Acessibilidade / Reportar erro

Instrumented indentation applied to the mechanical characterization of polyurethane derived from castor oil

The mechanical properties of polyurethane derived from castor oil, obtained by instrumented indentation technique with pyramidal and spherical indenters are reported. The influence of the indenter shape on the values of mechanical properties of the polymer was investigated. The indentations were made with pyramidal Berkovich, cube corner and a spherical indenter with radius of 150 μm in a Nanoindenter XP TM. The applied loads varied between 1 and 200 mN. The penetration depth increases for acute indenters, being higher for the cube corner tip. The hardness and elastic modulus were determined using the method of Oliver and Pharr. It was found that the measured values for hardness are higher for more acute indenters. The hardness with the pyramidal Berkovich tip was 0.14 GPa for small penetrations and 0.12 GPa for higher penetration depths. The values obtained with a cube corner tip were 25 to 30% higher. This is related to the volumes of regions with high plastic deformation in the case of acute indenters compared to the volumes of regions that present viscoelastic deformation. The apparent viscosity determined using the spherical indenter, in tests with applied constant forces, is equal to (22 ± 2) × 10(12) Pa.s.

Polyurethane; viscoelasticity; indentation hardness; elastic


Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br