Pesquisa Operacional (2012) 32(1): 3-19
© 2012 Brazilian Operations Research Society

' ‘ SOBRAPO Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

ACCELERATING BENDERS DECOMPOSITION WITH HEURISTIC
MASTER PROBLEM SOLUTIONS

Alysson M. Costa!”, Jean-Frangois Cordeau?,
Bernard Gendron® and Gilbert Laporte?

Received April 6,2011 / Accepted November 4, 2011

ABSTRACT. In this paper, a general scheme for generating extra cuts during the execution of a Benders
decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem
solutions generated by means of a heuristic. This article includes general guidelines and a case study
with a fixed charge network design problem. Computational tests with instances of this problem show the
efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows
them to be used in virtually any Benders decomposition implementation.
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1 INTRODUCTION

Benders decomposition (Benders, 1962) is a classical solution approach for combinatorial opti-
mization problems based on the ideas of partition and delayed constraint generation. The method
decomposes the model to be solved into two simpler formulations, called master problem and
subproblem. The initial master problem is a relaxed version of the original problem, containing
only a subset of the variables and of the constraints. The subproblem is the original problem in
which the variables considered in the master problem are fixed.

The Benders method relies on the iterative solution of the master problem and subproblem to
obtain a provable optimum for the original model. The solution of the master problem gives a
tentative solution for the variables it contains and a dual bound. These variables are then fixed
in the subproblem whose solution yields a valid cut for the master problem. The cut is called
an optimality cut if the partial solution found by the solution of the master problem is part of a
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4 ACCELERATING BENDERS DECOMPOSITION WITH HEURISTIC MASTER PROBLEM SOLUTIONS

complete feasible solution (in which case a primal bound is also obtained) or a feasibility cut if
the fixing of the master problem partial solution yields an infeasible subproblem. This procedure
is repeated until the gap between the dual and primal bounds is closed.

A large number of algorithmic improvements and modifications have been proposed to accel-
erate the convergence of the Benders decomposition method. Magnanti & Wong (1981) have
studied the influence of optimality cuts in a Benders decomposition algorithm and have shown
that the use of stronger cuts can have an important impact on the convergence of the algorithm by
reducing the number of iterations. The main idea proposed by the authors is to make use of the
existence of multiple optimal solutions to the dual of the subproblem to obtain better cuts, and is
based on the solution of an extra auxiliary problem with similar dimensions to the subproblem.
Papadakos (2008) has enhanced this method to eliminate the necessity of solving the extra aux-
iliary problem. Rei ef al. (2008), in turn, have used local branching to improve the quality of
the bounds obtained throughout the solution process. Other improvements have concentrated on
specific categories of problems. Wentges (1996), for instance, proposed a procedure for strength-
ening Benders’ cuts in the context of the capacitated facility location problem. More recently,
Costa et al. (2009) have shown some structural relationships between the Benders cuts obtained
for general fixed-charge network design (FND) problems and some classical valid inequalities for
that family of problems, such as cutset and metric inequalities. These relationships have enabled
the strengthening of the obtained Benders cuts via the solution of simple shortest path problems.

Among the algorithmic enhancements that have been proposed for the Benders decomposition
approach, the strategy of McDaniel & Devine (1977) is certainly one of the most popular. Their
idea consists in solving a relaxed version of the original problem in order to obtain a number
of valid cuts. Very often, the implementation of this idea is achieved by relaxing the integrality
constraints on the master problem variables. The resolution of the master problem is usually the
most time-consuming part of a Benders decomposition approach only because it is generally a
mixed-integer problem. Therefore, with the use of the linear programming (LP) relaxation, the
authors are able to quickly find a large number of cuts during these so-called relaxed Benders
iterations. After the relaxed problem is solved, these cuts can be used in the process of solving
the original problem, eliminating part of the search space and accelerating convergence. We call
the process of solving the relaxed Benders iterations relaxed Benders phase, in opposition to the
subsequent integer Benders phase.

The improvements obtained with the strategy of McDaniel & Devine depend on the quality of
the linear programming relaxation representation of the mixed-integer master problem. Indeed,
it is not uncommon that after the LP problem is solved, only a few integer Benders iterations are
needed before convergence. However, if the relaxed master problem yields solutions that do 3
not have a strong correspondence with the integer master problem solutions, the efficiency of the
strategy may be severely reduced.

