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ABSTRACT. This paper provides a short introduction to optimization problems with semidefinite con-

straints. Basic duality and optimality conditions are presented. For linear semidefinite programming some

advances by dealing with degeneracy and the semidefinite facial reduction are discussed. Two relatively

recent areas of application are presented. Finally a short overview of relevant literature on algorithmic ap-

proaches for efficiently solving linear and nonlinear semidefinite programming is provided.

Keywords: Semidefinite programming, nonlinear semidefinite programming, Euclidean completion

matrices.

1 INTRODUCTION

Semidefinite programming (SDP) is one of the most vigorous and fruitful research topics in
optimization the last two decades. The intense activity on this area has involved researchers with
quite different mathematical background reaching from nonlinear programming to semialgebraic
geometry. This tremendous success of the semidefinite programming model can be explained by
many factors. First, the existence of polynomial algorithms with efficient implementations that
made the SDP model tractable in many situations. Second, the endless list of quite different and
important fields of applications, where SDP has proved to be a useful tool. Third, the beauty and
depth of the underlying theory, that links in a natural way different and usually unrelated areas
of mathematics.

There are many and excellent survey papers [138, 137, 133, 58, 38, 92, 95, 87] and books
[101, 28, 37, 18, 16, 29, 86, 19] covering the Semidefinite Programming model with algorithms
and special applications. The previous list of references is by no means complete, but only a
short overview on a incresing and large set of items. A special mention in the literature on
Semidefinite Programming deserves the Handbook of Semidefinite Programming [141] edited
by H. Wolkowicz, R. Saigal and L. Vandenberghe in 2000, that covered the principal results on
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496 LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING

the area during the 1990’s. After the publication of the mentioned Handbook the research activ-
ity in Semidefinite Programming continued growing and new areas of development were added.
In particular the interaction with algebraic geometry and the exploration of the close relationship
between semidefinite matrices and polynomial optimization gave rise to important new results
and to an even higher level of research activity. As recent as 2012 it appeared a new Handbook
on Semidefinite, Conic and Polynomial Optimization edited by M.F. Anjos and J.B. Lasserre [9].
This new Handbook provides in 30 chapters a complete update of the research activity on the
area in the last decade.

Our main intention in this short review is to motivate researchers to become involved in this
amazing area of research. We focus on readers with a basic background in continuous Optimiza-
tion, but without a previous knowledge in Semidefinite Programming. Our goal is to provide a
simple access to some of the basic concepts and results in the area and to illustrate the potential
of this model by presenting some selected applications. A short overview on the theoretical and
algorithmic results in the case of nonlinear semidefinite programming is also given. We suggest
to readers interested in a more detailed exposition of the semidefinite model to revise the above
mentioned Handbooks and the references therein.

The paper is divided into two sections. The first one is devoted to the (linear) Semidefinite
Programming and the second one to the case of nonlinear Semidefinite Programming.

2 THE LINEAR SEMIDEFINITE PROGRAMMING

The linear semidefinite programming can be intended as linear programming over the cone of
positive semidefinite matrices. In order to formulate the problem in details let us fix some no-
tations. In the sequel we denote with Sm the linear space of m × m real symmetric matrices
equipped with the inner product

〈A, B〉 := Tr(AB) =
m∑

i, j=1

Ai j Bi j

where A = (Ai j ), B = (Bi j ) ∈ Sm .

On this linear space we consider the positive semidefinite order, i.e. A � B iff A− B is a positive
semidefinite matrix. The order relations � and ≺, � are defined similarly.

The primal semidefinite programming problem is then defined as follows:

(S D P − P)

min 〈C, X 〉
AX = b
X � 0

where C ∈ Sm , b ∈ Rn are given data, and A : Sm → Rn is a linear operator. In general A is
written as

AX =

⎛
⎜⎜⎝

〈A1, X 〉
...

〈An , X 〉

⎞
⎟⎟⎠
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where A1, . . . , An ∈ Sm are also data of the problem.

Let us denote the set of positive semidefinite matrices as follows

S
m+ = {A ∈ Sm | A � 0}

The set Sm+ is a full-dimensional, convex closed pointed cone, such that (SDP-P) is a convex
problem. Its boundary is the set of semidefinite matrices having at least a zero eigenvalues and

its interior is the cone of positive definite matrices. The cone Sm+ is also self-dual, i.e. its polar
cone

(Sm+)∗ = {B ∈ Sm | 〈A, B〉 ≥ 0, ∀A ∈ Sm+}
coincides with Sm+. This property allows to calculate the Lagrange dual of the (SDP). Let the
optimal value of (SDP-P) be denoted as follows.

p∗ = inf
X∈Sm+

sup
y∈Rn

{
〈C, X 〉 −

n∑
i=1

yi(〈Ai , X 〉 − bi)

}

= inf
X∈Sm+

sup
y∈Rn

{
〈C −

n∑
i=1

yi Ai , X 〉 + bT y)

}

Interchanging “sup” and “inf” we obtain the dual with corresponding optimal value d∗.

d∗ = sup
y∈Rn

inf
X∈Sm+

{
〈C, X 〉 −

n∑
i=1

yi(〈Ai , X 〉 − bi)

}
(1)

