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Abstract

Industries and the scientific community currently focus on creating new ways to recycle and to reuse polymer waste 
that leads to serious socio-environmental risks. However, the quality of recycled polyethylenes depends strongly on 
their purity degree, but the distinction between Low Density Polyethylene (LDPE) and High Density Polyethylene 
(HDPE) by a fast and consistently good methodology is still an unsolved issue for the current recycling processes. 
In this study, confocal Raman spectroscopy and Competitive Adaptive Reweighted Sampling - Partial Least Squares 
(CARS-PLS) linear regression have been successfully applied to quantify the concentration of LDPE/HDPE blends. 
The effects of several regression parameters (pretreatment method, Monte Carlo sampling runs, k-fold and maximal 
number of latent variables for cross-validation) on the CARS-PLS model training and prediction performance were 
analyzed. The CARS-PLS-based models show root-mean-squared prediction error of 4.06 - 8.87 wt% of LDPE for the 
whole composition range of HDPE/LDPE blend.
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1. Introduction

Polyethylenes (PEs) are the main thermoplastic polymers 
consumed by the current civilization and, consequently, 
the largest polymer fraction found in urban solid wastes. 
The  reason for the great versatility of their mechanical 
properties is the control of the degree of polymeric branches 
during the ethene polymerization by a low-cost production[1]. 
However, this characteristic of PEs results in several 
difficulties in manufacturing their recycled products with 
attractive properties by mechanical recycling[2,3].

HDPE/LDPE blends have been widely used by the plastic 
industry to adjust processability and mechanical properties 
of the polyethylene resins[4]. However, the unknown and 
uncontrolled composition of these polymeric blends and 
recycled polyethylene wastes hinders the processing and 
production of material goods with satisfactory performance 
and quality.

In several countries, Low Density Polyethylene 
(LDPE) and High Density Polyethylene (HDPE) are the 
main representatives in the family of PEs due to their 
higher degree of production than that observed for other 
polyethylenes commercially available[5,6], such as Linear 
Low Density Polyethylene (LLDPE), Ultra High Molecular 
Weight Polyethylene (UHMWPE) and Ultra Low Density 
Polyethylene (ULDPE).

LDPE and HDPE are  semi-crystal l ine 
thermoplastics, frequently distinguished by their densities 

(δLDPE = 0.91-0.93 g/cm3 and δHDPE = 0.95-0.97 g/cm3)[7], 
which are closely linked to their differences in the number 
of polymer branches[8-10]. LDPE is commonly processed 
by extrusion, blow molding and injection molding. This 
polyethylene has high impact resistance and flexibility 
among the PEs, as well as interesting electrical properties 
to be used as an electrical insulator. Consequently, LDPE 
has been applied to the production of flexible packaging, 
wiring and cable coating. HDPE is used in several segments: 
buckets, bowls, trays, toys and pots are obtained by injection 
processing; packaging for detergents and cosmetics are 
made by blowing processing; insulation of telephone 
wires, decorative tapes, garbage bags and grocery bags are 
obtained by extrusion[7].

The determination of the fractional composition of 
LDPE/HDPE blends is not a simple task because the 
chemical structures of their polymer chains are only based 
on carbon and hydrogen. Wide-Angle X-Ray Scattering 
(WAXS), Dynamic Mechanical Thermal Analysis (DMTA) 
and Differential Scanning Calorimetry (DSC) have shown 
limitations to estimate the composition of this polymer blend 
due to the effects of co-crystallization for blends with more 
than 10 wt% of LDPE[11]. Contrary to these characterization 
techniques, confocal Raman spectroscopy is a quick, non-
destructive and inexpensive method since it does not require 
expensive inputs or time-consuming methods for sample 
preparation and analysis[12].
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 In this contribution, we evaluated the potential of Partial 
Least Squares linear regression modified by Competitive 
Adaptive Reweighted Sampling (CARS-PLS) to analytically 
determine the compositional fraction of LDPE/HDPE blends 
by prediction models based on confocal Raman data.