The purpose of the present article is to present procedures for accelerating the convergence of the
Benders’ decomposition algorithm. The main idea is to increase the number and the quality of
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the cuts to be added, especially during the relaxed Benders phase, in order to reduce the number
of iterations of the subsequent Benders integer phase. The implementation of this idea can be
achieved in a number of ways (which are usually problem dependent), but the concept behind
them is always the search for good tentative solutions that somehow mimic the solutions that are
obtained in the integer Benders phase.

The remainder of this paper is organized as follows. In the next section we present a brief review
of the Benders decomposition approach. Then, in Section 3, general guidelines for obtaining
good tentative solutions are discussed. In Section 4, we present a brief case study, by specializing
the content discussed in the previous sections for a family of FND problems. Computational
results showing the validity of the strategy are presented and discussed in Section 5. Section 6
closes this paper with general conclusions.

2 BENDERS DECOMPOSITION APPROACH

In this section, we present a brief explanation of the Benders decomposition method. For this,
we use the general mixed-integer problem:

mincx +dy (D
s.t. Ax + By > b, 2)
Dy >e, 3)
x >0, y > 0 and integer. )

The variables of the model are written in two vectors, x and y, which contain the continuous and
the integer variables, respectively. Matrices A, B and D and vectors b and e have the appropriate
dimensions. Problem (1)-(4) can be viewed as two nested minimization problems, one in each
group of variables:

r_nin{dj/—i—min{cx:szb—Bj/}} 5)
yey x>0

where Y = {y|Dy > e, y > 0 and integer}. Observe that the inner minimization problem is a
linear programming problem. Associating dual variables u to constraints Ax > b — By, it is
possible to write the dual of the inner minimization problem as:

ma())( {u(b — By):uAd < c}. (6)

Equation (6) is the Benders dual subproblem. Using duality theory, the primal and the dual
formulations can be interchanged, and (5) can be rewritten as:

r_nin{d)'/+max{u(b—B)7) tuA Sc}} (7)
yeY u>0

This change is convenient because the feasible space of the inner maximization problem (the
dual subproblem) then does not depend on the choice made for the y variables. Let F' = {u|u >
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0:uAd < c} represent this feasible space. We assume that F' is not empty for it would correspond
to an infeasible or to an unbounded primal problem. The set F' is therefore composed of extreme
points u € E, and extreme rays r € E,, where £, and E, are the sets of extreme points and
extreme rays of F, respectively.

The solution of the dual subproblem can be either bounded or unbounded. In the first case, the
solution is one of the extreme points u, otherwise, there is a direction » for which (b — By) > 0.
The latter situation results in an infeasible primal problem and must be avoided (otherwise, the
interchange between the primal and dual problems would not be valid). This is done by explicitly
chosing y variables for which:

r(b—By) <0, rekE,. 3
With these aditional constraints, the solution of the inner problem is one of the extreme points of
F. Problem (5) then becomes:
_i?{dj—%nmxhdb——Bj):ue4EpH )
ye
s.t. r(b—By) <0, rek, (10)

or, with the use of a an extra continuous variable z:

mindy + z (11)
st.  z>u(b—By), uckp, (12)
r(b—By) <0, rek, (13)
yeY, z>0. (14)

Model (11)-(14) is called the Benders reformulation and its main drawback is the fact that the
number of extreme points and extreme rays of the subproblem is usually extremely large and,
therefore, the model potentially has a very large number of constraints. In order to overcome this
difficulty, Benders proposed delaying the generation of constraints (12) and (13). Initially, only
the constraints on the y variables (14) are considered, yielding the first master problem:

mindy + z (15)
s.t. yeY, z>0. (16)

As arelaxed version of the original problem, the objective value of a solution to model (15)- (16)
gives a lower bound (LB) for the original formulation. The solution (on the y variables) is also a
tentative solution that can be used in the dual subproblem (6). This subproblem is solved and the
result is either unbounded, in which case a constraint of type (13) is found, or it is bounded and
an extreme point leading to a constraint of type (12) is found. In the latter case, the conjunction
of the solution of the master with the primal solution of the subproblem provides a complete
solution and, consequently, an upper bound (UB), for the original problem.
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With the inclusion of the new generated constraints, of type (12) or (13), in the master problem,
a new tentative solution on the y variables can be obtained and the process iterates until the
obtained lower and upper bounds are sufficiently close (i.e., they differ by less than a predefined
tolerance ¢). Algorithm 1 presents a pseudo-code of the approach.