Taking into account the selfduality of Sm+ the following expression is then obtained:

inf
X∈Sm+

{〈C −
n∑

i=1

yi Ai , X 〉 + bT y)} =
⎧⎨
⎩ bT y, C −

n∑
i=1

yi Ai ∈ Sm+
−∞, else

Consequently the dual problem to (SDP-P) can be written as:

(S D P − D)

max bT y

A∗y + Z = C
Z � 0

where A∗ : Rn → Sm denotes the adjoint operator of A defined as

A∗ y =
n∑

i=1

yi Ai

This pair of primal and dual problems has the same structure of primal-dual problems in linear
programming with the standard form. The only difference is that the cone defining the inequali-
ties is now Sm+ instead of the cone of vectors with nonnegative components. This SDP model con-

tains as special cases many other optimization problems as linear programming, convex quadratic

Pesquisa Operacional, Vol. 34(3), 2014
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programming, second order cone programming, etc. A rich list of semidefinite representable sets

and problems can be found, for instance, in [18].

Many of the theoretical and algorithmic results from LP can be carried over to the SDP case.
A first trivial one is the weak duality, since from the feasibility of X for (SDP-P) and (y, Z ) for
(SDP-D) it follows that

〈C, X 〉 − bT y = 〈A∗ y, X 〉 − bT y + 〈Z , X 〉 = yTAX − bT y + 〈Z , X 〉 = 〈Z , X 〉 ≥ 0

where the last inequality is again a consequence of the self duality of Sm+.

From the above weak duality results it follows straightforwardly that the Karush-Kuhn-Tucker
system (2) provides sufficient optimality conditions for the pair (SDP-P) and (SDP-D).

AX = b

A∗ y + Z = C
〈Z , X 〉 = 0

Z , X � 0

(2)

Since the cone Sm+ is nonpolyhedral, the SDP is a convex but nonlinear optimization problem. In

consequence not every nice duality properties of LP can be extended to SDP. For instance, there
are solvable primal and dual pairs having a strictly positive duality gap. There are also primal
dual problems with zero duality gap that are not both solvable, see for instance [141]. Such
examples are impossible in LP and imply also that the above conditions (2) are not necessary for

optimality.

The usual way to state strong duality results in the SDP setting is to require the Slater’s Constraint
Qualification (Slater-CQ). This can be intended for SDP problems as strict feasibility. For (SDP-
P) it means the existence of a positive definite feasible point X � 0. Analogously for (SDP-D)

it means the existence of a feasible solution (y, Z ) with Z � 0. Under the strict feasibility
assumptions the following strong duality results are known.

Theorem 2.1. Let consider the dual problems (SDP-P) and (SDP-D) with optimal values

p∗ = inf{〈C, X 〉 |AX = b, X ∈ Sm+}
d∗ = sup{bT x |A∗ y + Z = C, Z ∈ Sm+, y ∈ Rn}

1. If the problem (SDP-P) is strictly feasible and p∗ is finite, then p∗ = d∗ and the dual
optimal value d∗ is attained.

2. If the problem (SDP-D) is strictly feasible and d∗ is finite, then p∗ = d∗ and the primal
optimal value p∗ is attained.

3. If both problems (SPD-P) and (SDP-D) are strictly feasible, then p∗ = d∗ and both opti-
mal values are attained.

Pesquisa Operacional, Vol. 34(3), 2014
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WALTER GÓMEZ BOFILL and JUAN A. GÓMEZ 499

In particular the last strong duality result implies that under the Slater-CQ the above conditions

(2) actually characterize primal-dual optimal points. The complementarity condition 〈Z , X 〉 = 0
in (2) can be equivalently replaced, see e.g. [37], by the usual matrix multiplication, such that
the optimality conditions take the form:

AX = b
A∗ y + Z = C

Z X = 0

Z , X � 0

(3)

The notion of strict complementarity and degeneracy can be extended to the SDP setting. For
instance, strict complementarity means X + Z � 0, see e.g. [7, 22]. However, not all the proper-
ties related to these concepts in LP can be carried over to SDP. In particular the classical theorem

of Goldman and Tucker [54] on the existence of primal-dual strict complementarity solutions
does not hold for SDP, see for instance [37] also for a discussion on maximal complementary
solutions. In fact, the study of nondegeneracy in SDP requires a deeper analysis of the geometry

of the semidefinite cone [114].

The Slater-CQ is a generic condition [7, 44]. It is also a crucial condition for the stability of most
of the efficient solutions methods for SDP. The Slater-CQ holds also in many applications, for
instance for the basic SDP relaxations of the max-cut problem. More details on SDP relaxations

of the max-cut problem and other combinatorial problems can be found in [53, 140, 87, 40, 39]

There are however many SDP instances arising for instance also by relaxations of hard combi-
natorial problems where the Slater-CQ is not fulfilled, see for example [146, 82, 82, 83, 32]. A
prevailing approach to get equivalent instances satisfying the Slater-CQ is the skew-symmetric

embedding, see [41, 37]. This technique uses homogenization of the problem and increases the
number of variables.

Another general approach to deal with the lack of strict feasibility bases on the so called fa-
cial reduction and extended duals [24, 25, 26, 122, 123, 135, 115]. Let us discuss this second

approach, since it uses geometric properties of the semidefinite cone and provides in general
smaller regularized problems.

