99378 -0.99707 -0.99006 -0.99998 -0.99842

10 -0.96081 -0.97924 -0.99687 -0.99154 -0.99926 -0.98607
Average -0.97649 -0.98375 -0.98378 -0.99066 -0.99389 -0.97934

With values less than −0.94 by the Weighted Sum method (Table 3) and −0.98 by the ε-
Constraint method (Table 2), the objective functions’ correlation coefficients prove the deep
negative correlation between the objective functions of the BMCSP. It indicates the impossi-
bility of minimizing both objective functions simultaneously, that is, minimizing the total used
material and the inventory costs concomitantly. Therefore, for the BMCSP, multiple efficient so-
lutions should be analyzed by the decision-maker and, then, the most appropriate one based on
some criteria should be selected.

Besides the negative correlation between the two objective functions that can be observed in
Fig. 1, one can also note that the number of efficient solutions found by the ε-Constraint method
is greater than the one obtained by the Weighted Sum method. Tables 4 and 5 show the number of
efficient solutions found by the Weighted Sum and the ε-Constraint methods, respectively. Each
line refers to each class of instances. In the last column of the table, the average of the efficient
solutions found in each class of instances are presented and also the final average, that is, the
average number of efficient solutions found in all instances by the methods.

The average number of efficient solutions found by the Weighted Sum method was 11.73. The
method found at most 22 efficient solutions for instance 3 of Class 4. In this way, many scalar
problems presented the same optimal solution; furthermore, this is a drawback of this method as
pointed out by Marler & Arora (2004).
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Table 4 – Number of efficient solutions found by the Weighted Sum method.

Class
Instances

Average
1 2 3 4 5 6 7 8 9 10

1 4 11 10 11 7 16 14 16 11 16 11.6
2 9 6 18 10 10 9 7 17 14 12 11.2
3 8 12 13 9 9 16 10 18 6 10 11.1
4 11 16 22 11 10 12 12 17 21 16 14.8
5 11 9 10 13 4 6 8 12 5 7 8.5
6 13 10 8 13 13 17 15 13 18 12 13.2

Final average 11.73

Table 5 – Number of efficient solutions found by the ε-Constraint method.

Class
Instances

Average
1 2 3 4 5 6 7 8 9 10

1 50 50 50 50 50 50 50 50 50 50 50.0
2 50 50 50 50 50 50 50 50 50 50 50.0
3 50 50 50 50 50 50 50 50 50 50 50.0
4 50 50 50 50 50 50 50 50 50 50 50.0
5 50 50 50 49 50 50 50 50 50 50 49.9
6 50 50 50 50 50 50 50 50 50 50 50.0

Final average 49.98

Note that the ε-Constraint method performed better than the Weighted Sum method regarding
the number of efficient solutions found. The method found 50 distinct solutions in all instances,
except for the instance 4 of Class 5. The same result was found by the modified Benson method.
Therefore, the overall average of efficient solutions found by the ε-Constraint and modified Ben-
son methods was 49.98. Moreover, each one of the scalar problems from both applications, in
general, resulted in a distinct efficient solution, which did not occur with the scalar problems of
the Weighted Sum method.

The average computational time spent to find the ideal and nadir solutions of each objective
function was, on average, 13 seconds, ranging from 2.7 to 32.4 seconds. Tables 6, 7 and 8 present
the computational time, in seconds, spent to find the Pareto Front by the Weighted Sum, the
ε-Constraint and the modified Benson methods, respectively.
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Table 6 – Computational time (seconds) spent to find the Pareto Front by the Weighted Sum method.

Class
Instances

Avg.
1 2 3 4 5 6 7 8 9 10

1 36.5 34.6 32.6 40.0 34.4 34.6 33.8 33.3 37.7 36.5 35.4
2 40.8 33.4 43.8 35.6 36.3 36.9 38.2 36.7 35.6 35.6 37.3
3 39.4 41.7 41.1 41.0 36.0 41.1 35.2 43.1 40.2 38.0 39.7
4 56.8 55.8 54.4 53.2 53.8 56.9 56.0 52.1 49.5 56.5 54.5
5 62.8 59.3 55.5 56.9 53.2 58.3 53.6 60.7 52.5 52.9 56.6
6 68.6 63.5 65.8 64.6 69.4 63.6 58.8 72.0 66.9 64.4 65.7

Final average 48.2

Table 7 – Computational time (seconds) spent to find the Pareto Front by the ε-Constraint method.

Class
Instances

Avg.
1 2 3 4 5 6 7 8 9 10

1 35.2 33.1 32.8 34.0 33.0 34.5 33.0 33.6 34.3 37.3 34.1
2 33.7 32.6 51.1 34.9 36.6 35.7 36.9 36.9 35.4 34.9 36.9
3 33.6 36.3 37.5 35.6 33.2 37.5 34.8 39.9 37.2 34.4 36.0
4 52.5 51.7 53.3 59.2 50.7 52.5 52.0 50.8 46.7 52.9 52.2
5 53.2 68.1 64.3 52.9 51.1 52.7 52.1 51.5 47.4 51.5 54.5
6 56.4 64.9 57.3 59.6 60.6 57.0 55.3 54.4 57.1 53.5 57.6

Final average 45.2

Table 8 – Computational time (seconds) spent to find the Pareto Front by the modified Benson method.