Algorithm 1

1 LB=0,UB = o0;

2. whileLB < UB —¢ do

3 obtain master solution;

4 update LB;

5. change constraints in the subproblem;

6 solve subproblem;

7 generate extra cuts;

8 If subproblem is feasible then

9. update UB;

10. generate optimality cut of type (12);
11. else

12. generate feasibility cut of type (13);
13. end if

14. add cut(s) to master problem;

15. end while

Algorithm 1 represents both relaxed and integer Benders phases, depending on the interpretation
given to line 3. If the master problem is solved with the relaxed (integer) variables, the algorithm
corresponds to the relaxed (integer) Benders phase. Line 7 can be ignored for now and will be
used to generate the extra cuts obtained with the guidelines presented in the following section.

3 GENERAL GUIDELINES FOR OBTAINING GOOD TENTATIVE SOLUTIONS

The main idea of this paper is to quickly generate good tentative solutions that can be used to
obtain good Benders cuts. This can be broadly expressed by the following two main guidelines:

e The tentative solutions should be generated with a reasonable computational effort.

e The tentative solutions should be similar to the solutions that would be obtained during the
integer Benders phase.

The first guideline is concerned with the fact that if it is too time-consuming to generate the ten-
tative solutions, then the best method would probably be to run the integer master problem itself.
The second guideline expresses the fact that the main goal of generating these tentative solutions
is to reduce the need for integer Benders iterations, which will happen if the cuts generated by the
tentative solutions cut part of the search space that would otherwise only be eliminated with the
use of tentative solutions obtained by solving the mixed-integer version of the master problem.
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We propose several general strategies that can be used to obtain cuts that respect these guidelines.
We divide these strategies into two categories: strategies that can be used during the relaxed
Benders phase, and strategies that are more appropriate for the integer Benders phase. These are
described in the two following sections.

3.1 Strategies for the relaxed Benders algorithm phase

During the relaxed Benders phase, the solutions obtained by the master problem are most likely
fractional and can, therefore, be poor approximations of the desired integer solutions. In this
section, we propose two general approaches that make use of these continuous solutions. The
aim is to obtain tentative integer solutions more likely to resemble the solutions that would be
obtained during the integer Benders phase. The main motivation for these methods is presented
in the following. We also discuss some implementation concerns arising when specializing these
methods for particular problems.

3.1.1 Rounding off strategies

The literature is rich in methods that use fractional solutions obtained by the simplex method
(or any other linear programming method) to obtain approximations of integer solutions. These
approaches are usually called rounding-off or LP-rounding methods and have been successfully
used in a wide range of different combinatorial problems (Bansal ef al., 2010; Byrka, Srinivasan
& Swamy, 2010; Thanh, Bostel & Péton, 2011). The idea of these methods is to round off
fractional solutions in order to obtain feasible integer solutions. This LP-rounding strategy can
make use of the problem particularities or of any existing knowledge about the structure of good
solutions.

The adaptation of this strategy to the context of generating better Benders cuts is straightforward.
The rounded solution (obtained with any possible rounding-off strategy) can be directly used in
the subproblem, whose solution will yield a new Benders cut.

Implementation issues: One interesting aspect of any implementation of rounding-off strategies
to generate extra cuts is the fact that it is not necessary to guarantee that the new solution com-
pletely respects the integrality constraints. Indeed, the feasibility of the master problem solution
with respect to any constraint is not required to ensure the generation of valid cuts. As a result,
the method may work with integral (but otherwise not feasible) solutions, or feasible solutions
with respect to the other constraints (but not integrality) in order to find a wide range of tentative
solutions. In other words, partial rounded solutions (with some fractional values) or complete
rounded solutions can be used. Moreover, these (partially) rounded solutions can either respect
or not respect the master problem constraints. In all (four) cases, the set of master variables can
be used in the subproblem to generate a cut. Along these lines, a simple strategy is to round off
the variables to their closest integer, one at a time, to generate tentative solutions. For compu-
tational efficiency reasons and in order to limit the number of tentative solutions generated, one
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can use a parameter indicating the maximum number of solutions for each fractional solution or
a threshold used to decide which variables should be rounded.

