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ABSTRACT. Production processes comprising both the lot-sizing problem and the cutting stock problem

are frequent in various industrial sectors. However these problems are usually treated separately, which can

generates suboptimal overall solution and consequently causes production losses. In this paper, we propose

different mathematical models for the integrated problem combining alternative models for the lot-sizing

and the cutting stock problem, in order to evaluate and indicate the impact of these changes on the models’

performance. An extensive computational study is done using randomly generated data and as a solution

strategy we used a commercial optimization package and the application of a column generation technique.

Keywords: Capacitated Lot-Sizing Problems, One-Dimensional Cutting Stock Problem, Column Genera-

tion.

1 INTRODUCTION

Technological advances and increasing competition in industries have become worldwide phe-
nomena. Some prominent aspects of these advances are the emphasis on knowledge and the
development of new technologies. Inserted on this context, mathematical models that describe
and improve the production processes have been studied and used as tools to support decision
making in the business environment. Among the various decision processes, this work is part
of the tactical/operational planning of production with the lot-sizing problem and cutting stock
problem. The Lot-Sizing Problem (LSP) considers the tradeoff between the setup and inventory
costs to determine at minimal cost the size of production lots to meet the demand of each final
product, while the cutting stock problem (CSP) involves the cutting of large objects into smaller
items, so as to minimize the total loss of material.

The literature mostly deals with these two problems separately. However, in industrial sectors
such as furniture, paper and aluminum, the lot-sizing and cutting stock problems are found in
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consecutive phases. For these cases, a decoupled vision of the problems usually used by com-
panies, can provide good local solutions but, at the end of planning processes, these solutions
may conflict with the global objectives and feasibility of production. This fact was observed in
Gramani et al. (2009) in the furniture industry. In this case, solutions generated from the lot-
sizing problem can lead to infeasible solutions for the cutting stock problem with regard to the
production capacity of the cutting machine. If, on the other hand, for a given period, the pro-
duction exceeds demand, this circumstance may generate cutting patterns with less loss, and a
decrease of setup costs. However, there is an increase of inventory costs and physical space for
allocation of items to be stored will be needed, which may not exist in practice. For this reason,
the relevance of these issues in the industrial sectors and the benefits in dealing with problems in
an integrated way makes this an appropriate research topic today. Motivated by this, the present
paper proposes mathematical models and solution methods for solving the integrated lot-sizing
and cutting stock problem.

In this work, the capacitated lot-sizing problem is modeled using the mathematical model pro-
posed by Trigeiro et al. (1989), denoted here by CL. We also considered the variable redefinition
strategy (Eppen & Martin, 1987) which reformulates the lot-sizing problem as a shortest path
problem. This reformulation is called SP. The idea of this variable redefinition was originally
proposed for uncapacitated problems and Jans & Degraeve (2004), Jans (2009), Fiorotto & de
Araujo (2014) and Melega et al. (2013) extended this to cases with capacity constraints, related
parallel machines, unrelated parallel machines and various plants, respectively. More informa-
tion on reformulation for lot-sizing problems can be found in Denizel et al. (2008), which shows
several theoretical and computational results between some reformulations.

To model the one-dimensional cutting stock problem, we consider three mathematical models
from the literature. The first one is the model developed by Kantorovich (1960), here denoted
by KT. This model is also called the generalized assignment formulation for CSP (Degraeve &
Peeters, 2003) and determines the best way to cut objects to meet the demand, minimizing the
number of objects used. For this model, an upper bound on the number of objects is considered.
The second model dealt with, and perhaps the best known among the academic community, is
the one proposed by Gilmore & Gomory (1961, 1963) denoted here by GG. This model produces
good lower bounds when compared to the KT model, however it has an large number of variables,
which indicates the use of column generation to deal with this difficulty.

The third model was proposed by Valério de Carvalho (1999, 2002), here denoted VC. The au-
thors propose an alternative mathematical model for the one-dimensional cutting stock problem
based on an arc flow problem. Thus, finding a valid cutting pattern for the cutting stock problem is
equivalent to finding a path in a directed acyclic graph. The authors also consider additional con-
straints to guarantee that demand is satisfied. This model is efficient in the sense that it presents
a linear relaxation as good as the Gilmore and Gomory model.

Furthermore, the cutting stock models described above were originally proposed for a single
object type so they are extended to consider several types of objects in stock (MO from multi-
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objects). In a second part of this study, these models are integrated into the uncapacitated lot-
sizing problem proposed by Wagner & Whitin (1958), here called WW.

Next, in Section 2, there is a literature review with the major studies that address the lot-sizing
and the cutting stock problem in an integrated way. The Sections 3, 4 and 5 describe the proposed
integrated models with capacity constraints, several object types and a reformulation for the lot-
sizing, respectively. In Section 6, the solution strategies are described. The computational results
are presented in Section 7. And finally, the conclusions are presented in Section 8.

2 LITERATURE REVIEW

The importance of addressing the problems in an integrated way has become increasingly ev-
ident in the literature and is closely related to industrial applications. Possibly Farley (1988)
had been the first paper that treats these problems in an integrated way. The author addressed
the problem in an clothing industry, where the problem involves irregular two-dimensional cuts.
Hendry et al. (1996) conducted a case study on a copper components factory. The objective was
to investigate alternative methods of generating production plans for casting in order to minimize
costs and meet demand. Nonås & Thorstenson (2000, 2008) studied the problem coupled with
the addition of setup cost in a Norwegian company that produces off-road trucks. The company
needed a production plan that minimizes the total cost in the cutting process and in the produc-
tion line. Therefore, the authors proposed a model and different solution methods. Gramani &
França (2006) formulated a mathematical model for the integrated problem in a furniture industry
and proposed a solution method based on an analogy with the shortest path problem. Compu-
tational results compared the proposed method to the method used in the industry. Poltroniere
et al. (2008) studied the integrated problem applied to the paper industry. The authors analyzed
the production process and proposed a mathematical model for machines operating in paral-
lel and presented two heuristics based on Lagrangian relaxation considering the problems in a
decoupled way.