A cone F ⊆ Sm is a face of Sm+, denoted by F � Sm+ (and F � Sm+ in case F �= S
m+), if

A, B ∈ Sm+, (A + B) ∈ F ⇒ A, B ∈ F.

Obviously {0} � Sm+. If {0} �= F � Sm+, then F is called a proper face of Sm+. If F � Sm+ the

conjugate or complementary face of F , denoted by Fc, is defined as Fc = F⊥ ∩ Sm+. Moreover,
if A is in the relative interior of a face F � Sm+, then Fc = {A}⊥ ∩ Sm+. Detailed results on the
facial structure of Sm+ can be found, for instance in [113]. The following characterization of the

faces of the semidefinite cone is known.

Theorem 2.2. A cone F �= {0} is a face of Sm+ if and only if

F = {A ∈ Sm | A = PW PT , W ∈ Sk+}

Pesquisa Operacional, Vol. 34(3), 2014
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for some k ∈ {1, . . . , m}, and P ∈ Rm×k with rank k.

Let us consider the dual set of feasible slack variables FD = {Z ∈ Sm+ | Z = C − A∗ y}.
The corresponding minimal face is defined as

fD = f ace(FD ) =
⋂

{H � Sm+ | FD ⊂ H }
The face f ace(FD) is the smallest face of Sm+ containingFD . Using the order � fD derived from

the cone fD , i.e. A � fD B ⇔ B − A ∈ fD , a regularized dual problem can be defined.

(S D Preg − D) d∗
reg = sup{bT y | A∗y � fD C} (4)

The above regularized problem is equivalent to (S D P − D), see [24, 25], in the sense that the
feasible set remains the same

A∗ y � fD C ⇔ A∗ y � C

The Lagrangian dual of (S D Preg − D) can be easily calculated as

(S D Preg − P) p∗
reg = inf{〈C, X 〉 |AX = b, X � f ∗

D
0} (5)

where the dual cone is given by

f ∗
D = {Y ∈ Sm | 〈Y, X 〉 ≥ 0, ∀Y � fD 0}

The following theorem [24] provides then a strong stability result for the regularized dual

problem.

Theorem 2.3. If the original problem optimal value d∗ in (1) is finite, then d∗ = d∗
reg = p∗

reg

and the optimal value p∗
reg is attained.

Recently a backward stable preprocessing algorithm has been developed that bases on the above
semidefnite facial reduction and can provide equivalent regular reformulations to problems with-
out the Slater-CQ, e.g. [34]. In particular the following auxiliary problem is considered

min
δ,D

δ∥∥∥∥∥
[

AD
〈C, X 〉

]∥∥∥∥∥
2

≤ δ

〈
1√
n

I, D

〉
= 1

D � 0

(6)

This auxiliary problem can be written as a Semidefinite Programming, where in particular the

first constraint is a second order cone constraint that can be also written as a semidefinite one, see
for instance [18]. The problem (6) and its dual satisfy the Slater-CQ [34]. Consequently, using
interior point methods an optimal solution (δ∗, D∗) in the relative interior of the optimal solution
set can be obtained. In the most interesting case we get a description of the minimal face as

fP = Q Sm̄+ QT

Pesquisa Operacional, Vol. 34(3), 2014
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for some matrix Q ∈ Rm×m̄ with QT Q = Im̄ and m̄ < m. A regularized reduction is then

obtained, since the original semidefinite program (SDP-D) can be equivalently formulated as
reduced problem satisfaying the Slater-CQ, see [34].

Theorem 2.4. Let the feasible set FD be nonempty and (δ∗, D∗) be a solution of the auxiliary
problem (6). If δ∗ = 0 and

D∗ = [P Q]

[
�+ 0
0 0

][
PT

QT

]
,

where [P Q] is orthogonal, Q ∈ Rm×m̄ and �+ � 0, then (SDP-D) is equivalent to the follow-
ing problem

sup bT y
PT (A∗ y − C)P = 0

QT (A∗ y − C)P = 0
QT (A∗ y − C)Q � 0

The above remarkable result shows a way to identify hidden linear equality constraints into

degenerated SDP problems. This procedure is well established in linear programming as part
of general preprocessing steps, but it is not usual in nonlinear problems (as the SDP model).
The facial reduction procedure to obtain regularized and reduced problems have been sucessfully

used in different application in order to take advantage of degeneracy, see for instance [82, 13,
15, 14, 32].

In the seminal work [101] it was shown that the function log(det(X)) is a self-concordant barrier
function. As a consequence SDP instances can be solved in polynomial time using a sequence

of barrier subproblems. In [6] another fundamental approach based on the potential function
methods was presented. Strong numerical result were also early reported for min-max eigenvalue
problems [60, 63].

There is a long list of quite different algorithmic approaches for solving the SDP problem, see

for instance [6, 18, 101, 103, 66, 72, 99, 59, 75, 95, 96, 31, 30, 81, 55, 117, 147, 116], among
many others. The previous list is by far incomplete and we do not intend to describe here all the
diverse ideas to deal with the efficient solution of semidefinite programming. Instead we point

out to the excellent surveys in the algorithmic sections of the already mentioned Handbooks
[141, 9]. There are many software tools available for solving general SDP problems, for instance
SeDumi [130], SDPNAL [147], SDPT3 [136, 134], SDPA [145, 144] and PENNON [71, 75, 77],

among others. A useful tool for modelling with SDP and for using the existing SDP-software
is the program YALMIP [93]. For a detailed survey about software tools for SDP see [94].
There are also some available implementations of solvers for particular structured SDP prob-

lems, we just mention in this direction GloptiPoly [62, 61] for the so called generalized problem
of moments [84, 85, 86] and SOSTOOL [121, 120] for solving sum of squares optimization
programs [110, 111, 19].