3.1.2 Cost-scaling strategies

Dynamic cost-scaling (or slope-scaling) algorithms have been used with success to approxi-
mately solve combinatorial optimization problems (Gendron, Potvin & Soriano, 2003; Kim &
Pardalos, 1999). The main idea of the method is to iteratively solve relaxed versions of a mixed-
integer problem containing only the continuous variables. At each new iteration, the objective
function is updated to reflect the real cost that would be incurred if the cost of the integer vari-
ables was considered. The method is known as slope-scaling because the obtention of the new
costs at each iteration corresponds to finding a slope that appropriately reflects the costs for both
continuous and integer variables in a linear fashion.

The application of slope-scaling strategies to find better tentative solutions in the context of a
Benders decomposition approach is also straightforward. If a slope-scaling heuristic is available
for the problem, it can be initialized with the current fractional solution, and any solution found
can be used as a tentative solution in the subproblem.

Implementation issues: As for the LP-rounding strategies, neither integrality nor feasibility with
respect to the other constraints is needed to use a master problem solution for the purpose of
obtaining a cut from the subproblem. Therefore, any intermediate slope-scaling solution found
can be used as a tentative solution. The method must control the number of solutions used. This
can be done, for example, by setting a threshold on the quality of the solutions before they can
be used as tentative solutions.

3.2 Strategies for the integer Benders algorithm phase

Extra cuts can also be obtained during the integer Benders phase. In this case, it is more likely
that the extra tentative solutions are of good quality. We propose two strategies that rely on
general concepts and can therefore be applied to a wide variety of situations.

3.2.1 Intermediate branch-and-cut solutions

The branch-and-cut method used in mixed-integer linear programming solvers has the feature of
generating intermediate feasible solutions, which are used to reduce the search tree. The final
result obtained by the method is a provable optimum. Nevertheless, the intermediate solutions
are also easily accessible by the user in most implementations of the algorithm.

In the context of a Benders decomposition algorithm, these intermediate solutions obtained dur-
ing the solution of the mixed-integer master problem can be used in the subproblem to generate
feasibility or optimality cuts.
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Implementation issues: Since there can be a large number of intermediate solutions, it may be
interesting to only call to the subproblem at the last solutions obtained during the search, or at
the solutions respecting a certain quality threshold. One important aspect is that the intermediate
solutions can even be part of optimal solutions to the original problem (since, at this point, a
relaxed version of the master problem is being solved) and therefore these solutions usually
provide good quality cuts.

3.2.2 Local search solutions

Once a solution is found, any neighbourhood-based strategy can be used to obtain similar but
different solutions. As before, these new solutions can be used to generate new cuts to the
problem. Note that because we have a relaxed master problem, neighbor solutions at this point
may, in fact, be the optimal solution of the original problem. Moreover, neighbor solutions (even
of lower quality) might help to more thoroughly cut the solution space at a given point of the
iterative Benders procedure.

A number of methods can be applied to generate such extra solutions from an initial integer
solution found by the branch-and-cut algorithm, such as simulated annealing (Kirkpatrick, 1984),
tabu search (Glover, 1989a; 1989b) and variable neighborhood search (Mladenovic & Hansen,
1997).

Implementation issues: The search for new neighbouring solutions can be done after the branch-
and-cut algorithm converges, or iteratively during the enumeration process. The iterative ap-
proach can make use of extra processor cores (which are now commonly found even in low-cost
machines). One interesting aspect is that if a better quality solution is found by the heuristic
method, it can be used within the branch-and-cut process to accelerate its own convergence.

A final note concerns the management of the added cuts. In order to reduce the computational
burden associated with solving the master problem, cuts added earlier in the procedure or cuts
that have not been active for a large number of iterations might be removed from the problem.
Nevertheless, in our computational experiments we observed that it usually paid off to keep all
cuts in the problem, for the gain associated with saving just one Benders integer iteration usually
compensates for the additional time spent solving the master problem.