Ghidini & Arenales (2009) treated the coupled problem applied to the furniture industry. To
solve the problem, which considers the final composition of the products, the authors proposed
two heuristics based on the primal simplex method with column generation. A procedure for
obtaining an integer solution has been proposed. Gramani et al. (2009) proposed a mathematical
model that considers final products and a capacity constraint on the saw machine in a furniture
industry. Two solution methods were proposed. One is a decomposition heuristic and the other
one is a Lagrangian based heuristic, in which the resulting problem is decomposed into two
subproblems. A smoothing heuristic to recover feasibility is used. Gramani et al. (2011) extend
their model from 2009 to consider cut items inventory and this model decomposed into two, one
for the lot-sizing problem and one for the cutting stock problem in order to portray the solution
method that industries practiced. The integrated problem was solved using the column generation
technique. The computational results showed that the column generation technique can obtain
gains of more than 12.7%, compared with the decomposition model used in practice. Also in
the context of a furniture factory Santos et al. (2011) presented a mixed integer programming
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model for the integrated problem in the context of a furniture factory. The authors considered the
cutting patterns used by industry and n-groups cutting pattern to solve the problem with a set of
real data provided by the factory. An extension to Gramani et al. (2011) model was proposed in
Vanzela et al. (2013) in order to simulate the practice of a small furniture factory.

Alem & Morabito (2012) used robust optimization tools to solve the integrated problem in the
furniture industry, where the production costs and demand of products are uncertain parame-
ters. Computational tests were performed using real and simulated data. Leão & Arenales (2012)
studied a simplification of the model studied in Poltroniere et al. (2008). Two approaches have
been studied: (i) for a single type of object and (ii) for various types of objects. Three mathemat-
ical models for each approach have been proposed and they used the column generation as the
solution method. To obtain a feasible solution, the columns obtained with the column generation
method are used and the resulting integer problem with this limited set of columns is solved.

Silva et al. (2014) presented two integer programming models for the integrated problem. In
these models, both the bringing forward of items for production and also the stocking of reusable
leftovers for the cutting process in later periods were allowed. The authors proposed two heuris-
tics and evaluated the models through a computational study, checking the quality of the so-
lutions when compared to work described in the literature. In more recent papers, Poldi & de
Araujo (2016) studied the multi-period cutting stock problem and Molina et al. (2016) proposed
an integrated lot sizing and packing problem that is related to the problem studied in this paper.

Most of the studies in the literature that address the integrated lot-sizing and cutting stock prob-
lem study several cases of the problem in practice. In these studies, alternative formulations for
the LSP and CSP are not tested in order to choose the formulation that best fits the problem and
the data set. So, extending the ideas of Longhi et al. (2015) this paper tries to cover the gap by
proposing alternative mathematical formulations, considering different features of the lot-sizing
and cutting stock problem such as capacity constraints and several object types. Furthermore,
through the use of extensive computational tests, it intends to evaluate and point out the impact
of these changes in the performance of the models.

3 MATHEMATICAL MODELS WITH CAPACITY CONSTRAINT

In this section the lot-sizing problem proposed by Trigeiro et al. (1989) (CL model) is integrated
with various cutting stock formulations as described above. The integrated lot-sizing and cutting
stock model is a two level production model, with production of final products at the final level,
and the cutting of the pieces at the preceding level. The proposed model assumes that final prod-
ucts can be kept in inventory, but pieces cannot be kept in inventory. Furthermore, the Bill of
Material indicates that one final product requires exactly one piece, and each type of final prod-
uct requires a different piece. Therefore, there is a one-to-one relationship between final products
and pieces in the model.

This might be a relevant model in various industrial applications. A first relevant setting is
present, for instance, in the furniture industry. There is a demand for the final products (wardrobe,
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for example) which creates demand for subassemblies or components (a door, for example)
(Gramani & França, 2006). After the cutting process, the cut items pass through another produc-
tive process (e.g. drilling and painting) before being ready to be assembled into a final product.
Usually these other productive processes are considered the bottlenecks of the complete pro-
duction process (Ghidini et al., 2007; Santos et al., 2011; Alem & Morabito, 2013), and their
capacity is considered in the model, whereas the final assembly is not considered in the model
since it is not a bottleneck process. Ghidini et al. (2007) and Alem & Morabito (2013) considered
the drill machine capacity in terms of items. Santos et al. (2011) considered aggregated capac-
ity constraints for all the other machines (except the cutting machine). For the one-dimensional
case, considered in this paper, the same type of capacity constraints appear. For instance, in
tubular furniture industries, the bending machine is a bottleneck of the production process and
its capacity must be considered in the mathematical model.

A second potential practical background appears in industries where the cut items are directly
transformed in end items, i.e., there is no need to assemble several items to compose a final
product, but there is a production process between the cut items and the end items. The capac-
ity constraint in terms of end items means that the capacity constraints are related to the final
production process to transform the cut items into the final items.

Consider the following parameters and decision variables:

Parameters:
T : number of time periods (index t );
I : number of items (index i);
scit : setup cost of item i in period t ;
hcit : unit holding cost of item i in period t ;
stit : setup time of item i in period t ;
vtit : production time of item i in period t ;
capt : capacity (in unit of time) in period t ;
dit : demand of item i in period t ;
sditr : sum of demand of item i from period t until period r;
L : object length;
li : length of item i;
co: fixed cost of an object.

Decision Variables:
Xit : production quantity of item i in period t ;
Sit : inventory for item i at the end of period t ; Yit : binary variable indicating the production or
not of item i in period t .

The first cutting model used to formulate the integrated problem, is the KT model, which gives
the model CLKT from CL+KT. For this, consider the following data and variables specific to this
model:
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Q: number of objects available in stock (index q);
yqt : binary variable that indicates whether object q is used in period t ;
hiqt : variable that indicates the amount of item i cut from object q in period t .

Model CLKT

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) +
T∑

t=1

Q∑
q=1

coyqt (1)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (2)

Xit ≤ sdit T Yit ∀i, ∀t (3)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (4)

I∑
i=1

li hiqt ≤ Lyqt ∀q, ∀t (5)

Q∑
q=1

hiqt = Xit ∀i, ∀t (6)

Yit , yqt ∈ {0, 1} ∀i, ∀q, ∀t (7)

hiqt ∈ Z+ ∀i, ∀q, ∀t (8)

Xit , Sit ∈ R+ ∀i, ∀t (9)

The objective function (1) minimizes the machine setup costs, inventory holding costs and the
cost of cutting objects. Constraints (2) are the demand constraints: inventory carried over from
the previous period and production in the current period are available to be used to satisfy current
demand and build up inventory. Constraints (3) force the setup variable to one if any production
takes place in that period. Next, there is a constraint on the available capacity in each period (4).
Constraints (5) are from the cutting stock problem and ensure that if object q is used, the com-
bination of the lengths of items that will be cut from it should not exceed its length. Constraints
(6) are responsible for the integration of the lot-sizing and cut stock problem decision, that is,
we have to cut a sufficient amount of items to meet the planned production amount. Finally, the
set of constraints (7), (8) and (9) define the non-negativity and integrality conditions. It is known
that the model KT for the cutting stock problem has a weak linear relaxation and presents many
symmetric solution (Valério de Carvalho, 2002).