Pesquisa Operacional, Vol. 34(3), 2014
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We present in the rest of this section two selected areas of application of the semidefinite

programming model.

2.1 Polynomial Lyapunov functions

One example of an important mathematical problem is the search of general methods to prove

that a real n-variable polynomial p(x) ∈ R[x] is nonnegative, i.e.

p(x) ≥ 0, ∀x ∈ Rn .

This problem is connected with the famous 17th Hilbert problem. It is NP-hard and has not a
general computable solution. On the other hand, it is known that a single polynomial p is a
nonnegative polynomial if and only if it can be written as a sum of squares of rational functions,

and so, clearing denominators hp = f for some sum of squares polynomials h, f ([11],[42]).

Hence, the general question can be transformed into a more restricted but more accesible ques-
tion: When a given polynomial can be decomposed in a sum of squares of other polynomials?
This last question can be answered in a computable way using SDP and the idea was first ap-

peared in [27]. See also [118] for an extense survey of this and other methods to tackle the
problem.

If n = 1 the ring R[x] of real polynomials of a single variable has the fundamental property that
every nonnegative polynomial p ∈ R[x] is a sum of squares of some other polynomials. But for

n > 1 not every nonnegative polinomial can be decomposed in a sum of square, but when it does
the question is strongly related with a SDP problem. The following definitions and results can
be seen in [86].

Let R[x] denote the ring of real polynomials in the variables x = (x1, . . . , xn). A polynomial

p ∈ R[x] is a sum of squares (in short SOS) if p can be written as:

p(x) =
∑
j∈J

p j(x)2, ∀x ∈Rn,

for some finite family of polynomials
{

p j , j ∈ J
} ⊂ R[x]. Notice that necessarily the degree

of p must be even, and also, the degree of each p j is bounded by half of that of p.

For a multi-index α ∈ Nn , let

|α| =
n∑

i=1

αi ,

and define the vector:

vd(x) = (xα)|α|≤d = (1, x1, . . . , xn, x2
1 , x1x2, . . . , xn−1xn, x2

n , . . . , xd
1 , . . . , xd

n

)
,

of all the monomials xα of degree less or equal to d which has dimension s(d) = ( n + d
d

)
.

Those monomials form the canonical basis of the vector space R[x]d of n-variables polynomials
of degree at most d .

Pesquisa Operacional, Vol. 34(3), 2014
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Proposition 2.5. A polynomial p ∈ R[x]2d has a sum of square (SOS) decomposition if and only

if there exists a real symmetric and positive semidefinite matrix Q ∈ Rs(d)×s(d) such that

p(x) = vd(x)T Qvd(x), ∀x ∈ Rn. (7)

Therefore, given a SOS polynomial g ∈ R[x]2d , the identity g(x) = vd(x)T Qvd(x) provides
linear equations that the coefficients of the matrix Q must satisfy. Hence writing:

vd(x)Tvd(x) =
∑
α∈Nn

Bαxα,

for appropriate s(d) × s(d) real symmetric matrix Bα , checking whether the polynomial g(x) =∑
α gαxα is SOS reduces to solving the SDP (feasibility) problem:

Find Q ∈ Rs(d)×s(d) , such that: (8)

QT = Q, Q � 0, 〈Q, Bα〉 = gα, ∀α ∈ Nn.

a tractable convex optimization problem for which efficient software packages are available.

There are amazing ideas related to the above connection between positive polynomials and SDP.

Using the so called moment problem nice hierarchies of tractable problems have been proposed
to deal with, for instance, global optimization, see [86] and the references therein. Extending the
idea to SOS-convexity [5, 4] new tractable relaxations have been proposed to problems in control.

A last example is the new interest in classical Lyapunov’s method for determining the stability
of dynamical systems, specially by using SDP for finding polynomic Lyapunov’s functions in
polynomial differential equations.

In 1892 Lyapunov introduced his famous stability theory for nonlinear and linear systems. To be

specific but no very technical, we recall that a dynamical system described by a homogeneous
system of equations:

ẋ = f (x), where ẋ = dx

dt
, f : Rn → R

n, f (0n) = 0n,

has a stable equilibrium point at x = 0n if any solution x(t, x0) corresponding to an initial

condition x0 in some neightborhood of 0n, remains close to 0n for all t > 0. In the particular
case when x(t, x0) converges to 0n if t → +∞, the equilibrium is called asymptotically stable.

It is well known that stability can be certified if there exists a Lyapunov’s function V = V (x)

such that,

V : Rn → R,

V (x) > 0, ∀x �= 0n, V (0) = 0,

dV (x(t))

dt
= ∇V (x(t))ẋ (t) = ∇V (x(t)) f (x(t)) ≤ 0, ∀t > 0.

and also asymptotical stability if furthermore the last inequality is strict.