4 A CASE STUDY WITH A FAMILY OF NETWORK DESIGN PROBLEMS

We now present a specialization of the ideas described in the last section to general FND
problems. The choice of this family of problems is motivated by its importance (both theoretical
and practical) in the field of operations research and by the fact that many Benders decompo-
sition approaches have been designed with success to solve a large number of variants of these
problems (Costa, 2005).
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4.1 Problem definition and formulation

Let G = (V, E) be a graph where V is the set of vertices and E is the set of edges. Let
also K be the set of commodities, each commodity £ € K being represented by a triplet
(O(k), D(k), d(k)), where O (k), D(k) and d (k) are the origin vertex, the destination vertex and
the commodity demand, respectively. With each edge (i, j) € E is associated a capacity w;; > 0,
and a set of costs, representing the fixed cost of constructing (selecting) the edge, f;; > 0, and
the variable costs of transporting one unity of commodity k£ through the edge, cl’Fj > 0. With
this notation, the general FND problem can be described as the problem of selecting edges in
E in order to enable the flow of commodities £ € K from the origin to the destination, while
respecting the edge capacities and minimizing the total network cost. Let xlk/ be a continuous
variable designating the flow of commodity £ on edge (i, j) and binary variables y;; equal to one
if egde (i, j) is selected, and to zero otherwise. A mixed-integer formulation for this problem is

as follows:
min Z (fijyij + Z clijllj) (17)
(i,j)eE keK
dy i = 0(k),
s.t. Z xf - Z =1 0 i#0%),Dk),ieV,keK, (18)
JlG./)EE J1G.0)eE —dy = D),
> ol < wijyy G, )) € E, (19)
keK
x5 =0 (i,j) € E.keK, (20)
vij €1{0,1} (i, j)€eE. (21)

This formulation suggests a natural Benders partitioning scheme which keeps the edge selection
variables in the master problem and relegates the continuous variables to the subproblem. In this
case, a natural interpretation of the Benders approach is possible: the master problem selects the
edges in the network that should be constructed and the subproblem evaluates this solution in
terms of its capacity and cost of transporting the demands.

Following the developments presented in Section 2, the subproblem can be written as:

min Z Zcfjxfj (22)

@i,j)eE keK
dk i=O0(k),
s.t. > xf - > =10 i#00k),Dk),ieV,keK, (23)
JlG.)EE JIG.D)EE —dy  i=D(®k),
lek/ < w,-jj/ij (i,j) ek, (24)
keK
xf =0 (i,j) € E .k €K, (25)
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and associating dual variables 7 and « to constraints (23) and (24), the master problem can be

written as:
minz+ Y fijvi (26)
@i,j)ekE
z> deﬂg(k) - Z wijoiyij, (moa) € Ep, (27
keK (i,j)eE
deﬂg(k) — Z wijdijyij < 0, (ma) ek, (28)
keK @i,j)eE

where E, and E, are the sets of extreme rays and extreme points associated with the dual feasible
space of the subproblem (22)-(25).

A standard Benders approach can be easily implemented with these developments and the general
scheme presented in Algorithm 1, with the specialized versions of the cuts — equations (27) and
(28) — being used in place of equations (12) and (13). In the following subsection we describe
how the generation of extra cuts (line 7 in the pseudo-code) can be done in this particular case,
as a specialization of the general guidelines presented in Section 3.

4.2 Generating extra cuts

In the following two sections, we describe the implemented strategies for generating extra cuts
during the relaxed Benders phase (Subsection 4.2.1) and during the integer Benders phase (Sub-
section 4.2.2). Finally, in Subsection 4.2.3, a general view of the complete algorithm is presented.

4.2.1 Generating extra cuts during the relaxed Benders phase

We first describe how extra cuts can be generated during the relaxed Benders phase. At this
stage, each master iteration gives a tentative fractional y solution. As described in Section 3, an
easy strategy to approximate this tentative solution to an integer one is by rounding the fractional
y variables. Algorithm 2 (which should be called in line 7 of the relaxed phase of Algorithm 1)
presents a simple rounding strategy which gives priority to fractional variables with high values
during the rounding process.