1.1 Mathematical and computational fundamentals

PLS linear regression is an mathematical method that 
externally correlates an instrumental data set (X matrix) and 
an interest property set (Y matrix) by linear equations[13,14]:

( ) ( ) ( ) ( )* T
n k n h h k n kX T P E× × × ×= +  	 (1)

( ) ( ) ( ) ( )* T
n m n h h m n mY U Q F× × × ×= +  	 (2)

where n refers to the number of observations of a property; 
k is the number of responses measured for each sample; 
m corresponds to the number of properties to be predicted 
by PLS regression; h is the number of latent variables (LVs); 
T and U are the matrices of scores for X and Y data matrices, 
respectively; P and Q matrices present the inputs for X and Y, 
in that order; E and F matrices contain the residual errors 
for the prediction model.

To maximize the covariance between X and Y matrices, 
the scores are obtained from the linear combinations of 
the elements from the instrumental data set, using weight 
coefficients (w) and a given number of LVs[15]. In the 
conventional PLS regression, the elements in the T matrix (t), 
i.e. the scores, are estimated by:

nh nk kh
k

t x w= ∑  	 (3)

where x is an elements in the X matrix.
Keeping the minimum modulus for F elements and 

the matrices of scores (T and U) internally correlated by 
U = T (i.e., X scores are assumed to be the most appropriate 
predictors for Y matrix)[13], the interest property set is 
predicted by PLS linear regression using:

( ) ( ) ( ) ( )*n m n k k m n mY X B G× × × ×= +  	 (4)

where G is a matrix of random errors and B is the matrix of 
model regression with the linear coefficients. Computationally, 
the PLS linear model is implemented by the NIPALS 
algorithm detailed in Figure 1.

The CARS algorithm was projected to interactively 
find the optimal subset, i.e., points in an instrumental 
data set (X matrix with the spectra data) to build the PLS 
regression with the lowest value of Root Mean Square 
Error of Cross Validation (RMSECV)[16]. At every sampling 
run, the CARS algorithm builds a PLS model with a 
randomly selected variable subset from the calibration 
set (Monte Carlo sampling method). The Exponentially 
Decreasing Function (EDF) and Adaptive Reweighted 
Sampling (ARF) are subsequently applied as a two-step 
method for wavelength selection to remove the wavelength 
(elements in the X matrix) that present the poorest weight 
coefficients (w) by a simulation of the “survival of the 
fittest” principle.

In CARS-PLS, the importance of each x element is 
evaluated by a normalized weight calculated by:

1

i
CARS k

ii

bw
b=

=
∑

 	 (5)

While the ARF method keeps the x element with the 
largest weights, the EDF method induces the reduction of 
the number of x elements to build the PLS models with 
the small absolute regression coefficients by force. In each 
sampling run, EDF uses the following exponential model:

i
ir e−β= α  	 (6)

where:

( )1/ 1
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1

k
Nβ = −
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2. Materials and Methods

2.1 Materials

Virgin LDPE (MFI of 2.6 g/10 min, 190 °C, 2.16 kg – 
ASTM D-1238) and HDPE (MFI of 0.3 g/10 min, 190 °C, 
5 kg – ASTM D-1238) were obtained from Braskem and 
Petroquímica Triunfo S.A., respectively.

Figure 1. Flow chart of the NIPALS algorithm[13].
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2.2 Sample preparation

Twenty-one LDPE/HDPE polymer blends with several 
concentrations (from 0/100, 5/95, 10/90, 15/85, 20/80, 
and so forth until the concentration of 100/0 wt%) were 
prepared by the extrusion process (Dynisco Laboratory 
Mixing Extruder, barrel diameter = 19 mm, diameter 
orifice = 3.12 mm, temperature profile = 180 and 190 °C, 
screw speed = 220 rpm). To simulate a mechanical recycling 
process and to ensure mixing, the samples were extruded 
three times before the spectroscopic analysis.

2.3 Apparatus and software

Raman spectra of the HDPE/LDPE extruded pellets were 
obtained using confocal Raman Microscope Alpha300 R 
(WITEC, laser of 532 nm and 45 mW), and collected from 
210 to 3785 cm-1 at room temperature with a spectral 
resolution of 3 cm–1.