Pesquisa Operacional, Vol. 34(3), 2014
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For a long time a computable general method to find Lyapunov’s function were available only

for the linear case:
ẋ = Ax,

for example, in the form of a quadratic function:

V (x) = x T Px,

satisfying
d

dt
V (x) = x T

[
AT P + P A

]
x = −x T Qx,

where P, Q are symmetric, positive definite n × n matrices. The matrix algebraic equation:

AT P + P A = −Q

is known as the Lyapunov algebraic equation. More about this important equation and its role in

system stability and control can be found in [50].

There is no general procedure for finding the Lyapunov functions for nonlinear systems. In the
last few decades however, advances in the theory and practice of convex optimization and in
particular in semi-definite programming (SDP) have rejuvenated Lyapunov theory. The approach

has been used to parameterize a class of Lyapunov functions with restricted complexity (e.g.
quadratics, pointwise maximum of quadratics, polynomials, etc...) and then to pose the search of
a Lyapunov function as a convex feasibility problem (see, for example [110], [109]).

Expanding on the concept of sum of squares decomposition of polynomials, this technique allows

the formulation of semi-definite programs that search for polynomial Lyapunov functions for
polynomial dynamical systems [3]. Sum of squares Lyapunov functions along with many others
SDP based techniques, have also been applied to systems that undergo switching, e.g. ([124],

[108], [119], [112]).

Perhaps so far it is not clear for the reader how the SDP problems arise in the context of dy-
namical systems stability and in the Lyapunov’s function finding. But searching for a polynomic
Lyapunov function for a polynomial dynamical system is reduced to find the coefficients of a

n-variable polynomial p(x1, . . . , xn) of some degree d such that the following polynomial in-
equalities hold:

p(x) > 0, ∀x �= 0,

d

dt
p [x(t)] = ∇ p(x) f (x) < 0.

In this case we have two polynomial inequalities, but the solution of the problem (7) which find
a matrix Q representing p as a quadratic form of vd(x) is not unique. In fact, it can be shown
that the whole solution matrix set of the equations given by p(x) = vd(x)T Qvd(x) is a linear
space. When this linear space intersects the positive semi-definite matrix cone then p(x) is SOS.

Pesquisa Operacional, Vol. 34(3), 2014
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In practice the general method searchs for a representation Q of p(x) = vd(x)T Qvd (x) and

another quadratic representation R of

d

dt
p [x(t)] = ∇ p(x)Q f (x) = vd(x)T Rvd (x).

Then, a sufficient condition for the dynamical system stability is that the following matrix in-

equality system holds: {
vd(x)T Qvd(x) > 0
vd(x)T Rvd (x) ≤ 0

, ∀x ∈ Rn,

or equivalently, if the following 2s(d) × 2s(d)−matrix is positive (semi-)definite:

Q̃ =
(

Q 0
0 −R

)
.

In this case the feasibility problem (8) can be formulated in terms of the searching of matrix
Q̃. In usual control theory language this is called a LMI (linear matrix inequality) problem (see
[109]), and there exists efficient software to solve it, for instance SOSTOOL [121, 120].

Extensions of this kind of results to the so called switched and hybrid systems are developed in

([119]). A dynamical system is called switched/hybrid system if it can be written in the following
form:

ẋ = fi (x), i = 1, . . . , N , (9)

where x is the continuous state, i is a discrete state and fi (x) is the vector field describing the

dynamics of the i − th mode/subsystem. Depending on how the discrete state i evolves, the
system (9) is categorized as a switched system, if for each x ∈ Rn only one i is possible, or as a
hybrid system, if for some x ∈ Rn multiple i are possible.

In the case of switched system, the system is in i − th mode at time t if

x(t) ∈ Xi =
{

x ∈ Rn : gik (x) ≥ 0, k = 1, . . . , mX
i

}
. (10)

Additionaly, the state space partition {Xi } must satisfy
⋃
i

Xi = Rn and int (Xi ) ∩ int (X j ) = ∅,

for i �= j . A boundary Si j between Xi and X j is defined analogously by

Si j =
{

x ∈ Rn : hi j0(x) = 0, hi jk(x) ≥ 0, k = 1, ..., mS
i j

}
. (11)

The stability analysis of switched polynomial system is based again in SOS decomposition, using

piecewise polynomial Lyapunov functions. A typical result follows:

Theorem 2.6. Consider the switched system (9)-(11). Assume there exists polynomials Vi(x),

ci j (x) with V (0) = 0 if 0 ∈ Xi , and sum of squares aik (x) ≥ 0 and bik (x) ≥ 0, such that

Vi(x) −
m X

i∑
k=1

aik(x)gik (x) > 0, ∀x �= 0, ∀i = 1, . . . , N ,
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∂Vi

∂x
fi (x) +

m X
i∑

k=1

bik(x)gik (x) < 0, ∀x �= 0, ∀i = 1, . . . , N ,

Vi(x) + ci j (x)hi j0(x) − V j (x) = 0, ∀i �= j

then the origin of the state space is asymptotically stable. A Lyapunov function that prove this is
the piecewise polynomial function V (x), defined by:

V (x) = Vi(x), if x ∈ Xi .

The SOS polynomials aik , bik at Xi are computed using constrained feasibility SDP and LMI
methods.