The stopping criterion can be based on the number of cuts already generated or on the values of
the fractional variables (for example, generating one cut for each fractional variable greater than
a given threshold). If a complete feasible solution is found, a call can be made to a slope-scaling
algorithm (line 10). This algorithm can be used to generate further extra cuts and its pseudo-code
is presented in Algorithm 3.

The modified version of problem (17)-(21) solved in lines 3 and 17 is the basis of the slope-
scaling approach. It sets all y variables at one and modifies the objective function such that its
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Algorithm 2

1. while stopping criterion not reached do

2 (i,j) =argmax y;; € Y|y;; < 1

3 yij =1

4. solve subproblem

5. If subproblem is feasible then

6 update UB;

7 generate optimality cut of type (27);
8 else

0 ¢

generate feasibility cut of type (28);
10. solve slope-scaling;

11. end if

12. end while

Algorithm 3

1. while stopping criterion not reached do

2 Let )E{‘j and y;; contain the values of the last feasible solution found.
3 Solve modified version of model (17)-(21).

4. Set y;j toone if ) 4o p xlkj > 0 and to zero, otherwise.

5. Solve subproblem

6 If subproblem is feasible then

7 update UB;

8 generate optimality cut of type (27);

9. else

10. generate feasibility cut of type (28);

11. end if

12. forr=1...c

13. (p): vector of indices (i,j) sorted in descending order of f,-_]-/ D okek )Ell_‘],
14, (i) = p(1);

15. Ytemp =J_’ij§

16. yij = 0;

17. Solve modified version of model (17)-(21).

18. Set y;j toone if 3 4o g x;‘j > 0 and to zero, otherwise.
19. Solve subproblem

20. if subproblem is feasible then

21. update UB;

22. generate optimality cut of type (27);

23. Else

24. generate feasibility cut of type (28);

25. end if

26. J_’ij = Ytemp;

27. end for

28. end while
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value with the current x solution ( k,) is equal to the original cost of (17) (Crainic, Gendron &
Hernu, 2004). The objective function (17) then becomes:

min Z Z(C + m; ) l’; (29)

(i,j)eE keK

where m* i is the correction factor used to obtain the current total cost (including the fixed costs)
and is given by:

£ (30)

ko { Sii] The X i 7 >0,

M, otherwise,
where M is a large number. The problem is solved repeatedly until the new obtained solution
does not change parameters mf‘j In order to enlarge the set of solutions searched, Crainic, Gen-
dron & Hernu (2004) suggest using the cost of the previous iteration instead of M, if there is no
flow of commodity & in edge (7, j) in the current iteration.

The algorithm solves the problem with the slope scaling algorithm for the current solution (lines
2-4) but also solves ¢ different problems where the values of variables y;; associated with edges
(i, j) with large relative costs (given by the ratio between its fixed cost and its current flow —
line 13) are set to zero, one at a time (lines 12-27). The idea, again, is to follow the guideline
that suggests that one should look for solutions which try to mimic solutions obtained in the
integer Benders phase. Indeed, edges with a high ratio between fixed cost and flow tend to be
less frequent in integer solutions.

4.2.2 Generating extra cuts during the integer Benders phase

The generation of extra cuts with feasible solutions found during the implicit enumeration
method used to solve the master problem is easily implemented with simple modifications in
Algorithm 1. Algorithm 4 shows the new pseudo-code.

Algorithm 4

1.2 asin Algorithm 1

3. obtain next feasible solution (y);

4.-13. asin Algorithm 1

14. if optimal solution found, add cut(s) to master problem;

15. as in Algorithm 1

As presented above, instead of waiting for the obtention of the master problem optimal solution,
each new feasible solution found is used to generate cuts (line 3). However, these cuts are only
added to the master problem once the optimal solution has been found (line 14). These cuts
could be added iteratively, but adding the cuts at the end presented two main advantages: i)
since the subproblem, in this case, is only solved after the master problem ends its execution, the
computer implementation of the algorithm is much easier and does not require multiple solver
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licenses or special memory requirements, ii) adding the cuts iteratively during the execution
of the algorithm could cause the premature convergence of the branch-and-bound, which could
prevent finding other interesting master problem tentative solutions.

Whenever the tentative solution yields a feasible subproblem, Algorithm 3 can also be used to
generate new cuts.