Observe that the variables Xit and constraints (6) could be eliminated by replacing Xit by∑Q
q=1 hiqt in the rest of the model. However to compare this model with other proposed models,

the variable Xit and the constraints (6) are kept explicitly in the model. This remark is also valid
for the other models presented below in the Sections 3 and 4.

Pesquisa Operacional, Vol. 36(1), 2016
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The second integrated formulation presented below (CLVC) uses the VC model for the cutting
stock problem, which is modeled as an arc flow problem. Consider a path in a directed acyclic
graph G = (V , A), with V = {0, 1, . . . , L} and the set of arcs of the graph defined as A =
{( j, l); 0 ≤ j < l < L and l − j = li for all i ≤ I }. The losses in the object generated from
the cutting process are represented in the graph by additional arcs between the vertices ( j, j +1)

to j = 0, . . . , L − 1. As decision variables for the integrated model CLVC we have:

ft : flow through the network in period t ;
z jlt : number of cutting patterns which have an item of size (l − j ) allocated at a distance j from
the beginning of the object in period t .

Model CLVC

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit) +
T∑

t=1

co ft (10)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (11)

Xit ≤ sdit T Yit ∀i, ∀t (12)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (13)

−
∑

(0,l)∈A

z0lt = − ft ∀t (14)

∑
(g,l)∈A

zglt −
∑

(l,h)∈A

zlht = 0 l = 1, . . . , L − 1, ∀t (15)

∑
(l,L)∈A

zl Lt = ft ∀t (16)

∑
(h,h+li )∈A

zh,h+li ,t = Xit ∀i, ∀t (17)

Yit ∈ {0, 1} ∀i, ∀t (18)

zlht , ft ∈ Z+ ∀(l, h) ∈ A, ∀t (19)

Xit , Sit ∈ R+ ∀i, ∀t (20)

The objective function (10) minimizes the machine setup and inventory costs of the items, as well
as the cost of the flow through the network. The flow set for this problem represents the number
of used objects (cutting patterns), since one flow unit defines a path, which in turn defines a
cutting pattern.

Constraints (11), (12) and (13) refer to the lot-sizing problem and are defined as in CLKT. The set
of constraints (14), (15) and (16) correspond to flow conservation constraints and are characteris-
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tic of the Valério de Carvalho model. Constraints (17) integrate the two problems and constraints
(18), (19) and (20) are non-negativity and integrality constraints.

This model also presents many symmetric solutions, or alternatives that correspond to the same
cutting patterns. For this reason, Valério de Carvalho (1999) presented some reduction criteria to
eliminate some arcs, reducing the number of symmetric solutions without eliminating any valid
cutting patterns from set A. This study applies the criterion consisting of allocating the items
in order of decreasing length in each cutting pattern, that is, an item of length i1 can only be
placed after another item length i2 if i1 ≤ i2, or at the beginning of the object. Another criterion
also used does not allow starting with a cutting pattern with loss. Thus, the first arc of loss will
be inserted in the graph at a distance from the beginning of the object representing the shortest
item length.

The third model CLGG combines the lot-sizing model CL with the cutting stock model GG
(Gilmore & Gomory, 1961, 1963), which has the following parameters and decision variables:

J : set of cutting patterns (index j );
ai j : parameter indicating the quantity of item i cut according to the cutting pattern j ;
x jt : variable indicating the number of objects cut according to cutting pattern j in period t .

Model CLGG

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) +
T∑

t=1

∑
j∈J

cox jt (21)

Subject to :
Xit + Si,t−1 = dit + Sit ∀i, ∀t (22)

Xit ≤ sdit T Yit ∀i, ∀t (23)

I∑
i=1

(stit Yit + vtit Xit ) ≤ Capt ∀t (24)

∑
j∈J

ai j x j t = Xit ∀i, ∀t (25)

Yit ∈ {0, 1} ∀i, ∀t (26)

x jt ∈ Z+ ∀ j, ∀t (27)

Xit , Sit ∈ R+ ∀i, ∀t (28)

The objective function (21) minimizes the sum of setup costs, inventory costs and cost related
to the number of objects used in the cutting process. The sets of constraints (22), (23) and (24)
refer to the lot-sizing problem and are defined as in the model CLKT. Constraints (25) link the
cutting variable with the production variable and finally the constraints (26), (27) and (28) are
non-negativity and integrality constraints on the variables. The model GG is an extended model
and can be obtained by applying Dantzig – Wolfe decomposition on the KT and VC models

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/29 — 12:19 — page 175 — #9
�

�

�

�

�

�

GISLAINE MARA MELEGA, SILVIO ALEXANDRE DE ARAUJO and RAF JANS 175

(Valério de Carvalho, 2002). As a consequence this model has a large amount of variables and is
generally solved by column generation.

4 MATHEMATICAL MODELS WITH SEVERAL TYPES OF OBJECTS

For the mathematical models presented in this section, we integrate the model proposed by
Wagner & Whitin (1958), here denoted by WW with the cutting stock models extended to con-
sider several types of objects. The WW model describes the uncapacitated lot-sizing problem.
In this case, consider the following parameters and additional decision variables:

Parameters:
K : number of object types available in stock (index k);
ekt : planned supply of object type k at the beginning of period t ;
Lk : object length of type k;
cw: cost per unit of raw material waste.

Decision Variable:
skt : number of objects of type k stocked at end of period t .

The model described below (WWKTMO) models the cutting stock problem based on model KT,
considering several types of objects MO. In the original variables a new index is inserted, which
refers to the type of object to be cut.

Parameters:
sekt : sum of planned supply of objects of type k from period 1 to period t

(
sekt = ∑t

a=1 eka
)
;

q ∈ {1, . . . , sekt }, index for the available objects.

Decision Variables:
yqkt : binary variable that indicates whether object q of type k is used in period t ;
hiqkt : quantity of item i cut from object q of type k in period t .