All Raman data were smoothed using the Savitzky-
Golay method[17] (polynomial order of 5, window points 
of 10) and previously normalized. CARS-PLS regression 
of the pre-processed spectra were carried out on MATLAB 
software (version R2015a) using libPLS 1.95 toolbox[18].

2.4 CARS-PLS regression analysis

Forty-two spectra were used as a cross validation set, 
while sixteen spectra were used as an independent prediction 
set. The root mean squared errors were measured by[19]:

( )21 ˆ
/

n
i ii y y

RMSECV RMSEP
n

= −∑
=  	 (9)

where n is the spectrum number; iy  are the reference 
concentrations of the samples and ˆiy  are the concentrations 
predicted by the calibration set (RMSECV), or independent 
validation test (RMSEP), respectively.

The fitting degree between the predicted results and 
reference values was obtained by the correlation coefficient 
(R)[20]:
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where meanŷ  is the average polymer concentration of all 
samples in the cross validation and external test sets.

3. Results and Discussions

The Raman spectra from the processed samples are shown 
in Figure 2 to represent all the compositions of the LDPE/HDPE 
blends (0-100 wt% of LDPE) and the characteristic Raman 

shifts of the polymer chains of the polyethylenes (Table 1). 
In sum, the Raman shifts at 1070, 1135 and 1300 cm−1 are 
from C-C stretching and -CH2- twisting. The medium Raman 
shift at 1445 cm-1 is associated to three -CH2- vibrational 
modes from the PE crystal structure (one wagging and 
two scissoring vibrational modes)[21]. The strong Raman 
shifts at 2845 cm-1 and 2883 are from the asymmetric and 
the symmetric stretching of the CH2 units, respectively[22]. 
The weak Raman shift at 480 cm-1 is from the molecular 
rotations of the C-C ramifications with four to nine carbons 
in gauche state[23].

In addition, Raman shifts derived from optical effects 
were identified on the Raman spectra of the LDPE/HDPE 
blends: 2725 and 2430 cm-1 are overtones and combinations of 
wavenumbers in the range of 1400-1495 cm-1 (-CH2- bonds)[24]; 
2935 cm−1 (smooth shoulder) is reported to be from the 
Fermi resonance between the CH2 symmetric stretching 
and the overtone from the CH2 bond[25]. The Raman spectra 
of LDPE and HDPE are very similar, but it was observed 
that the maximum intensity of the Raman band at 1460 cm-1 
increases with the reduction of LDPE in the polymer blend, 
while the opposite behavior is observed for the Raman shifts 
at 1370 and 1416 cm-1. These spectral characteristics are the 
basis for operation of the multivariate calibration to quantify 
the composition of the LDPE/HDPE blends using confocal 
Raman spectra data[20].

Table 2 presents the optimal predictive models built 
by the CARS-PLS algorithm using several statistical 
pretreatment methods for the Raman data (the number of 
latent variables for cross-validation, type of cross-validation 
and number of runs were maintained constant, as described 

Table 1. Main Raman shifts of the LDPE and HDPE.
Raman shift (cm-1) Bond Vibrational mode Phase

1070, 1135 and 1300 -C-C- and -CH2- Stretch and twisting Crystalline and anisotropic regions
1175 -CH2- Rocking Crystalline
1372 -CH2- Wagging Amorphous
1445 -CH2- One wagging and two scissoring modes Crystalline
2845 -CH2- Asymmetric stretching Amorphous and crystalline
2883 -CH2- Symmetric stretching Amorphous and crystalline

Figure 2. Confocal Raman spectra from the HDPE/LDPE blends.
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in the table label). The pretreatment step is essential to 
reduce the negative effects of the Raman signal instability 
caused by sample fluorescence and laser instability. Here, 
we evaluated the Pareto, mean-centering and autoscaling 
methods; note that all Raman data were previously processed 
by Savitzky‑Golay smoothing and normalization procedure 
before their pretreatment. The results indicate that the 
predictive model based on mean-centering (PLS-C) best 
fits the external test set (Rpred = 0.979), and also show the 
lowest prediction error (RMSPE = 4.062 wt% of LDPE). 
Independently of the data pretreatment method, the CARS‑PLS 
regression has an excellent calibration performance, since 
the calibration errors in Table 2 are extremely low, lesser 
than 0.9 for all prediction models.