4.2.3 General view of the complete algorithm

The complete algorithm can be simply described as follows. During the relaxed Benders phase,
Algorithm 1 is executed and, in line 7, a call is made to Algorithm 2 if the current subproblem
is infeasible or to Algorithm 3 otherwise. Once the optimality gap is within a certain tolerance,
the integer Benders phase starts with a call to Algorithm 4. Extra cuts are generated with the use
of feasible (but not optimal) master problem solutions and, as before, line 7 calls Algorithm 3
whenever a feasible subproblem is solved.

5 COMPUTATIONAL RESULTS

We have tested the implementation described in the previous section with instances for the FND
problem. Our computational experiments are based on a set of instances widely used in the FND
literature, and described in detail by Ghamlouche, Crainic & Gendreau (2004). The algorithms
were coded in C++ and the linear problems are solved with the use of the commercial package
CPLEX 9.1. We have used a Pentium 4 computer with a 3GHz CPU and 512 kb of memory.

For each instance, a maximum computation time of two hours was allowed. Preliminary tests
showed that when generating extra cuts via Algorithms 2 and 3, the first extra cuts were the most
effective; therefore, the stopping criterion used was the number of cuts added. This number was
equal to the minimum between 5 and the number of fractional y variables in the initial relaxed
master problem solution.

In the table below, we present the results obtained by the Benders algorithm with and without the
use of extra cuts. The goal of the study was not to obtain the most effective way to solve these
instances (in which case several other Benders features could have been added) but rather to
evaluate the performance improvement caused by the proposed strategy of extra cuts generation.

In the table, for each situation (with or without extra cuts), we present the computational time
needed to solve the instance (time) and the final solution gap. Since the strategy proposed by
McDaniel & Devine (1977) is used in both cases, we also list the number of Benders relaxed and
integer iterations (columns LP and IP, respectively) in each case.

A total of 54 instances were used. The number of iterations in the two versions of the method
shows the efficacy of the extra cuts generation in eliminating the need for integer iterations. When
both methods found an optimal solution, the average number of IP iterations dropped from 36
(when no extra cuts were used) to 6.6. One interesting aspect is the fact that the number of LP
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Table 1 — Results for the Benders algorithm with and without extra-cuts.

Instance Benders without extra cuts Benders with extra cuts
time (s) LP IP | gap (%) | time (s) LP IP | gap (%)
RO1.1 0.36 77 2 0.00 0.43 77 0 0.00
RO1.2 0.53 108 2 0.00 0.6 108 1 0.00
RO1.3 0.84 149 4 0.00 1.03 149 2 0.00
RO1.4 5.01 332 31 0.00 4.84 332 16 0.00
RO1.5 5.59 230 26 0.00 2.6 230 3 0.00
RO1.6 7.94 336 25 0.00 5.03 336 7 0.00
R02.1 29.63 315 80 0.00 15.01 315 8 0.00
R02.2 28.47 252 65 0.00 13.4 252 6 0.00
R02.3 13.15 252 38 0.00 11.8 252 6 0.00
R02.4 3.15 105 35 0.00 5.44 105 9 0.00
R02.5 291 129 15 0.00 6.02 129 4 0.00
R02.6 2.87 130 11 0.00 4.72 130 2 0.00
RO3.1 7.62 253 7 0.00 9.54 253 3 0.00
R03.2 12.92 315 18 0.00 20.45 327 5 0.00
R03.3 16.58 363 19 0.00 26.42 349 8 0.00
R03.4 3.74 95 18 0.00 8.78 95 6 0.00
R03.5 5.25 129 13 0.00 11.07 129 4 0.00
R03.6 6.62 141 19 0.00 19.57 141 5 0.00
R04.1 1.61 206 2 0.00 1.77 206 0 0.00
R04.2 1.62 201 2 0.00 2.3 205 1 0.00
R04.3 1.85 217 2 0.00 2.05 217 1 0.00
R04.4 3.13 177 21 0.00 322 177 5 0.00
R04.5 4.95 256 13 0.00 4.99 256 5 0.00
R04.6 3.47 221 9 0.00 3.7 221 4 0.00
R04.7 219.63 292 186 0.00 65.99 292 22 0.00
R04.8 94.51 276 82 0.00 52.64 276 20 0.00
R04.9 74.76 266 53 0.00 18.55 266 8 0.00
RO5.1 31.37 623 24 0.00 22.59 627 3 0.00
R05.2 47.61 882 19 0.00 33.31 872 6 0.00
RO5.3 434.95 1151 77 0.00 105.8 1404 | 10 0.00
R05.4 39.6 524 38 0.00 21.89 524 6 0.00
RO5.5 2742.05 904 186 0.00 526.07 759 23 0.00
R05.6 - 5566 37 9.13 - 4174 | 20 1.91
R05.7 17.88 358 20 0.00 29.74 357 6 0.00
R05.8 14.69 254 20 0.00 20.07 249 4 0.00
R05.9 13.69 295 12 0.00 21.1 288 4 0.00
R06.1 - 9835 48 0.26 241349 | 9826 | 11 0.00
R06.2 - 13737 4 10.49 - 13700 | 1 5.71
R06.3 - 15199 0 9.96a - 13576 | 1 7.77
R06.4 - 2587 | 149 1.28 - 2616 | 27 0.43
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Table 1 (continuation) — Results for the Benders algorithm with and without extra-cuts.