Model WWKTMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit) + cw

⎛
⎝ T∑

t=1

K∑
k=1

sekt∑
q=1

Lk yqkt −
T∑

t=1

K∑
k=1

sekt∑
q=1

I∑
i=1

li hiqkt

⎞
⎠ (29)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (30)

Xit ≤ sdit T Yit ∀i, ∀t (31)

I∑
i=1

li hiqkt ≤ Lk yqkt ∀q, ∀k, ∀t (32)

K∑
k=1

sekt∑
q=1

hiqkt = Xit ∀i, ∀t (33)

Pesquisa Operacional, Vol. 36(1), 2016
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ekt + sk,t−1 =
sekt∑
q=1

yqkt + skt ∀k, ∀t (34)

Yit , yqkt ∈ {0, 1} ∀q, ∀i, ∀k, ∀t (35)

hiqkt ∈ Z+ ∀q, ∀i, ∀k, ∀t (36)

Xit , Sit , skt ∈ R+ ∀i, ∀t (37)

The objective function (29) minimizes machine setup costs, inventory holding costs and waste
cost in the cutting process. Constraints (30) and (31) refer to the lot-sizing problem and are
defined as in the CLKT model. The set of constraints (32) ensure that if an object q of type
k is used, the combination of the items that will be cut from it should not exceed its length.
Constraint (33) is responsible for the integration of the decision variables of the lot-sizing and
cutting stock problems. It ensures that a sufficient amount of items are cut to meet the demand.
The set of constraints (34) ensure that the number of objects cut in each period does not exceed
the availability in stock.

The integrated model presented below (WWVCMO), is based on the VC formulation to model
the cutting stock problem. Since several object types are available in stock, we need to define
the maximum object length Lmax = max∀k{Lk}, corresponding to the numbers of nodes in the
network. The following decision variables are also needed:

fkt : flow through the network in the period t for the object type k;

z jlt : number of cutting patterns which have a item of size (l − j ) allocated at a distance j from
the beginning of the object used in period t .

Model WWVCMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) + cw

⎛
⎝ T∑

t=1

K∑
k=1

Lk fkt −
T∑

t=1

I∑
i=1

∑
(l,l+li )∈A

li zl,l+li ,t

⎞
⎠ (38)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (39)

Xit ≤ sdit T Yit ∀i, ∀t (40)

−
∑

(0,l)∈A

z0lt = −
K∑

k=1

fkt ∀t (41)

∑
(g,l)∈A

zglt −
∑

(l,h)∈A

zlht = 0 l = {1, . . . , Lmax − 1}\
K⋃

a=1

{La}, ∀t (42)

∑
(g,Lk )∈A

zgLkt = fkt ∀k, ∀t (43)

∑
(h,h+li )∈A

zh,h+li ,t = Xit ∀i, ∀t (44)
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ekt + sk,t−1 = fkt + skt ∀k, ∀t (45)

Yit ∈ {0, 1} ∀i, ∀t (46)

zglt , fkt ∈ Z+ ∀(g, l) ∈ A, ∀k, ∀t (47)

Xit , Sit ∈ R+ ∀i, ∀t (48)

The objective function (38) minimizes machine setup costs and storage costs of the items, and
waste cost of raw material. Constraints (39) and (40) are defined as in the CLKT model. The
set of constraints (41), (42) and (43) correspond to the flow conservation constraints. Constraints
(44) integrate the cutting stock and lot-sizing problem. Constraints (45) ensure that the stock
of the different types of available objects is respected and constraints (46), (47) and (48) are
non-negativity and integrality constraints.

The following formulation (WWGGMO) models the cutting stock problem proposed by Gilmore
& Gomory (1961) with an extension for several objects, which has the following parameters and
decision variables. Observe that an index that refers to the type of object is also needed.

Parameters:
Jk : set of cutting patterns that use object type k (index j );
aikj : quantity of item i cut from object type k according to cutting pattern j .

Decision Variable:
xkj t : number of objects of type k cut using cutting pattern j in period t .

Model WWGGMO

min
T∑

t=1

I∑
i=1

(scit Yit + hcit Sit ) + cw

⎛
⎝ T∑

t=1

K∑
k=1

∑
j∈Jk

Lkxkj t −
T∑

t=1

K∑
k=1

∑
j∈Jk

I∑
i=1

li aikj xkj t

⎞
⎠

(49)

Subject to:

Xit + Si,t−1 = dit + Sit ∀i, ∀t (50)

Xit ≤ sdit T Yit ∀i, ∀t (51)

K∑
k=1

∑
j∈Jk

aikj xkj t = Xit ∀i, ∀t (52)

ekt + sk,t−1 =
∑
j∈Jk

xkj t + skt ∀k, ∀t (53)

Yit ∈ {0, 1} ∀i, ∀t (54)

xkj t ∈ Z+ ∀k, ∀ j, ∀t (55)

Xit , Sit ∈ R+ ∀i, ∀t (56)
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The objective function (49) minimizes machine setup cost and inventory cost of items, and costs
of waste due to the cutting of objects. Constraints (50) and (51) refer to the lot-sizing problem.
The set of constraints (52) is responsible for the integration of the decision variables of the two
problems. The constraints (53) ensure that the number of cut objects in each period does not
exceed the availability in stock, and the constraints (54), (55) and (56) are non-negativity and
integrality constraints.

5 INTEGRATED MODELS USING THE REFORMULATED LOT-SIZING PROBLEM
SP

The integrated models presented in Sections 3 and 4 use the classical formulation for the lot-
sizing problem. In order to obtain better lower bounds, the lot-sizing problem is reformulated
as a shortest path problem (Eppen & Martin, 1987) and then integrated into the respective cut-
ting stock problem. For that, we need the following definitions of parameters and variables,
respectively:

cvitr : inventory holding cost of item i in period t at a quantity that meets the demands for the
periods from t until r;

zvitr : fraction of the production plan for item i to satisfy demand from period t to period r.

The lot-sizing problem variables have the following correspondence:

Xit =
T∑

r=t

sditr zvitr ∀i, ∀t (57)

and the demand constraints (2) and setup constraints (3) are rewritten in terms of the new decision
variables as follows:

T∑
r=1

zvi1r = 1 ∀i (58)

t−1∑
r=1

zvirt−1 =
T∑

r=t

zvitr ∀i, ∀t\{1} (59)

T∑
r=t

zvitr ≤ Yit ∀i, ∀t (60)

Constraints (58) and (59) define the flow constraints in the SP model. For each item i, a unit
flow is sent through the network (constraint (58)), imposing that its demand has to be satisfied
without backlogging in each period (59)). Constraint (60)) ensures that item i will be produced
in period t only if there is a setup prepared to produce that item.