2.2 Euclidean Distance Matrices

Let us discuss some SDP relaxations of the Euclidean Distance Matrix Completion problem.
A complete survey on the topic is provided in the recent Handbook [9]. We present some of the
problems and results in [82, 83] and encourage the readers to look for details in the survey and

the references therein.

A matrix D ∈ Sn is called an Euclidean Distance Matrix (EDM), if there exist vectors p1, . . . ,

pn ∈ Rr , such that
Di j = ‖pi − p j‖2

2, ∀i, j = 1, . . . , n

The smallest dimension r, where the above representation is possible is called the embedding di-
mension of D, denoted by embdim(D). Let us denote the set of all Euclidean Distance Matrices
by En .

From the vectors p1, . . . , pn ∈ Rr we can define the so called Gramm matrix Y ∈ Sn as

Yi j = pT
i p j , ∀i, j = 1, . . . , n

It holds then the relation

Di, j = ‖pi − p j‖2
2 = pT

i pi + pT
j p j − 2 pT

i p j = Yii + Y j j − 2Yi j , ∀i, j = 1, . . . , n (12)

Given a Matrix Y ∈ Sn the row vector formed with its diagonal is a mapping that shall be denoted
by diag(Y ). The adjoint operator of this mapping shall be called Diag(d) = diag∗(d) and is
obtained as the diagonal matrix with the vector d along the diagonal. Further the row vector with
all entries equal to one should be noted by e. The last expression in the above relationship (12)

can be intended as a mapping K : Sn → Sn , i.e.

K := diag(Y )eT + e diag(Y )T − 2Y

Using the linear map K the set of Euclidean Distance Matrices can be described as image of the
cone of semidefinite constraints, i.e. K(Sn) = En . There is an explicit representation of the
Moore-Penrose generalized inverse ofK as follows:

K†(D) = −1

2

[
In − 1

n
eeT
]

[D − Diag(diag(D))]
[

In − 1

n
eeT
]
.
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The range spaces of K and K† are called the hollow space and the centered space (denoted as

S
n
H and Sn

C ), respectively, and can be described as follows:

S
n
H = {D ∈ Sn | diag(D) = 0}, S

n
C = {Y ∈ Sn | Y e = 0}.

The following relations are then useful

K(Sn
C ) = Sn

H , K†(Sn
H ) = Sn

C , K(Sn+ ∩ Sn
C ) = En, K†(En) = Sn+ ∩ Sn

C

D ∈ En ⇐⇒ K†(D) ∈ Sn+, embdim(D) = rank(K†(D))

If we restrict K and K† to the subspaces Sn
C and Sn

H , respectively, then K is bijection and
K† its inverse. Moreover, the restriction K : Sn+ ∩ Sn

C −→ En is also a bijection and K† :
En −→ Sn+ ∩ Sn

C its inverse. So far, the problem of deciding whether a given Matrix D ∈ Sn

is an Euclidean distance matrix with embedding dimension not greater than r can be stated as
follows:

Find Y ∈ Sn+ ∩ Sn
C

such that K(Y ) = D

rank(Y ) = r

or equivalently as
min 0

subject to K(Y ) = D
Y e = 0
Y � 0

rank(Y ) = r

Deleting the last rank constraint we obtain an instance of the (SDP-P), where the Slater-CQ fails

(due to the condition Y e = 0).

Consider now that for a matrix D ∈ Sn with zero diagonal and nonnegative elements some
entries are known and other are not specified. Let us further assume that every specified principal
submatrix of D is an Euclidean distance matrix with embedding dimension less or equal to r. The

Euclidean Distance Matrix Completion (EDMC) problem consists in finding the not specified
entries of D, in such a way that D is an Euclidean distance matrix. In order to specify the
problem mathematically, let us associate to D a 0-1 matrix H ∈ Sn such that Hi j = 1 for the

specified entries of D and Hi j = 0 otherwise. Using the Hadamard component-wise product
((A ◦ B)i j = Ai j Bi j ) the (EDMC) problem for D can be then written as

Find � ∈ En

such that H ◦ � = H ◦ D
(13)

The low dimensional Euclidean Distance Matrix Completion adds the constraint that the embed-
ding dimension should not be smaller than r, i. e.

Find � ∈ En

such that H ◦ � = H ◦ D

embdim(�) = r
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This problem can be equivalently written as

min 0

subject to H ◦K(Y ) = H ◦ D
Y e = 0
Y � 0
rank(Y ) = r

and it is NP-hard. The relaxation obtained by deleting the rank constraint is a tractable SDP
problem, but the solutions usually has too large values for rank(Y ) and there are many different
heuristics to improve this relaxation [83].

Another idea is to take advantage of the degeneracy (in the sense that the Slater-CQ fails) and to

reduce the dimension of the problem using a proper semidefinite facial reduction. Given a subset
α ⊂ {1, . . . , n} and a matrix Y ∈ Sn let us denote by the principal submatrix of Y formed from
the rows and columns with index in α as Y [α]. Based on this notation we can define for a fixed

matrix D̄ ∈ Ek , with |α| = k the set

En(α, D̄) = {D ∈ En | D[α] = D̄}
For instance, if the fixed entries of the matrix D in the above low dimensional (EDMC) problem
are exactly those from the matrix formed by the first k rows and columns, where the specified
submatrix is D̄ ∈ Ek with embdim(D̄) = r, then the low dimensional (EDMC) problem can be
intended as to find one element in the set

{Y ∈ Sn | Y ∈ K†(En(1 : k, D̄)), rank Y = r}
Here we write MATLAB notation 1 : k = {1, . . . , k} for simplicity.