The data pretreatment by Pareto method minimizes the 
relative importance of large values, but it does not cause 
significant changes to the original spectral data. In the 
autoscaling method, the objective is give equal importance for 
all the spectral data, while the mean centering pretreatment 
consists of removing the offsets from the spectral data[26,27].

Table 3 summarizes the predictive PLS-based models 
with the lowest results of RMSECV and RMSEP, obtained 
by the CARS search algorithm and several K-fold values for 
cross-validation. Their correlation coefficients of calibration 
(Rcalib) and prediction (Rpred) were detailed as well. The K-fold 
cross-validation technique randomly divides the calibration 
dataset into K mutually exclusive subsets with the same size, 
i.e., with the same number of spectra. While K-1 subsets are 
applied to the training of the predictive model, one subset 
is used to calculate RMSECV and Rcalib (model testing). 
Leave-one-out, which was used to analyze the pretreatment 
method effects on the CARS-PLS predictive models, is a 
specific case of K-fold cross-validation, where K is equal 
to the total number of spectra data (N). In this mathematical 

approach, N calculations are performed, incurring expressive 
computational cost when N is high.

As can be seen in Table 3, there is no improvement in 
prediction and calibration performance of the CARS-PLS 
models using more than 5-fold, in which the RMSEP is 
equal to that obtained by leave-one-out cross-validation 
(RMSEP = 4.062 wt%). In this fold condition, the fitting 
degrees do also not display fluctuations for either calibration 
(Rcalib = 0.999) or prediction (Rpred = 0.979) datasets, while 
the optimal number of latent variables is 19.

According to Table 4, RMSECV decreased and Rcalib 
increased as the maximal numbers of latent variables for 
cross-validation increased, being the minimum result at 
0.039 wt% for the PLS-40 model built with 34 LVs. However, 
the RMSEP results indicate a direct effect on the prediction 
performance of the CARS-PLS models due to an increase 
of the maximal LVs, since RMSEP falls from 8.017 wt% 
to 5.521 wt% of LDPE when the maximal number of LVs 
is enhanced from 5 to 10, respectively.

In a linear PLS regression, a projected vector subspace 
is assembled by a linear relationship between the latent 
variables in the spectral dataset. For this reason, the optimum 
number of LVs should be identified to obtain the best 
calibration performance for the PLS model[28]. The advantage 
of the CARS-PLS method is the possibility to conduct a 
sophisticated and automatic search to optimize this parameter 
without the need of excessive manual searches, required in 
the conventional linear and nonlinear PLS regressions[16].

In order to investigate the influence of the number 
of Monte Carlo sampling runs on the CARS-PLS model 
performance, predictive models with 50 to 10000 runs were 
built and they are shown in Figure 3 (it was kept constant the 
other parameters, i.e. pretreatment method, cross-validation 

Table 2. Optimal predictive models obtained by CARS-PLS regression with the confocal Raman spectra pretreated by several methods 
(constant parameters: maximal number of latent variables for cross-validation = 20; cross-validation = leave-one-out; Monte Carlo 
sampling runs = 100).

Model Pretreatment LVoptimal RMSECV (wt% of LDPE) Rcalib RMSEP (wt% of LDPE) Rpred

PLS - 20 0.147 1.000 6.899 0.939
PLS-C Centering 19 0.329 0.999 4.062 0.979
PLS-A Autoscaling 20 0.158 1.000 6.504 0.946
PLS-P Pareto 15 0.765 0.999 5.146 0.966

Table 3. Optimal predictive models obtained by CARS-PLS regression using several K-fold values for cross-validation (constant 
parameters: pretreatment = centering; maximal number of latent variables for cross-validation = 20; Monte Carlo sampling runs = 100).