Note that the constraint (58) forces production in the first period, which it is not a problem for
the data set used in this work, because all the demand equal 0 in the used data set is replaced to
be strictly greater than zero (equal 1 unit). Otherwise, if the demand for some item is zero for
the first period, it would be necessary to slightly adapt the formulation (Pochet & Wolsey, 2006;
Jans & Degraeve, 2004).
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Thus, we propose new mathematical models that integrate the cutting stock problems (KT, VC,

GG, KTMO, VCMO, GGMO) into the reformulated lot-sizing problem (SP). This is done by
replacing the decision variables in the models, by the new variables and constraints described
above.

As an example, the integrated model SPKT is shown next.

Model SPKT

min
T∑

t=1

I∑
i=1

(
scit Yit +

T∑
r=t

cvitr zvitr

)
+

T∑
t=1

Q∑
q=1

coyqt (61)

Sujeito a :
T∑

r=1

zvi1r = 1 ∀i (62)

t−1∑
r=1

zvirt−1 =
T∑

r=t

zvitr ∀i, ∀t\{1} (63)

T∑
r=t

zvitr ≤ Yit ∀i, ∀t (64)

I∑
i=1

(
stit Yit +

T∑
r=t

vtit sditr zvitr

)
≤ Capt ∀t (65)

I∑
i=1

li hiqt ≤ Lyqt ∀q, ∀t (66)

Q∑
q=1

hiqt =
T∑

r=t

sditr zvitr ∀i, ∀t (67)

Yit , yqt ∈ {0, 1} ∀i, ∀q, ∀t (68)

hiqt ∈ Z+ ∀i, ∀q, ∀t (69)

zvitr , Sit ∈ R+ ∀i, ∀t (70)

The objective function (61) minimizes the setup costs and inventory holding costs according to
the SP model, as well as, the cost of the number of objects to be cut. The constraints (62) and (63)
define the flow constraints of the SP model. The set of constraints (64) also refers to the model
SP and ensures that there will be production for an item i in period t , only if the machine is setup

to produce this item. Capacity constraints (65) ensure that the capacity available is not violated.
Constraints (66) refers to the knapsack constraints in the KT model. The set of constraints (67)
integrates the two problems and finally (68), (69) and (70) are non-negativity and integrality

constraints.
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6 SOLUTION STRATEGIES

Two heuristic strategies are proposed for solving the models described in sections 3, 4 and 5.
The first heuristic consists of solving the models integrated with KT and VC using a commercial

optimization package with a stopping criteria. The solver is stopped at the end of 600 seconds or
when the gap between the upper bound and lower bound is less than 0.1%. The second heuristic
proposes the search for a feasible solution by using the column generation technique for the

models integrated with VC and GG. The solver is used to solve the restricted master problems,
the sub-problems and also to solve the resulting integer restricted master problem.

Next, the column generation based heuristic is explained in more detail together with the proce-
dure to obtain a feasible solution.

6.1 Initial Basic Solution

Considering the model with capacity constraint and integrated with the GG model, the master
problem starts with the columns related to the homogeneous cutting pattern, i.e., columns of
type: (0, . . . , aii , . . . , 0), where aii = � L

li
�, ∀i. The same columns are inserted for each period,

t = 1, . . . , T .

For the problems with several objects, the master problem starts with homogeneous cutting pat-
terns generated for each object type, i e., for each object k columns of type (0, . . . , aiki , . . . , 0),
where aiki = � Lk

li
�, ∀i, are inserted in order to avoid the infeasibility of an initial basic solution.

The same columns are inserted for all periods. Similar ideas are applied to the models integrated
with VC.

6.2 Column Generation Procedure

The sub-problems in the column generation consist of finding a new cutting pattern for the master
problem. For the models integrated with GG, the sub-problem is composed of the knapsack
constraint and for those integrated with VC the sub-problem is composed of the flow constraints

imposing a flow equal to one, which represents a cutting pattern.

Considering the models with one type of object and a capacity constraint, a sub-problem is solved
for every period, and the column with the smallest reduced cost over all periods is included in
the master problem. As a consequence, the same column is also inserted for each period. For the

problems with several objects, a sub-problem is solved for each period and object type, and the
column with the smallest reduced cost is inserted into the master problem. The same column is
used for all periods according to the corresponding object in the restricted master problem.

6.3 Feasibility Strategy

The column generation part is stopped when the minimum reduced cost is non-negative for each
subproblem or when the time limit is reached. The integer restricted master problem including
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all the columns obtained in the column generation procedure is solved using the optimization

package with a time limit of 600 seconds and an optimality gap of 0.1%.

Table 1 presents a summary of all proposed mathematical models and solution strategies.

Table 1 – Mathematical Models and Solution Strategies.

Models Considered Problems Solution Strategies

CLKT

SPKT LSP with capacity constraint Optimization package
CLVC CSP single object type based heuristic

SPVC

CLGG CG

SPGG CG LSP with capacity constraint Column generation

CLVC CG CSP single object type based heuristic
SPVC CG

WWKTMO

SPKTMO LSP without capacity constraint Optimization package

WWVCMO CSP with several object types based heuristic
SPVCMO

WWGGMO CG

SPGGMO CG LSP without capacity constraint Column Generation

WWVCMO CG CSP with several object types based heuristic
SPVCMO CG

7 COMPUTATIONAL STUDY

This section presents the computational results used to evaluate and compare the performance

of the proposed models. The analysis of the results is done through tables containing the aver-
age values found by models with respect to different aspects, as well as the use of the perfor-
mance profile technique (Dolan & Moré, 2002). This technique provides a tool which facilitates

the exhibition and the interpretation of comparisons and it is briefly described in the following
paragraphs.

Consider P as the set of �p instances andM as the set of �M models described in sections 3, 4 and
5. The values obtained for each instance (upper bound and gap) p ∈ P using the m ∈ Mmodel is

denoted by vp,m . For each model m ∈ M a comparison of its performance on the instance p ∈ P
relative to the performance of the best model is given by the following performance ratio:

rp,m = vp,m

minm∈M{vp,m} .

If the model m does not find a feasible solution for an instance p then rp,m is defined as rM ,
which is set at one unit more than the worst value of the performance ratio found for all the
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feasible instances in all the models. The performance of the model m compared to the other

models is given by the performance profile:

ρm(τ ) = 1

�p
|{p ∈ P : rp,m ≤ τ }|

with |.| representing the number of elements in the set. The performance profile ρm(τ ) is a
function that is associated to a given value τ ∈ R, and indicates the fraction of instances solved

by the model m with a performance within a factor τ of the best performance found. With this,
each model has a curve that shows its performance for each level τ . Due to the fact that rM can
be considerably large, the logarithm scale is used to represent the performance profile. It is done

as follows (Dolan and Moré, 2002):

τ �→ 1

�p
|{p ∈ P : log2(rp,m ) ≤ τ }|.