Theorem 2.7. Let D ∈ En, with embedding dimension r. Let D̄ = D[1 : k] ∈ Ek with
embedding dimension t , and B = K†(D̄) = ŪB SŪB for some ŪB ∈ Rk×t with Ū T

B ŪB = It

and S ∈ St+ positive definite. Then

face K†(En(1 : k, D̄)) = (USn−k+t+1+ U ) ∩ Sn
C = (U V )Sn−k+t+ (U V )T

where

UB =
[

ŪB
1√
n

e
]

∈ Rk×(t+1),

U =
[

Ub 0
0 In−k

]
∈ Rn×(n−k+t+1) and

[
V

U T e
‖U T e‖

]

is an square orthogonal matrix of dimension (n − k + t + 1).

This remarkable result provides a reduction of the size of the (EDM) completion problem.
Instead of working with matrices in Sn , the problem is now stated with smaller matrices in
Sn−k+t .
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There is a natural way to associate a weighted undirected Graph G = (N , E, ω) to the (EDMC)

problem defined by a matrix D ∈ S
n (with zero diagonal, nonnegative elements and specified

and unspecified entries). In fact, taking the nodes set N = {1, . . . , n}, the edge set E = {i j | i �=
j, Di j is specified} and the weights ωi j = √Di j , for all i j ∈ E . In this setting the matrix H used

in (13) correspond just to the adjacency matrix of G. Moreover, a specified principal submatrix
in D can be interpreted as a clique in G. So far, the above result deals with the case of a single
clique. It shows in particular, the equivalence to appropriated faces and opens the possibility to

reduce the problem using information of a clique.

In [82] the above result is extended in many ways, first considering two (or more) disjoint
cliques and then describing the faces associated to intersecting cliques. A deeper insight of
the subsequent reduction of the problem can be taken from [82, 83], where this procedure is

applied to the so called Sensor Network Localization Problem and numerical examples with
the solution of large instances are discussed. The same technique of semidefinite facial reduc-
tion over cliques for EDMC problems have been successfully applied to other areas, see for

instance [15, 12].

3 NONLINEAR SEMIDEFINITE PROGRAMMING

Let us consider in this section the following nonlinear semidefinite programming (NLSDP)
model

(N L S D P)
min f (x)

G(x) � 0

where the mappings f : Rn −→ R and G : Rn −→ Sm are in general smooth and nonlinear.
Equality constraints can be also included in the (NLSDP) model, but for simplicity of presenta-

tion, we have chosen the above simple (NLSDP). In particular, all statements discussed in this
section can be adapted to the case with equalities.

The (SDP) model of the previous section is already a nonlinear convex optimization problem.
However in some important application problems, see e.g. [102, 100, 106], it is helpful to in-

corporate non convex and nonlinear functions into the model resulting in the above (NLSDP).
More recently NLSDP has been used for modelling in new different applications areas like mag-
netic resonance tissue quantification [8], truss design and structural optimization [2, 17, 67, 73],

material optimization [1, 74, 79, 129, 127, 128, 57, 78], passive reduced order modelling [48],
fixed-order control design [10], finance [80, 88] and reduced order control design for PDE sys-
tems [91], among others.

The optimality conditions of first and second order for NLSDP are widely characterized, see for

instance [21, 23, 35, 125, 47]. An important effort research is recently devoted to the study and
characterization of stability for solutions of nonlinear semidefinite programming (or in general
conic) problems, see for instance [107, 20, 33, 70, 49, 98, 97].

We present briefly the optimality condition for the model (NLSDP) and refer to [65] for a de-

tailed discussion of the key differences to the usual case of nonlinear programming.
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The Lagrangian L : IRn × Sm → IR of (NLSDO) is defined by L(x, Y ) := f (x) + 〈G(x), Y 〉.
and its gradient with respect to x can be written as

∇xL(x, Y ) = ∇ f (x) + DG(x)∗ [Y ] (14)

Here DG(x)[.] : Rn −→ Sm is defined as

DG(x)[d] =
n∑

i=1

di Gi (x), with Gi (x) = ∂G(x)

∂xi

and the adjoint DG(x)∗ [.] : Sm −→ Rn is then

DG(x)∗[Y ] = ∇x 〈G(x), Y 〉 = (〈G1(x), Y 〉, . . . 〈Gn(x), Y 〉)T .

The Mangasarian-Fromovitz constraint qualification is satisfied at the feasible point x if there
exists a vector d ∈ Rn such that G(x̄) + DG(x)[d] ≺ 0.

Theorem 3.1. If x̄ is a local minimizar of (NLSDP) where the Mangasarian-Fromovitz constraint
qualification holds true, then there exist matrices Ȳ , S̄ ∈ Sm such that

G(x̄ ) + S̄ = 0,

∇ f (x̄) + DG(x̄)∗[Y ] = 0,

Ȳ S̄ = 0,

Ȳ , S̄ � 0.