Model K-Fold for cross-validation LVoptimal RMSECV (wt% of LDPE) Rcalib RMSEP (wt% of LDPE) Rpred

PLS-C2 2 20 0.803 0.999 4.997 0.968
PLS-C5 5 19 0.329 0.999 4.062 0.979
PLS-C15 15 19 0.329 0.999 4.062 0.979
PLS-C20 20 19 0.329 0.999 4.062 0.979

Table 4. Optimal predictive models obtained by CARS-PLS regression using several maximal numbers of latent variables for 
cross‑validation (constant parameters: pretreatment = mean centering; cross-validation = leave-one-out; sampling runs = 100).

Model Maximal number of LVs LVoptimal RMSECV (wt% of LDPE) Rcalib RMSEP (wt% of LDPE) Rpred

PLS-5 5 5 6.911 0.948 8.017 0.918
PLS-10 10 8 2.951 0.991 5.521 0.961
PLS-30 30 21 0.145 1.000 6.083 0.953
PLS-40 40 34 0.039 1.000 6.139 0.952



Predicting LDPE/HDPE blend composition by CARS-PLS regression and confocal Raman spectroscopy

Polímeros, 29(1), e2019010, 2019 5/7

Figure 3. Reference vs. predicted LDPE relative amounts of the LDPE/HDPE blends obtained by CARS-PLS regression using several 
numbers of Monte Carlo sampling runs: (a) 50; (b) 100; (c) 500; (d) 1000; (e) 5000; and (f) 10000. (Constant parameters: pretreatment 
method = mean centering; cross-validation = leave-one-out; maximal number of latent variables for cross-validation = 20).

algorithm and maximal number of latent variables for 
cross‑validation). All show good correlation coefficients 
for the predicted values of the LDPE relative concentration 
from the external validation set (Rpred higher than 0.9) and 
excellent correlation coefficient for calibration (Rcalib = 0.999). 

The highest calibration and prediction error was identified 
for the CAR-PLS model built with 50 runs, probably due 
to the low steps for searching the main Raman shifts to set 
up a predictive model with a robust predictive performance. 
The results of the CARS-PLS models assembled with more 
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than 100 sampling runs evidently show that the RMSECV 
reduction does not necessarily improve the predictive ability 
of the PLS model (reduction of the RMSEP value). Moreover, 
all the statistical errors of the CARS-PLS models are constant 
when more than 5000 sampling runs (RMSEP = 0.281 and 
RMSECV = 4.806 wt% of LDPE) are used.

All CARS-PLS-based models presented more significant 
prediction performance with the interval containing the 
Raman shift at 2883 cm-1 (both amorphous and crystalline 
polyethylene phases) and 1445 cm-1 (only from the PE 
crystalline phase). In a previous work with Interval PLS 
linear regression[20], we identified that the Raman signal at 
2845 cm-1, which regards the CH2 asymmetric stretching 
in amorphous and crystalline phases, enables to obtain 
prediction models with the smallest RMSEP values 
(2.68‑6.94 wt% of LDPE). The most plausible justification 
is associated to the intensity and width of Raman shifts 
(1370, 1416 and 1460 cm-1), which are not just related to 
the content of the polymer chemical groups, but also to 
the macromolecular organization of the polymeric chains. 
The difference between the branching degree of LDPE and 
HDPE affects the methylene polymer conformations in the 
amorphous and crystalline regions, directly influencing their 
molecular rotations and vibrations, intimately connected to 
the Raman signal detected by this vibrational spectroscopy.

4. Conclusions

A modified PLS linear regression was used to predict 
the composition quantification of LDPE/HDPE blends. 
The predictive PLS-based models presented the lowest 
prediction error of 4.062 wt% of LDPE with a good fitting 
coefficient of 0.979 in the whole content range, 0-100 wt% 
of HDPE.

The CARS-PLS parameters display a significant role 
in the RMSECV and RMSEP of the predictive models. 
In the conditions evaluated, the mean centering method 
for Raman data pretreatment favors the best prediction 
performances, while the autoscaling method benefits the 
lowest calibration errors. The increase in the K-fold and 
the maximal numbers of LVs for cross-validation caused a 
reduction of the RMSECV values, but RMSEP is not directly 
related with these regression variables. The optimal number 
of sampling runs was 100; above this value, the CARS-PLS 
models have a decrease in their potential to determine the 
LDPE relative amount in the polymeric blend.
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