This way, the τ factor varies in [0, rM ), with rM = 1 + max{log2(rp,m) : p ∈ P and m ∈M}.
The models are written in the AMPL syntax (Fourer et al., 1990) and CPLEX 12.5 (IBM, 2009)
is used as solver. All the computational tests are conducted on a 2.93GHz Intel Core i7 processor

with 8GB of RAM memory.

7.1 Experiment 1

Next, we describe the data generation and computational results for the integrated problem with

capacity constraints (models in Section 3 and the corresponding models in Section 5). In this
experiment we present two sets of data: the first one called Data 1, is based on a data generator
for the cutting stock problem. The second set, referred to as Data 2, is based on some examples

widely used in the literature to solve the lot-sizing problem.

7.1.1 Data Sets

For the Data 1 set, the CUTGEN1 generator proposed by Gau & Wäscher (1995) is used and for
the lot-sizing problem the data set is based on Trigeiro et al. (1989). The parameters are generated

in intervals [a, b] with a uniform distribution as follows:

• number of periods: T = 15

• object length: L = 1000

• number of items: I = {10, 20, 40}
• length of items are generated in three intervals according to li ∈ [v1, v2], with v1 =

0.01L or 0.2L and v2 = 0.02L or 0.8L

• demand for items is generated according to the idea of Gau & Wäscher (1995) for a single
period, so that the average demand over all items in a specific period is equals 100.
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• raw material cost: co = 1;

• setup cost: scit ∈ [100, 500]
• inventory cost: hcit ∈ [1, 5]
• production time: vtit = 1

• setup time: stit ∈ [10, 50]
• capacity (capt ) is generated by the average of lot-by-lot policies: for every period t cal-

culate the amount of resources needed to produce exactly the demands of the items in this

period, sum up this amount for all periods and divide by the number of periods T , this is,

capt =
∑T

t=1
∑I

i=1 (vtit dit +stit )
T .

In the cutting stock problem modeled by KT, an upper bound on the number of objects in stock
(Q) is needed. Poldi & Arenales (2010) is the basis for calculating the upper bound as Q = 2	λ

with, λ =

∑T
t=1

∑I
i=1 li dit

L .

Thus, the Data 1 defines 9 classes (see Table 2), and for each class 10 random instances are
generated considering the three levels of capacity, totaling 270 instances.

Table 2 – Classes of Data 1.

Classes
Data 1

Items v1; v2

Class 1 10 0.01; 0.2
Class 2 10 0.01; 0.8

Class 3 10 0.2 ; 0.8

Class 4 20 0.01; 0.2
Class 5 20 0.01; 0.8

Class 6 20 0.2 ; 0.8

Class 7 40 0.01; 0.2

Class 8 40 0.01; 0.8
Class 9 40 0.2 ; 0.8

The second data set, called Data 2, is based on the lot-sizing problem. This set is created using
7 specific instances from Trigeiro et al. (1989) (see Table 3). These instances are considered
difficult and have been used in several studies in the literature (Jans & Degraeve, 2004; Vyve &

Wolsey, 2006; Degraeve & Jans, 2007; de Araujo et al., 2015).

To complete the data file the CUTGEN1 is used as generator for the cutting stock parameters
and it was described above. Thus, Data 2 defines 3 classes (see Table 3), and for each class 10
random instances are generated for each of the 7 specific instances, totaling 210 instances.
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Table 3 – Specific Instances and Classes of Data 2.

Instance Items Periods

G30 6 15

G30wol 6 15
G53 12 15

G57 24 30
G62 6 30

G69 12 30

G72 24 30

Classes
Data 2

v1; v2

Class 10 0.01; 0.2
Class 11 0.01; 0.8

Class 12 0.2 ; 0.8

7.1.2 Computational Results

Firstly, we present the computational results using Data 1.

A preliminary test is performed in order to evaluate the impact of the models and the capacity
tightness on the number of feasible solutions found. It is considered three different levels of

capacity: cap0 where we have the integrated problem without capacity constraint; cap1 where
the value of the capacity is capt/0.3; cap2 where we have tighter capacity given by capt/0.85.
The results shown that the number of feasible solutions decreases as the capacity becomes more

scarce. The CLVC model is the only formulation able to find feasible solutions for all instances,
but only for the uncapacitated case. The CLVC model obtained the largest number of feasible
solutions for the three capacity levels using the optimization package based heuristic. For the

column generation based heuristic the best performance in this analysis is obtained by CLVC CG
model. In general, the difficulty to find a feasible solution is in Classes 4 and 7, which correspond
to classes in which the ratio between the item length and object length is small.

The following results are evaluated considering the uncapacitated model (column cap0) and with

capt/0.3 (column cap1).

In Table 4 the lower bound obtained with the linear relaxation for the models is presented. As a
general conclusion, regarding the cutting stock problem, the models integrated with VC, VC CG
and GG CG are equivalent with relation to the value of the lower bound obtained. For this reason

just one of them is presented and the lower bounds are better than the lower bounds resulting from
the models integrated with KT. The value obtained with cap0 and cap1 are the same for all the
models and just one value is presented. Regarding the lot sizing problem the models integrated

with SP obtain a substantially better lower bound than the models using CL.

Figures 1 and 2 show the performance profiles obtained with the upper bound for all the instances
in Data 1. Considering the optimization package based heuristic (see Fig. 1), the CLVC model
shows a good overall performance in both variations of capacity, since its performance profile

dominated the rest of them. This model could find the best upper bound for around 70% of the in-
stances, followed by the SPVC. For the column generation based heuristic (see Fig. 2), CLVC CG
obtained the best performance for around 50% of the instances, followed by SPGG CG. Just
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Table 4 – LP Relaxation for Data 1.

Classes CLKT SPKT CLVC SPVC

Class 1 10978.63 34793.33 10978.65 34794.62
Class 2 15735.78 39828.10 16801.00 41005.42

Class 3 17110.47 41202.79 18733.81 42964.73
Class 4 22083.04 70486.11 22083.04 70486.11

Class 5 31493.67 79562.22 33074.99 81292.92

Class 6 34020.87 82345.81 36519.61 85032.61
Class 7 43091.46 137835.25 43091.46 137835.25

Class 8 59926.51 154188.53 61315.45 155838.87
Class 9 65761.36 159574.61 68065.34 162285.77

Average 33355.75 88868.53 34518.15 90170.70

considering the cap0 instances it is possible to obtain an upper bound for all the instances with
the CLVC, CLVC CG and CLGG CG models. The lowest number of feasible solutions, around
10% and 40%, are found respectively by the SPKT and SPVC CG models. In general, mathemat-

ical models integrated into VC obtained the best results for most instances in both the capacity
variations and heuristic strategies.