Instance Benders without extra cuts Benders with extra cuts
time (s) LpP IP | gap (%) | time (s) Lp IP | gap (%)
R06.5 - 6142 | 14 7.49 - 6001 | 5 5.07
R06.6 - 7186 5 8.75 - 6967 | 3 6.59
R06.7 23.04 238 7 0.00 32.1 238 2 0.00

R06.8 15.05 174 6 0.00 22.41 174 | 2 0.00
R06.9 1127.89 | 895 | 114 0.00 306.23 895 | 24 0.00

R07.1 5.26 420 2 0.00 5.66 420 0 0.00
R0O7.2 4.94 369 3 0.00 5.32 369 2 0.00
R07.3 6.96 489 3 0.00 7.44 489 1 0.00
R07.4 13.55 309 31 0.00 6.25 309 7 0.00

R07.5 89.63 354 78 0.00 27.35 359 | 13 0.00
R0O7.6 894.15 429 | 146 0.00 101.9 429 | 16 0.00

R07.7 - 232 | 336 1.33 1937.8 232 | 34 0.00
R0O7.8 - 448 | 124 5.38 3558.97 | 448 | 38 0.00
R07.9 — 290 | 175 2.35 - 290 | 35 0.11

a. On the relaxed model.

iterations remains very stable, indicating that the extra cuts are, indeed, working in a different
area of the feasible space.

The reduction in the number of IP iterations had a positive effect on the computational times.
Again, for the instances that were solved by both versions, the average computational time
dropped from 138s in the case without extra cuts to 38s in the case with extra cuts. This ef-
fect was even more visible for the harder instances. The method without extra cuts needed more
than 1000s on average to solve instances R04.7, R05.3, R05.5, R06.9 and R07.6 while only
221s were needed to solve the same instances when extra cuts were generated.

For 10 instances, the method without extra cuts was not able to prove optimality in the allowed
time of two hours. For three of these instances, the generation of extra cuts allowed the obtention
of provable optima (on an average computational time of 2636s). For the remaining instances,
the generation of extra cuts was able to halve the gaps (from 6.6% to 3.3%, on average). We
exclude from this analysis instance R06.3 for which the original method was not even able to
solve the relaxed version of the problem, while the generation of extra cuts allowed the obtention
of an integer solution with a 7.8% gap.

Finally, in what concerns the efficacy of each procedure in improving the algorithm, it was clear
that each family of extra cuts had its own importance in the reduction of costly integer iterations.
Indeed, although the quality of cuts such as those obtained via slope scaling tended to be higher,
the sole fact of cutting the space (even with less elaborate cuts) was enough to improve con-
vergence and no definitive conclusions could be drawn on the dominance of one family of cuts
over the other.
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6 CONCLUSIONS

We have proposed a general scheme for generating extra cuts in a Benders decomposition

approach, including general guidelines and a case study with an important family of problems.

The most important aspect of the proposed ideas is their generality, which allows them to be used

in virtually any Benders decomposition implementation. Computational tests on fixed charge

network design instances suggest that the strategy is beneficial, improving the efficiency of a

general Benders decomposition implementation.
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