(15)

A point (x̄, Ȳ , S̄) satisfying (15) is a stationary point of (NLSDP). For simplicity let us consider

only the case that the above Ȳ and S̄ and unique and satisfy strict complementarity, i.e. Ȳ +S̄ � 0.
In the following we state second order sufficient conditions due to [125]. Let us then consider a
strict complementary stationary point (x̄ , Ȳ , S̄). In this case the cone of critical directions at x̄
can be written as follows, see e.g. [20, 65],

C(x̄ ) := {h | U T
1 DG(x̄)[h]U1 = 0}, (16)

where U = [U1, U2] is an unitary matrix that simultaneously diagonalizes Ȳ and S̄. Here also,
U2 has r := rank(S̄) columns and U1 has m − r columns. Moreover the first m − r diagonal
entries of U T S̄U are zero, and the last r diagonal entries of U T ȲU are zero.

Let us denote the Hessian of the Lagrangian by

∇2
xL(x, Y ) = ∇2 f (x) + D2G(x)∗[Y ] (17)

where D2G(x)∗[Y ] = ∇2
x 〈G(x), Y 〉

The second order suffcient condition is satisfied at x̄, Ȳ if

hT (∇2
xL(x̄ , Ȳ ) +H (x̄, Ȳ ))h > 0 ∀ h ∈ C(x̄ ) \ {0} (18)
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Here H is a nonnegative matrix related to the curvature of the semidefinite cone in G(x̄ ) along

direction Ȳ (see [125]) and is given by its matrix entries

Hi, j := −2〈Ȳ , Gi (x̄)G(x̄)†G j (x̄)〉,

where G(x̄)† denotes the Moore-Penrose pseudo-inverse of G(x̄).

Theorem 3.2. Let (x̄ , Ȳ , S̄) be a stationary point of (NLSDP) satisfying strict complementarity.

If the second order sufficient condition holds true, then x̄ is a strict local minimizer.

The following very simple example of [43] shows that the classical second order sufficient con-
dition, i.e.

hT (∇2
xL(x̄ , Ȳ ))h > 0 ∀ h ∈ C(x̄ ) \ {0}

is generally too strong in the case of semidefinite constraints, since it does not exploit curvature
of the non-polyhedral semidefinite cone.

min
x∈R2

−x1 − (x2 − 1)2

s.t .

⎡
⎢⎣ −1 0 −x1

0 −1 −x2

−x1 −x2 −1

⎤
⎥⎦ � 0

(19)

It is a trivial task to check that the constraint G(x) � 0 is equivalent to the inequality x2
1 +

x2
2 ≤ 1, such that x̄ = (0, −1)T is the global minimizer of the problem.

The first order optimality conditions (15) are satisfied at x̄ with associated multiplier

Ȳ =
⎡
⎢⎣ 0 0 0

0 2 2

0 2 2

⎤
⎥⎦ .

Strict complementarity condition also holds true. The Hessian of the Lagrangian at (x̄ , Ȳ ) for
this problem can be calculated as

∇2
xxL(x̄ , Ȳ ) =

[
−2 0

0 −2

]
.

It is negative definite, and the stronger second order condition is not satisfied.

The orthogonal matrix

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

0
1√
2

1√
2

0 − 1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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simultaneously diagonalizes Ȳ , G(x̄) and the Moore-Penrose pseudoinverse matrix at x̄ is then

given by

G(x̄)† = −1

4

⎡
⎢⎣ 4 0 0

0 1 −1
0 −1 1

⎤
⎥⎦ , (20)

Consequently the matrix associated to the curvature becomes

H (x̄ , Ȳ ) =
[

4 0
0 0

]
.

Finally, the cone of critical directions has the form h = (h1, 0)T with h1 ∈ R and then the
weaker second order sufficient condition holds true.

The most developed general algorithmic approach for NLSDP is the one due to Kočvara and

Stingl, see [71, 72, 73, 75, 76, 126]. It bases on generalized augmented Lagrangians designed
for the semidefinite constraint and solves a sequence of unconstrained minimization problems
driven by a penalty parameter. There are other approaches for dealing with general NLSDP, for

instance, sequential semidefinite programming [46, 48, 36, 56, 51, 52, 131, 139, 43], bundle
methods [104, 105], partially augmented Lagrangian approach [10, 45, 106], interior point trust
region [89, 90, 91], predictor-corrector interior point [64], augmented Lagrangian [106, 132],
successive linearization [68] and primal-dual interior point methods [142, 143, 69] among others.

There is not a definitive answer to the question of which is the most convenient approach for
solving NLSDP in general, which explains the intense research activity going on in this area.

4 CONCLUDING REMARKS

The various recent developments in SDP connecting to new areas of mathematics are in our

opinion a strong evidence, that this topic remains a promising research area. It will be for sure in
the next years a beautiful source of new interesting applications as well as theoretical results.
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Leugering, J. Sprekels & F. Tröltzsch (eds.), Optimal Control af coupled systems of partial differen-
tial equations, International Series of Numerical Mathematics 133: 275–295.
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[134] TOH KC, TODD MJ & TÜTÜNCÜ RH. 2012. On the implementation and usage of sdpt3- a Matlab
software package for semidefinite-quadratic-linear programming, version 4.0. In: M.F. Anjos & J.B.
Lasserre (eds.), Handbook of semidefinite, Conic and Polynomial Optimization, International Series
in Operations Research and Management Science, Springer, 166: 715–753.
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