Figure 3 shows the performance profile obtained for the gap for models solved with the opti-
mization package based heuristic. The gap is that provided by the solver for the final solution

for both the cases cap0 and cap1. In both variations of capacity, the SPKT could not find a
satisfactory results for the gap. The CLVC model showed a good overall performance, in which
100% and 90% of the instances obtained a feasible solution for cap0 and cap1, although it has

the best performance in just 30% of the instances. On the other hand, the SPVC model showed
the best performance in approximately 60% of the instances, but with the disadvantage of not
having solved all the instances. Since the column generation procedure is subject to a time limit,

we cannot guarantee the optimality of this lower bound, and therefore no results on the gap are
presented for the CG methods.

The computational results for Data 2 are given as follow.

The same analysis for Data 2 is performed in order to evaluate the impact of the models and
the capacity tightness on the number of feasible solutions found. It is noticed a big difficulty of

the SPKT model to solve these instances. The SPVC CG model also shows great difficulties in
finding a feasible solution. Class 12 presents the largest number of feasible solutions (378 from
560), followed by Class 11 (369 from 560). In Class 12, half of the models found a feasible

solution for all the instances; this class is related with the longest items when compared to object
length.

In the Table 5 the lower bound obtained with the linear relaxation for the models solved with the
optimization package are presented. As discussed above the models VC, VC CG and GG CG are

equivalent with relation to the lower bound obtained and due to this reason just one of them is
presented. The use of a reformulated lot-zing model once again, improves the results compared
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Figure 1 – Performance Profiles: Upper Bound for the Optimization Package Based Heuristic – Data 1.

to the models integrated with the classical lot-zing model. This improvement is 260% on average.
The models integrated with KT did not achieve a value for the linear relaxation for some instances
within a time of 5 hours.

Figure 4 shows the performance profile of the upper bound and gap considering the optimization

package based heuristic. The first impact observed in the figure is due to the huge difference
between the models integrated with KT and VC to obtain an upper bound. The SPKT and CLKT
models found an upper bound for around just 5% and 40% of the instances, respectively. On

the other hand, the SPVC and CLVC models found a upper bound for around 65% and 90% of
the instances, respectively. The best performance to obtain the upper bounds is found using the
CLVC model with more than 80% of the instances (τ = 0), compared with the other models,
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Figure 2 – Performance Profiles: Upper Bound for the Column Generation Based Heuristic – Data 1.

which reached at most 10% of the best results (at τ = 0). The performance obtained with the
SPVC models changes a little when the gap is analyzed. The performance of the SPVC becomes
around the same as CLVC, 40% of the best results (τ = 0). And one more time, results obtained

with CLVC model dominate the other models considering the performance values (τ ).

Figure 5 presents the performance obtained in the column generation based heuristic for the
upper bounds. We can see that the CLVC CG model found an upper bound for around 98% of
the instances, although it could reach the best performance for just 20% of the instances. On the

other hand, CLGG CG found the best results for the upper bound for almost 75% of the instances
solved.
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Figure 3 – Performance Profiles: Gap for Optimization Package Based Heuristic – Data 1.

7.2 Experiment 2

The following describes the generation of data and computational results for the integrated un-

capacitated lot-sizing and the cutting stock problem with several types of objects (the models in
Section 4 and its corresponding model in Section 5).

7.2.1 Data Set

The proposed data set is based on Poldi & Arenales (2010) and for the lot-sizing problem the
data is based on Trigeiro et al. (1989), but without considering capacity constraints.
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Table 5 – LP Relaxation for Data 2.

Class 10 CLKT SPKT CLVC SPVC

Example 1 12552.56 38450.41 12552.81 38455.10
Example 2 12534.92 38645.79 12535.19 38649.20

Example 3 25058.61 74650.39 25058.67 74651.33
Example 4 46554.59 143706.15 46554.59 143706.16

Example 5 13311.81 63092.75 13312.38 63096.81
Example 6 30428.71 136060.92 30428.72 136062.38

Example 7 64483.84 299427.41 64483.84 299427.59

Average 29275.01 113433.40 29275.17 113435.51

Class 11

Example 1 14831.41 40729.26 15257.52 41292.36

Example 2 14813.77 40924.64 15243.59 41476.43
Example 3 29619.41 79211.19 30346.19 80104.87

Example 4 56385.07 153536.63 57257.32 154658.84
Example 5 18060.64 67841.58 18919.93 68835.03

Example 6 40162.36 145794.58 41623.78 147495.46

Example 7 — — 86738.85 322311.95

Average — — 37912.46 122310.71

Class 12

Example 1 15702.19 41600.04 16508.34 42542.73

Example 2 15684.55 41795.42 16493.35 42720.26
Example 3 31270.20 80861.98 32472.08 82150.89

Example 4 59625.74 156777.30 61617.88 158934.87
Example 5 19827.17 69608.12 21501.31 71404.10

Example 6 43685.89 149318.11 46154.93 152056.45
Example 7 — — 95674.65 331111.52

Average — — 41488.93 125845.83

(−) time limit with no lower bound

• number of periods: T = {3, 6}
• types of objects: K = {3, 5}
• number of items: I = {10, 20}
• object length: Lk ∈ [300, 1000]

• planned supply of object type k in period t : ekt ∈ [1.5	λt
, 2	λt
] with, λt =
∑I

i=1 li dit∑K
k=1 Lk

.

• item length: li ∈ [0, 1L, 0, 4L], whith L =
∑K

k=1 Lk
K

• item demand: dit ∈ [10, 200]
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Figure 4 – Performance Profiles: Upper Bound for the Optimization Package Based Heuristic – Data 2.

• raw material cost: cw = 1;

• setup cost: scit ∈ [100, 500]
• inventory cost: hcit ∈ [1, 5]

Thus, the data set defines 8 classes (see Table 6), and for each class 10 random instances are
generated, totalling 80 instances.

7.2.2 Computational Results

This data set included 3 infeasible instances (Class 16 instance 10 and Class 20 instances 5 and
10) and these were removed from the analysis.
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Figure 5 – Performance Profiles: Upper Bound for the Column Generation Based Heuristic – Data 2.