Class
Instances

Avg.
1 2 3 4 5 6 7 8 9 10

1 37.3 33.3 32.0 34.1 32.9 34.5 33.0 34.0 33.6 36.7 34.1
2 33.9 33.1 50.5 34.8 35.9 36.1 35.6 39.9 36.2 35.2 37.1
3 34.1 37.5 38.5 36.7 34.3 38.1 34.7 41.0 37.3 34.0 36.6
4 51.6 51.8 54.7 52.4 50.7 52.9 51.9 50.5 46.6 53.3 51.6
5 53.2 68.6 65.4 53.7 51.9 53.8 52.0 51.5 47.6 51.7 54.9
6 58.3 64.3 58.1 61.5 62.4 58.1 56.5 56.0 55.6 53.7 58.4

Final average 45.5
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Note that the Weighted Sum method, on average, spent 48.2 seconds to find the efficient so-
lutions, ranging from 33.4 to 65.7 seconds. The longest time to find the Pareto Front was 72
seconds in the instance 8 of Class 6. The ε-Constraint method, on average, spent 45.2 seconds to
find efficient solutions, ranging from 34.1 to 57.6 seconds for each class. The longest time spent
was 68.1 seconds in the instance 2 of Class 5.

The modified Benson method, on average, spent 45.5 seconds to find efficient solutions, ranging
from 34.1 to 58.4 seconds for each class. The ε-Constraint and the modified Benson methods
presented a very similar performance, spending around 45 seconds on average to find the Pareto
front. The three scalarization techniques presented a reasonable time to find the Pareto front;
however, the ε-Constraint and the modified Benson method found more efficient solutions than
the Weighted Sum method and, therefore, presented a better performance when applied to the
BMCSP.

The Column Generation method behaved differently in the scalar problems’ resolution. It is
explained by the fact that the ε-Constraint method and the Weighted Sum method result in scalar
problems with different objective functions. The average amount of cutting patterns generated
in the application of Weighted Sum method was 14.6, while the average for the application of
ε−Constraint and modified Benson methods was 7.9. The generated columns in the ε-Constraint
and modified Benson methods compromised the generation of efficient solutions in the extreme
left side of the Pareto Front, as can be seen in Fig. 2 which shows the Pareto Fronts of the instance
2 of the Class 3.
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Figure 2 – Pareto Front found by the ε-Constraint method (a) and by the Weighted Sum method (b) for the
instance 2 of the Class 3.

The cutting patterns generated during the application of the Weighted Sum method interfered in
the normalization of the objective functions, which started to assume values beyond the interval
(0,1). It is due to the fact that the new cutting pattern generations enable to find better values to
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f2 than its ideal value determined at the beginning with a stated cutting pattern set. Moreover,
the ideal solution f−2 became not a lower bound for ε , and then efficient solutions associated
with values less than f−2 were not found by the ε-Constraint method. The same occurred for
the modified Benson method, since the feasible solutions were based on the ideal and nadir
solutions. Illustrating this, in Fig. 2, it can be seen that the ε−Constraint method did not find
efficient solutions for values of f2 less than 0.

8 CONCLUSIONS

This paper investigates the conflicting objectives of the bi-objective multiperiod cutting stock
problem that aims to minimize the production cost associated with cut objects and the inventory
costs of objects and items. Computational tests were performed and, for solving the problems, the
Column Generation method and three scalarization techniques were applied. The scalarization
techniques’ performance was also analyzed.

With the computational tests, it was possible to verify the strong negative correlation between
the different objectives of the BMCSP indicating the importance of finding alternative solutions
for the BMCSP since it is not possible to minimize the cost associated with the total cut material
(waste) and the inventory costs simultaneously.

Although all the three scalarization techniques spent a similar amount of computational time
to find the Pareto front, the ε-Constraint and the modified Benson methods found many more
efficient solutions than the Weighted Sum method. Both techniques found 49.98 distinct efficient
solutions on average from 50. Therefore, all the methods were able to find multiple solutions for
the BMCSP in a reasonable time; however, the ε-Constraint and the modified Benson methods
performed better to the BMCSP. Moreover, the performance of the ε-Constraint and the modified
Benson methods were very similar, consisting of satisfactory and alternative options for being
applied to the BMCSP.

It was noted that the Column Generation method behaved differently for each scalarization tech-
nique, since the scalar problems involved in each method are different. Continuing the study,
modifications will be made in the application of the methods, such as in the number of initial
columns considered in the Column Generation method, in order to improve the lower bound
for ε .
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OLIVEIRA JF & WÄSCHER G. 2007. Cutting and Packing. European Journal of Operational
Research, 183(3): 1106–1108.

POLDI KC & ARAUJO SA. 2016. Mathematical models and a heuristic method for the
multiperiod one-dimensional cutting stock problem. Annals of Operations Research, 238(1):
497–520.

POLDI KC & ARENALES MN. 2009. Heuristics for the one-dimensional cutting stock problem
with limited multiple stock lengths. Computers & Operations Research, 36(6): 2074–2081.

REZAEI J & DAVOODI M. 2011. Multi-objective models for lot-sizing with supplier selection.
International Journal of Production Economics, 130(1): 77–86.

ROMEIJN HE, MORALES DR & VAN DEN HEUVEL W. 2014. Computational complexity of
finding Pareto efficient outcomes for biobjective lot-sizing models. Naval Research Logistics
(NRL), 61(5): 386–402.

SONG X & BENNELL JA. 2014. Column generation and sequential heuristic procedure for solv-
ing an irregular shape cutting stock problem. Journal of the Operational Research Society, 65(7):
1037–1052.

UMETANI S, YAGIURA M & IBARAKI T. 2003. One-dimensional cutting stock problem to
minimize the number of different patterns. European Journal of Operational Research, 146(2):
388–402.

VANDERBECK F. 2000. Exact algorithm for minimising the number of setups in the
one-dimensional cutting stock problem. Operations Research, 48(6): 915–926.

Pesquisa Operacional, Vol. 42, 2022: 258432



LIVIA MARIA PIERINI and KELLY CRISTINA POLDI 19
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