Table 6 – Classes with several types of objects.

Classes Periods Objects Items

Class 13 3 3 10
Class 14 3 3 20

Class 15 3 5 10

Class 16 3 5 20
Class 17 6 3 10

Class 18 6 3 20
Class 19 6 5 10

Class 20 6 5 20

Table 7 presents the computational results obtained for the lower bound. The use of the refor-
mulated lot-sizing model shows significant improvements in the lower bound. A slight improve-
ments can be seen in the use of VC model when compared with the KT model.

Tables 8 and 9 show the average upper bounds in each class for each mathematical model.

TheWWKTMO and SPKTMO models did not find a feasible solution for most classes. Con-
sidering the optimization package based heuristic the WWVCMO model found the best results
for almost all the classes (except Classe 16). For the column generation based heuristic the best

results are shared between WWGGMO CG and SPGGMO CG models. As the WWGGMO CG
model obtained results which are very close to the best found, this fact contributed to the best
global average. Note that WWVCMO performs very poorly on Class 20, compared to the column

generation methods. This is also confirmed by the largest gap for this class.

Table 10 presents the average for the gap obtained in each class for models solved with the
optimization package based heuristic. For this strategy the gap used is that provided by the solver
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Table 7 – LP Relaxation.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Class 13 4861.68 4861.68 5472.80 5472.80
Class 14 9840.43 9840.43 9931.05 9931.05

Class 15 4801.52 4868.99 5201.06 5201.06
Class 16 9872.04 9873.19 9872.04 9873.19

Class 17 6831.39 6831.39 8743.99 8779.76
Class 18 13455.68 13455.68 13510.54 13510.54

Class 19 6584.89 6584.89 7436.32 7436.32
Class 20 13626.16 13637.07 13626.16 13637.07

Average 8734.22 9225.75 8742.66 9230.23

Table 8 – Upper Bounds for the Optimization Package Based Heuristic.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Class 13 18014.40 8081.20 40179.80 8081.70
Class 14 (*5) 15188.20 — 15214.40

Class 15 17307.50 7629.40 30391.60 7629.90
Class 16 (*6) 14634.00 — 14627.67
Class 17 (*4) 16447.10 — 16507.30
Class 18 (*2) 28801.30 — 29546.30

Class 19 (*5) 15560.80 — 15721.90
Class 20 — 219048.63 — (*1)

Average — 40673.83 — —

(−) time limit with no integer solution

(∗) number of instances with feasible solution

Table 9 – Upper Bounds for the Column Generation Based Heuristic.

Classes WWGGMO CG WWVCMO CG SPGGMO CG SPVCMO CG

Class 13 8171.40 8509.50 8161.40 8456.80

Class 14 15440.90 20884.90 15442.40 21045.90
Class 15 7586.40 9196.00 7577.20 9373.10

Class 16 14941.00 22470.22 14999.89 22707.78
Class 17 16616.10 19200.20 16675.70 19736.20

Class 18 29996.20 47068.00 33889.80 51973.40
Class 19 15335.90 19712.30 15334.60 20369.80

Class 20 32340.50 45904.88 52861.25 47941.50
Average 17553.55 24118.25 20617.78 25200.56

for the final solution. As can be seen, most of the best gaps are found by WWVCMO model. In
general, the influence of data on the results relates to the increase in the number of items (in the

even-numbered classes), where the gaps are significantly higher compared to the odd-numbered
classes.
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Table 10 – Final Gap.

Classes WWKTMO WWVCMO SPKTMO SPVCMO

Classe 13 58.79 0.10 80.41 0.11

Classe 14 (*5) 0.29 — 0.46
Classe 15 58.94 0.08 74.78 0.08

Classe 16 (*6) 0.39 — 0.35
Classe 17 (*4) 0.24 — 0.22
Classe 18 (*2) 2.78 — 3.96

Classe 19 (*5) 0.50 — 1.55
Classe 20 — 48.16 — (*1)

Average — 6.57 — —

8 CONCLUSIONS

In this paper, we present a study of mathematical models from the literature for modeling the lot-
sizing problem and the one-dimensional cutting stock problem, in order to propose and compare
new integrated problems. For the lot-sizing problem, we study the model proposed by Wagner

& Whitin (1958), the model proposed by Trigeiro et al. (1989) and a reformulation of the lot-
sizing problem proposed by Eppen & Martin (1987). For the cutting stock problem, extensions
of the models proposed by Kantorovich (1960), Valério de Carvalho (1999, 2002) with reduction

criteria and Gilmore & Gomory (1961) have been proposed to incorporate multiple periods.
These models have been extended also to consider various types of objects.

In the literature, there are several studies of practical cases, which use these formulations to
model the problems found, as simple or integrated problems. This study aims to present alter-

native mathematical models for the integrated problem in order to compare and point out the
advantages of each model, as well as, the impact of the data set on the obtained solutions. As
solution methods, we present two strategies. The first one uses a solver for finding the solution.

In the second one, the column generation technique is used in a heuristic strategy to get a feasible
solution. An extensive computational study is conducted with different data sets.

The difficulty of the models to obtain a feasible solution becomes clear when considering the
capacity constraint in the lot-sizing problem, and this impact is even greater when the capacity

constraint is tight. The main influence of the data set on the results is in instances that have
an item length considerably smaller when compared to the object length. For the models that
consider various object types in stock, the main impact of the data in the results comes from the

increase in the number of items.

In general, models integrated with the classical lot-sizing problem and the cutting stock prob-
lem model based on Valério de Carvalho (1999, 2002) with column generation obtained the
largest number of feasible solutions compared to other mathematical models in all analyses. It

is also possible to generalize the fact that the models that integrate with the model proposed
by Kantorovich (1960) have produced bad results in all experiments. For models with capacity
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constraints, the classical lot-sizing model integrated with the Valério de Carvalho model and

Gilmore and Gomory in both capacity variations (uncapacitated model and capt = capt/0, 3)
obtained a lot of good upper bounds. However the use of the shortest path model (Eppen &
Martin, 1987) significantly improved the LP lower bound and obtained gaps smaller when com-

pared to other models, for most classes. In an analysis for the mathematical models with various
object types, although the integration with the Gilmore and Gomory model does not show the
best results for all classes for the upper bound, the proximity to the best results contributes to the

achievement of best overall average.

A possible direction for future research is to study other extensions of the models proposed and
develop more elaborate solution methods, in order to address a greater variety of instances.
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